Solutions for Extra Ch. 4 Problems

1) Letting X be the amount (in dollars) that will be won, we have

$$
P(X=1.10)=2 \frac{\binom{4}{2}}{\binom{8}{2}}=3 / 7
$$

and

$$
P(X=-1.00)=\frac{\binom{4}{1}\binom{4}{1}}{\binom{8}{2}}=4 / 7
$$

(This 2nd probability could have been obtained by subtracting the 1st probability from 1.)
(a) We have

$$
E(X)=(1.1)(3 / 7)+(-1)(4 / 7)=-0.1
$$

(b) We have

$$
E\left(X^{2}\right)=(1.1)^{2}(3 / 7)+(-1)^{2}(4 / 7)=1.09
$$

and so

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=1.08
$$

2) We have

$$
5=\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=E\left(X^{2}\right)-[1]^{2}
$$

which implies that $E\left(X^{2}\right)=6$.
(a) We have

$$
E\left([2+X]^{2}\right)=E\left(4+4 X+X^{2}\right)=4+4 E(X)+E\left(X^{2}\right)=4+4(1)+6=14
$$

(b) We have

$$
\operatorname{Var}(4+3 X)=3^{2} \operatorname{Var}(X)=9(5)=45
$$

3) Letting X be the number correct a person just guessing will get, X has a binomial $(10,1 / 2)$ distribution. The desired probability is $P(X \geq 7)$, which equals

$$
\sum_{x=7}^{10}\binom{10}{x}(1 / 2)^{10}=(120+45+10+1) / 2^{10}=176 / 1024=11 / 64 \doteq 0.172
$$

4) Letting X be the number of digits incorrectly received, X has a binomial $(10,1 / 5)$ distribution. The desired probability is $P(X \geq 3)$, which equals

$$
\sum_{x=3}^{5}\binom{5}{x}(1 / 5)^{x}(4 / 5)^{5-x}=181 / 3125 \doteq 0.0579
$$

5) Letting X be the number of heads in the 10 flips, X has a binomial $(10, p)$ distribution, where p is either 0.4 or 0.7 . Letting A be the event that $X=7$, and B be the event that the coin 1 is chosen, the desired probability is

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{C}\right) P\left(B^{C}\right)=\left[P(A \mid B)+P\left(A \mid B^{C}\right)\right](1 / 2)
$$

which equals

$$
\left[\binom{10}{7}(0.4)^{7}(0.6)^{3}+\binom{10}{7}(0.7)^{7}(0.3)^{3}\right](1 / 2) \doteq 0.155
$$

6) Let X be a geometric ($1 / 38$) random variable.
(a) The desired probability is $P(X>5)=(37 / 38)^{5} \doteq 0.875$.
(b) The desired probability is $P(X=4)=(37 / 38)^{3}(1 / 38) \doteq 0.0243$.
7) Since $\operatorname{Var}(2 X)=4 \operatorname{Var}(X)$, the only way $\operatorname{Var}(2 X)$ can equal $2 \operatorname{Var}(X)$ is if $\operatorname{Var}(X)=0$. Since $\operatorname{Var}(X)=$ $p(1-p), p$ must equal either 0 or 1 .
