## Solutions for Additional Extra Problems From Ch. 7

1) For $x>0$ we have

$$
f_{X}(x)=\int_{0}^{x} 2 e^{-2 x} / x d y=2 e^{-2 x}
$$

and

$$
f_{Y \mid X}(y \mid x)=\left[\left(2 e^{-2 x} / x\right) /\left(2 e^{-2 x}\right)\right] I_{[0, x]}(y)=\frac{1}{x} I_{[0, x]}(y),
$$

which is the pdf of a uniform $[0, x]$ random variable. It follows that the desired conditional expectation is just the mean of this uniform distribution, which is $x / 2$.
2) Using Propostion 4.2 on p. 329 of the text, we have

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{n}, Y_{n+1}\right)= & \operatorname{Cov}\left(X_{n}+X_{n+1}+X_{n+2}, X_{n+1}+X_{n+2}+X_{n+3}\right) \\
= & \operatorname{Cov}\left(X_{n}, X_{n+1}\right)+\operatorname{Cov}\left(X_{n}, X_{n+2}\right)+\operatorname{Cov}\left(X_{n}, X_{n+3}\right) \\
& +\operatorname{Cov}\left(X_{n+1}, X_{n+1}\right)+\operatorname{Cov}\left(X_{n+1}, X_{n+2}\right)+\operatorname{Cov}\left(X_{n+1}, X_{n+3}\right) \\
& +\operatorname{Cov}\left(X_{n+2}, X_{n+1}\right)+\operatorname{Cov}\left(X_{n+2}, X_{n+2}\right)+\operatorname{Cov}\left(X_{n+2}, X_{n+3}\right) \\
= & 0+0+0+\sigma^{2}+0+0+0+\sigma^{2}+0 \\
= & 2 \sigma^{2} .
\end{aligned}
$$

3) Letting $Y$ be a random variable which equals 1 if a type 1 light bulb is chosen and equals 2 if a type 2 light bulb is chosen, we have

$$
E(X)=E(E(X \mid Y))=E(X \mid Y=1) p_{Y}(1)+E(X \mid Y=2) p_{Y}(2)=1(1 / 2)+2(1 / 2)=3 / 2 .
$$

4) Letting $X$ be the total number of flips required, and

$$
Y= \begin{cases}1, & \text { if 1st flip is Heads } \\ 2, & \text { if } 1 \text { st flip is Tails }\end{cases}
$$

we have
$E(X)=E(E(X \mid Y))=E(X \mid Y=1) p_{Y}(1)+E(X \mid Y=2) p_{Y}(2)=[1+1 /(2 / 3)](1 / 3)+[1+1 /(1 / 3)](2 / 3)=7 / 2$.
5) We have $P(M \leq x \mid N=n)=[F(x)]^{n}=(1 / 2)^{n}$, and so

$$
P(M \leq x)=\sum_{n=1}^{\infty} P(M \leq x \mid N=n) p_{N}(n)=\sum_{n=1}^{\infty}(1 / 2)^{n}(1 / 2)^{n}=\sum_{n=1}^{\infty}(1 / 4)^{n}=(1 / 4) /[1-(1 / 4)]=1 / 3 .
$$

6) Letting

$$
Y= \begin{cases}1, & \text { if a type } 1 \text { bulb is selected } \\ 2, & \text { if a type } 2 \text { bulb is selected }\end{cases}
$$

we have $p_{Y}(1)=p_{Y}(2)=0.5$, so that $E(Y)=1.5, E\left(Y^{2}\right)=2.5$, and $\operatorname{Var}(Y)=0.25$. Since $E(X \mid Y)=\mu_{Y}=$ $Y$ and $\operatorname{Var}(X \mid Y)=\sigma_{Y}^{2}=Y^{2}$, it follows (from the conditional variance formula) that

$$
\operatorname{Var}(X)=E(\operatorname{Var}(X \mid Y))+\operatorname{Var}(E(X \mid Y))=E\left(Y^{2}\right)+\operatorname{Var}(Y)=2.5+0.25=2.75
$$

7) Using the mgfs it can be determined that $X \sim \operatorname{Poisson}(2)$ and $Y \sim \operatorname{binomial}(10,3 / 4)$. (Note: The independence of $X$ and $Y$ is used for all three parts. It gives us that $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ and $E(X Y)=$ $E(X) E(Y)$.
(a) The desired probability is

$$
P(X+Y=2)=p_{X}(0) p_{Y}(2)+p_{X}(1) p_{Y}(1)+p_{X}(2) p_{Y}(0) \doteq 0.0000603
$$

(b) The desired probability is

$$
\begin{aligned}
P(X Y=0) & =P(\{X=0\} \cup\{Y=0\}) \\
& =P(X=0)+P(Y=0)-P(\{X=0\} \cap\{Y=0\}) \\
& =e^{-2}+4^{-10}-e^{-2} 4^{-10} \\
& \doteq 0.135 .
\end{aligned}
$$

(c) The desired expectation is

$$
E(X Y)=E(X) E(Y)=[2][10(3 / 4)]=15 .
$$

