1) We have

$$
\begin{aligned}
1 & =\int_{0}^{\infty} C x e^{-x / 2} d x \\
& =C \int_{0}^{\infty} x e^{-x / 2} d x \\
& =C\left[-\left.\frac{2 x}{e^{x / 2}}\right|_{0} ^{\infty}+\int_{0}^{\infty} 2 e^{-x / 2} d x\right] \\
& =C\left[0+4 \int_{0}^{\infty}(1 / 2) e^{-x / 2} d x\right] \\
& =C[0+4(1)] \\
& =4 C
\end{aligned}
$$

which gives us that $C=1 / 4$. So for the desired probability we have

$$
\begin{aligned}
\int_{4}^{\infty}(1 / 4) x e^{-x / 2} d x & =(1 / 4) \int_{4}^{\infty} x e^{-x / 2} d x \\
& =(1 / 4)\left[-\left.\frac{2 x}{e^{x / 2}}\right|_{4} ^{\infty}+\int_{4}^{\infty} 2 e^{-x / 2} d x\right] \\
& =(1 / 4)\left[8 / e^{4 / 2}+4 \int_{4}^{\infty}(1 / 2) e^{-x / 2} d x\right] \\
& =(1 / 4)\left[8 e^{-2}+4\left(e^{-4 / 2}\right)\right] \\
& =3 e^{-2}
\end{aligned}
$$

In both integrations above, integration by parts was used (with $u=2 x, v=-e^{-x / 2}$, $d u=2 d x$, and $\left.d v=(1 / 2) e^{-x / 2} d x\right)$. L'Hôpital's rule was used to determine that $-x /\left.e^{x / 2}\right|_{0} ^{\infty}=0$. In the upper integration, the last integral equals 1 since it is the integral of an exponential random variable pdf over the support of the random variable.
2) Letting X be the number of points scored, the uniform $(0,10)$ distribution is used to obtain

$$
p_{X}(10)=0.1, \quad p_{X}(5)=0.2, \quad p_{X}(3)=0.2, \quad p_{X}(0)=0.5
$$

So the desired expected value is

$$
E(X)=10(0.1)+5(0.2)+3(0.2)+0(0.5)=2.6
$$

3) Because of the "used is as good as new" property of exponential distibutions, the desired probability is just the probability that an exponential random variable having a mean of 8 assumes a value at least as large as 8 , which is

$$
\int_{8}^{\infty}(1 / 8) e^{-x / 8} d x=-\left.e^{-x / 8}\right|_{8} ^{\infty}=e^{-1} \doteq 0.368
$$

4) We have

$$
\begin{aligned}
E(|X-a|) & =\int_{0}^{\infty}|x-a| \lambda e^{-\lambda x} d x \\
& =\int_{0}^{a}(a-x) \lambda e^{-\lambda x} d x+\int_{a}^{\infty}(x-a) \lambda e^{-\lambda x} d x \\
& =a \int_{0}^{a} \lambda e^{-\lambda x} d x-\int_{0}^{a} x \lambda e^{-\lambda x} d x+\int_{a}^{\infty} x \lambda e^{-\lambda x} d x-a \int_{a}^{\infty} \lambda e^{-\lambda x} d x \\
& =a\left(1-e^{-\lambda a}\right)-\left[-\left.\frac{x}{e^{\lambda x}}\right|_{0} ^{a}+\int_{0}^{a} e^{-\lambda x} d x\right]+\left[-\left.\frac{x}{e^{\lambda x}}\right|_{a} ^{\infty}+\int_{a}^{\infty} e^{-\lambda x} d x\right]-a e^{-\lambda a} \\
& =a-a e^{-\lambda a}-\left[-\frac{a}{e^{\lambda a}}+(1 / \lambda) \int_{0}^{a} \lambda e^{-\lambda x} d x\right]+\left[\frac{a}{e^{\lambda a}}+(1 / \lambda) \int_{a}^{\infty} \lambda e^{-\lambda x} d x\right]-a e^{-\lambda a} \\
& =a-a e^{-\lambda a}-\left[-\frac{a}{e^{\lambda a}}+(1 / \lambda)\left(1-e^{-\lambda a}\right)\right]+\left[\frac{a}{e^{\lambda a}}+(1 / \lambda) e^{-\lambda a}\right]-a e^{-\lambda a} \\
& =a-1 / \lambda+(2 / \lambda) e^{-\lambda a} .
\end{aligned}
$$

Viewing this expression as a function of a and denoting it by $g(a)$, we have $g^{\prime}(a)=0$ implies $a=\log 2 / \lambda$. Since $g^{\prime \prime}(a)=2 \lambda e^{-\lambda a}>0$, the solution of $g^{\prime}(a)=0$ is a minimum. So the desired value of a is $\log 2 / \lambda$.
5) We have $f_{X}(x)=e^{-x} I_{(0, \infty)}(x)$ and $Y=g(X)=\log X$. So $g(x)=\log x$ and $g^{-1}(x)=e^{x}$. Using Theorem 7.1 on p. 225 of the text, we have

$$
\begin{aligned}
f_{Y}(y) & =f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| \\
& =f_{X}\left(e^{y}\right)\left|\frac{d}{d y} e^{y}\right| \\
& =e^{-e^{y}}\left|e^{y}\right| \\
& =e^{y-e^{y}} .
\end{aligned}
$$

6) We have

$$
1=\int_{0}^{\infty} a x^{2} e^{-b x^{2}} d x
$$

Letting $y=b x^{2}$ (from which it follows that $d x=d y /(2 \sqrt{b y})$, we have

$$
\begin{aligned}
1 & =\int_{0}^{\infty} a \frac{y}{b} e^{-y} \frac{1}{2 \sqrt{b y}} d y \\
& =\frac{a}{2 b^{3 / 2}} \int_{0}^{\infty} y^{1 / 2} e^{-y} d y \\
& =\frac{a}{2 b^{3 / 2}} \Gamma(3 / 2) \\
& =\frac{a}{2 b^{3 / 2}}(1 / 2) \Gamma(1 / 2) \\
& =\frac{a \sqrt{\pi}}{4 b^{3 / 2}}
\end{aligned}
$$

from which it follows that

$$
a=\frac{4 b^{3 / 2}}{\sqrt{\pi}} .
$$

