Solutions for Extra Ch. 6 Problems

1) The joint pmf values can be found using the product rule for intersections:

$$
p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{1}=x_{1}\right)
$$

For example, we have

$$
p_{X_{1}, X_{2}}(0,1)=P\left(X_{2}=1 \mid X_{1}=0\right) P\left(X_{1}=0\right)=(4 / 11)(8 / 12)=8 / 33
$$

Altogether, we have

$$
p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}3 / 33, & \left(x_{1}, x_{2}\right)=(1,1) \\ 8 / 33, & \left(x_{1}, x_{2}\right) \in\{(1,0),(0,1)\} \\ 14 / 33, & \left(x_{1}, x_{2}\right)=\{01,0) \\ 0, & \text { otherwise }\end{cases}
$$

2) Since Y must take a larger value than X does, for the distance $|Y-X|$ we have $Y-X$. The desired probability is

$$
\begin{aligned}
P(Y-X>L / 4) & =P(Y>X+L / 4) \\
& =1-P(Y<X+L / 4) \\
& =1-\int_{L / 4}^{L / 2} \int_{L / 2}^{x+L / 4}(L / 2)^{-2} d y d x \\
& =7 / 8
\end{aligned}
$$

3) In general,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
$$

For $x \notin(0,1), f_{Y}(y)=0$. For $x \in(0,1)$,

$$
f_{Y}(y)=\int_{y}^{1} x^{-1} d x=\left.\log x\right|_{y} ^{1}=-\log y
$$

Altogether, we have

$$
f_{Y}(y)=-\log y I_{(0,1)}(y)
$$

4) We have

$$
\begin{aligned}
P\left(X_{1}<X_{2}\right) & =\int_{0}^{\infty} \int_{x_{1}}^{\infty} e^{-x_{1}} 2 e^{-2 x_{2}} d x_{2} d x_{1} \\
& =\int_{0}^{\infty} e^{-x_{1}}\left(\int_{x_{1}}^{\infty} 2 e^{-2 x_{2}} d x_{2}\right) d x_{1} \\
& =\int_{0}^{\infty} e^{-x_{1}}\left(e^{-2 x_{1}}\right) d x_{1} \\
& =(1 / 3) \int_{0}^{\infty} 3 e^{-3 x_{1}} d x_{1} \\
& =1 / 3
\end{aligned}
$$

where the last inegral equals 1 because it is the integral of a density of the support of the random variable.
5) Letting X_{1} and X_{2} be the profit in dollars for each of the next two weeks, we have that these are independent $\mathrm{N}\left(2200,(230)^{2}\right)$ random variables. So $X_{1}+X_{2}$ is a $\mathrm{N}\left(4400,2(230)^{2}\right)$ random variable, and the desired probability is

$$
\Phi\left((4000-4400) / \sqrt{2(230)^{2}}\right)=\Phi(-40 /[23 \sqrt{2}]) \doteq \Phi(-1.229751) \doteq 0.109
$$

