Solutions for Extra Ch. 7 Problems

1) Since there are n urns and n balls, the only way that none of the urns can be empty is for each urn to contain exactly one ball. Since the only ball that can possibly go into urn n is ball n, if none of the urns are to be empty, ball n must go into urn n. Since the only balls that can go into urn $n-1$ are balls $n-1$ and n, if none of the urns are to be empty, ball $n-1$ must go into urn $n-1$ (since it's already been established that if none of the urns are to be empty, ball n must go into urn n). Proceeding in a likewise manner, we can conclude that if none of the urns are to be empty, it must be that ball i must go into urn i, for $i=1,2, \ldots, n$. So, letting A_{i} denote the event that ball i goes into urn i, the desired probability is

$$
P\left(\cap_{i=1}^{n} A_{i}\right)=\Pi_{i=1}^{n} P\left(A_{i}\right)=\Pi_{i=1}^{n} \frac{1}{i}=\frac{1}{n!} .
$$

2) Letting A_{i} denote the event that urn i gets no balls, and $B_{i, j}$ denote the event that ball j misses urn i, noting that $P\left(B_{i, j}\right)=1$ for $j<i$ and $P\left(B_{i, j}\right)=\frac{j-1}{j}$ for $j \geq i$, we have

$$
P\left(A_{i}\right)=P\left(\cap_{j=1}^{n} B_{i, j}\right)=\Pi_{j=1}^{n} P\left(B_{i, j}\right)=\Pi_{j=i}^{n}\left(\frac{j-1}{j}\right)=\frac{i-1}{n} .
$$

Letting X be the number of empty urns, and

$$
I_{i}= \begin{cases}1, & \text { if } A_{i} \text { occurs } \\ 0, & \text { otherwise }\end{cases}
$$

we have that the desired expectation is

$$
E(X)=E\left(\sum_{i=1}^{n} I_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)=\sum_{i=1}^{n} \frac{i-1}{n}=\frac{1}{n} \sum_{i=1}^{n}(i-1)=\frac{1}{n} \sum_{i=0}^{n-1} i=\frac{1}{n} \frac{(n-1) n}{2}=\frac{n-1}{2} .
$$

3) Letting A_{j} denote the event that the j th person gets a card matching his/her age, and noting that exactly one of the 1000 cards will have the number matching any of the people's age, we have $P\left(A_{j}\right)=1 / 1000$, for $j=1,2, \ldots, 1000$. Letting X be the number of matches, and

$$
I_{j}= \begin{cases}1, & \text { if } A_{j} \text { occurs } \\ 0, & \text { otherwise }\end{cases}
$$

we have that the desired expectation is

$$
E(X)=E\left(\sum_{j=1}^{1000} I_{j}\right)=\sum_{j=1}^{1000} P\left(A_{j}\right)=\sum_{j=1}^{1000} \frac{1}{1000}=1
$$

4) It can be shown that

$$
f_{X}(x)=(x+1 / 2) I_{(0,1)}(x)
$$

So

$$
E(X)=\int_{0}^{1} x(x+1 / 2) d x=\int_{0}^{1}\left(x^{2}+x / 2\right) d x=\left.\left(x^{3} / 3+x^{2} / 4\right)\right|_{0} ^{1}=1 / 3+1 / 4=7 / 12
$$

and by symmetry we also have $E(Y)=7 / 12$. Since

$$
\begin{aligned}
E(X Y) & =\int_{0}^{1} \int_{0}^{1} x y(x+y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1}\left(x^{2} y+x y^{2}\right) d x d y \\
& =\left.\int_{0}^{1}\left(x^{3} y / 3+x^{2} y^{2} / 2\right)\right|_{0} ^{1} d y \\
& =\int_{0}^{1}\left(y / 3+y^{2} / 2\right) d y \\
& =\left.\left(y^{2} / 6+y^{3} / 6\right)\right|_{0} ^{1} \\
& =1 / 3
\end{aligned}
$$

it follows that the desired covariance is

$$
E(X Y)-E(X) E(Y)=1 / 3-(7 / 12)^{2}=(48-49) / 144=-1 / 144
$$

