
Solutions for Extra Ch. 5 Problems

1) We have
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which gives us that C = 1/4. So for the desired probability we have

∫ ∞

4

(1/4)xe−x/2 dx = (1/4)
∫ ∞

4

xe−x/2 dx

= (1/4)
[
− 2x

ex/2

∣∣∣
∞

4
+

∫ ∞

4

2e−x/2 dx

]

= (1/4)
[
8/e4/2 + 4

∫ ∞

4

(1/2)e−x/2 dx

]

= (1/4)[8e−2 + 4(e−4/2)]

= 3e−2.

In both integrations above, integration by parts was used (with u = 2x, v = −e−x/2, du = 2 dx, and
dv = (1/2)e−x/2 dx). L’Hôpital’s rule was used to determine that −x/ex/2|∞0 = 0. In the upper integration,
the last integral equals 1 since it is the integral of an exponential random variable pdf over the support of
the random variable.

2) Letting X be the number of points scored, the uniform (0, 10) distribution is used to obtain

pX(10) = 0.1, pX(5) = 0.2, pX(3) = 0.2, pX(0) = 0.5.

So the desired expected value is

E(X) = 10(0.1) + 5(0.2) + 3(0.2) + 0(0.5) = 2.6.

3) Because of the “used is as good as new” property of exponential distibutions, the desired probability is
just the probability that an exponential random variable having a mean of 8 assumes a value at least as
large as 8, which is
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4) We have
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Viewing this expression as a function of a and denoting it by g(a), we have g′(a) = 0 implies a = log 2/λ.
Since g′′(a) = 2λe−λa > 0, the solution of g′(a) = 0 is a minimum. So the desired value of a is log 2/λ.

5) We have fX(x) = e−x I(0,∞)(x) and Y = g(X) = log X. So g(x) = log x and g−1(x) = ex. Using Theorem
7.1 on p. 225 of the text, we have
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6) We have
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from which it follows that
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