Solutions for Additional Extra Ch. 5 Problems

1) We have

$$
E\left(X^{4}\right)=\int_{-\infty}^{\infty} x^{4} f_{X}(x) d x=\int_{0}^{1} x^{4} d x=\left.\left(x^{5} / 5\right)\right|_{0} ^{1}=1 / 5 .
$$

2) Since $P(X<x)=P(X \leq x)=\Phi((x-\mu) / \sigma)=\Phi((x-10) / 6)$, we have
(a) $P(X<2)=\Phi((2-10) / 6)=\Phi(-4 / 3) \doteq 0.091$,
(b) $P(X>18)=1-\Phi((18-10) / 6)=1-\Phi(4 / 3) \doteq 0.091$,
(c) $P(10<X<18)=\Phi((18-10) / 6)-\Phi((10-10) / 6)=\Phi(4 / 3)-\Phi(0) \doteq 0.909-0.5=0.409$.
3) Letting F denote the cdf of X, it can be shown that on the support of X,

$$
F(x)=1-10 / x .
$$

So for $x \in(0,1)$ we have

$$
x=F\left(F^{-1}(x)\right)=1-10 /\left[F^{-1}(x)\right],
$$

which gives us that for $x \in(0,1)$,

$$
\left.F^{-1}(x)\right)=10 /(1-x) .
$$

So the desired function of U is $10 /(1-U)$. (Note: Because U and $1-U$ have the same distribution, $10 / U$ will also work.)
4) Letting X be the number of unacceptable items in the next 150 , we have that X is a binomial $(150,0.05)$ random variable. The desired probability is

$$
P(X \leq 10) \simeq \Phi([10+1 / 2-150(0.05)] / \sqrt{150(0.05)(0.95)}) \doteq \Phi(0.1 .123903) \doteq 0.869
$$

