Additional Important Problems

1) If X has mgf

$$
M_{X}(t)=\frac{1}{2-e^{t}} \quad(t<\log 2)
$$

give the value of $E(X)$.
answer: 1
2) Using the joint pdf,

$$
f(x, y)= \begin{cases}2 x e^{-y}, & x>0, y>x^{2} \\ 0, & \text { otherwise }\end{cases}
$$

obtain each of the following:
(a) the marginal pdf of X,
(b) the marginal pdf of Y,
(c) the conditional pdf of X given $Y=9$,
(d) the conditional expectation of X given $Y=9$,
(e) $\operatorname{Cov}(X, Y)$,
(f) the variance of $X+Y$,
(g) the pdf of $V=X^{2} / Y$.
answers:
(a) $2 x e^{-x^{2}} I_{(0, \infty)}(x)$
(b) $y e^{-y} I_{(0, \infty)}(y)$
(c) $\frac{2}{9} x I_{(0,3)}(x)$
(d) 2
(e) $\frac{\sqrt{\pi}}{4} \doteq 0.443$
(f) $3-\frac{\pi}{4}+\frac{\sqrt{\pi}}{2} \doteq 3.101$
(g) $I_{(0,1)}(v) \quad(\mathrm{pdf}$ of a uniform $(0,1)$ random variable)
3) Using the joint pdf,

$$
f(x, y)= \begin{cases}\frac{6 x^{3}+2 x y}{5}, & 0<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

obtain each of the following:
(a) the cdf of $V=\max \{X, Y\}$,
(b) the cdf of $W=\min \{X, Y\}$.
answers:
(a)

$$
F_{V}(v)= \begin{cases}1, & v \geq 2 \\ \frac{3 v+v^{2}}{10}, & 1 \leq v<2 \\ \frac{3 v^{5}+v^{4}}{10}, & 0<v<1 \\ 0, & v \leq 0\end{cases}
$$

(b)

$$
F_{W}(w)= \begin{cases}1, & w \geq 1 \\ \frac{3 w+5 w^{2}+5 w^{4}-3 w^{5}}{10}, & 0<w<1 \\ 0, & w \leq 0\end{cases}
$$

4) Consider independent random variables, X and Y, where X is a uniform $(0,2)$ random variable, and Y has pdf

$$
f_{Y}(y)=\frac{y}{2} I_{(0,2)}(y)
$$

and obtain each of the following:
(a) the pdf of $V=\max \{X, Y\}$,
(b) the pdf of $W=\min \{X, Y\}$.
answers:
(a)

$$
f_{V}(v)=\frac{3}{8} v^{2} I_{(0,2)}(v)
$$

(b)

$$
f_{W}(w)=\frac{4+4 w-3 w^{2}}{8} I_{(0,2)}(w)
$$

