
Solutions for Extra Ch. 7 Problems

1) Since there are n urns and n balls, the only way that none of the urns can be empty is for each urn to
contain exactly one ball. Since the only ball that can possibly go into urn n is ball n, if none of the urns are
to be empty, ball n must go into urn n. Since the only balls that can go into urn n− 1 are balls n− 1 and n,
if none of the urns are to be empty, ball n−1 must go into urn n−1 (since it’s already been established that
if none of the urns are to be empty, ball n must go into urn n). Proceeding in a likewise manner, we can
conclude that if none of the urns are to be empty, it must be that ball i must go into urn i, for i = 1, 2, . . . , n.
So, letting Ai denote the event that ball i goes into urn i, the desired probability is
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2) Letting Ai denote the event that urn i gets no balls, and Bi,j denote the event that ball j misses urn i,
noting that P (Bi,j) = 1 for j < i and P (Bi,j) = j−1

j for j ≥ i, we have
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Letting X be the number of empty urns, and

Ii =
{

1, if Ai occurs,
0, otherwise,

we have that the desired expectation is
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3) Letting Aj denote the event that the jth person gets a card matching his/her age, and noting that exactly
one of the 1000 cards will have the number matching any of the people’s age, we have P (Aj) = 1/1000, for
j = 1, 2, . . . , 1000. Letting X be the number of matches, and

Ij =
{

1, if Aj occurs,
0, otherwise,

we have that the desired expectation is

E(X) = E
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4) It can be shown that
fX(x) = (x + 1/2) I(0, 1)(x).

So

E(X) =
∫ 1

0

x (x + 1/2) dx =
∫ 1

0

(x2 + x/2) dx = (x3/3 + x2/4)|10 = 1/3 + 1/4 = 7/12,

and by symmetry we also have E(Y ) = 7/12. Since

E(XY ) =
∫ 1

0
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xy (x + y) dx dy
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∫ 1

0

∫ 1

0
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(x3y/3 + x2y2/2)|10 dy

=
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0

(y/3 + y2/2) dy

= (y2/6 + y3/6)|10
= 1/3,



it follows that the desired covariance is

E(XY )− E(X)E(Y ) = 1/3− (7/12)2 = (48− 49)/144 = −1/144.


