Soultions for Extra Ch. 4 and Ch. 5 Problems

1) Letting X be the number of suicides in a month, X is a Poisson random variable having parameter/mean $(1 / 100,000)(400,000)=4$. The desired probability is

$$
\begin{aligned}
P(X \geq 8) & =1-P(X \leq 7) \\
& =1-\sum_{x=0}^{7} \frac{4^{x}}{x!} e^{-4} \\
& =1-\left(1+4+4^{2} / 2+4^{3} / 6+4^{4} / 24+4^{5} / 120+4^{6} / 720+4^{7} / 5040\right) e^{-4} \\
& =1-(16319 / 315) e^{-4} \\
& \doteq 0.0511
\end{aligned}
$$

2) The possible values of X are $0,1,2, \ldots$. For $x=0,1,2, \ldots$, we can express the event that $X=x$ as the intersection of A_{x} and B_{x}, where A_{x} is the event that 9 Heads and x Tails occur in the first $x+9$ trials, and B_{x} is the event that a Head occurs on the $(x+10)$ th trial. Since A_{x} and B_{x} should be assumed to be independent, we have

$$
P(X=x)=\left[\binom{x+9}{9}(1 / 2)^{9}(1 / 2)^{x}\right][1 / 2]
$$

and so the desired pmf can be expressed as

$$
p_{X}(x)=\left[\binom{x+9}{x} / 2^{x+10}\right] I_{\{0,1,2, \ldots\}}(x) .
$$

3) X is a hypergeometric random variable. We have

$$
P(X=0)=\frac{\binom{6}{0}\binom{94}{10}}{\binom{100}{10}}=\frac{1886711}{3612280} \doteq 0.522
$$

4) Letting Y be the number of boxes getting exactly one ball, we can express Y as the sum $I_{1}+I_{2}+\cdots+I_{5}$, where I_{j} is a Bernoulli (p) random variable $(j=1,2, \ldots, 5$), where p is the probability of a box getting exactly one ball. Making use of the binomial $(10,1 / 5)$ distribution, we have

$$
p=\binom{10}{1}(1 / 5)(4 / 5)^{9}=10\left(4^{9}\right) / 5^{10}
$$

Since the expected value of each of the Bernoulli random variables is just p, it follows that the desired expected value is

$$
E(Y)=E\left(I_{1}\right)+\cdots+E\left(I_{5}\right)=5 p=10(4 / 5)^{9} \doteq 1.34
$$

5) We have

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{-1}^{1} c\left(1-x^{2}\right) d x \\
& =\left.c\left(x-x^{3} / 3\right)\right|_{-1} ^{1} \\
& =c(4 / 3),
\end{aligned}
$$

which implies that $c=3 / 4$. Letting F denote the cdf, since the support of X is $(-1,1)$, we have $F(x)=0$ for $x \leq-1$, and $F(x)=1$ for $x \geq 1$. For $x \in(-1,1)$,

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-1}^{x}(3 / 4)\left(1-t^{2}\right) d t \\
& =\left.(3 / 4)\left(t-t^{3} / 3\right)\right|_{-1} ^{x} \\
& =(3 / 4)\left[\left(x-x^{3} / 3\right)-(-1+1 / 3)\right] \\
& =\frac{3}{4} x-\frac{x^{3}}{4}+\frac{1}{2}
\end{aligned}
$$

Altogether, we have

$$
F(x)= \begin{cases}1, & x \geq 1 \\ \frac{3}{4} x-\frac{x^{3}}{4}+\frac{1}{2}, & -1<x<1 \\ 0, & x \leq-1\end{cases}
$$

6) We have

$$
P(X>25)=\int_{25}^{\infty} f(x) d x=\int_{25}^{\infty} 10 x^{-2} d x=2 / 5
$$

7) Letting the answer to part (a) be denoted by p, the number of months in which there will be at least 8 suicides can be assumed to be a binomial $(12, p)$ random variable, which I'll call Y. The desired probability is

$$
\begin{aligned}
P(Y \geq 2) & =1-P(Y \leq 1) \\
& =1-\binom{12}{0} p^{0}(1-p)^{12}+\binom{12}{1} p^{1}(1-p)^{11} \\
& =1-(1-p)^{12}-12 p(1-p)^{11} \\
& \doteq 0.123,
\end{aligned}
$$

where $p=1-(16319 / 315) e^{-4}$ (which was obtained above in the solution for Problem 1).
8) X is a hypergeometric random variable. We have

$$
P(X>2)=1-\sum_{x=0}^{2} \frac{\binom{6}{x}\binom{94}{10-x}}{\binom{100}{10}} \doteq 0.0126
$$

9) Letting Y be the number of boxes getting no balls, we can express Y as the sum $I_{1}+I_{2}+\cdots+I_{5}$, where I_{j} is a Bernoulli (p) random variable $(j=1,2, \ldots, 5)$, where p is the probability of a box getting no balls. Making use of the binomial $(10,1 / 5)$ distribution, we have

$$
p=\binom{10}{0}(1 / 5)^{0}(4 / 5)^{10}=(4 / 5)^{10}
$$

Since the expected value of each of the Bernoulli random variables is just p, it follows that the desired expected value is

$$
E(Y)=E\left(I_{1}\right)+\cdots+E\left(I_{5}\right)=5 p=5(4 / 5)^{10}=4^{10} / 5^{9} \doteq 0.537
$$

10) We have for $x \leq 10$ we have $F_{X}(x)=P(X \leq x)=0$. For $x>10$ we have

$$
F_{X}(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t=\int_{10}^{x} 10 t^{-2} d t=1-10 / x
$$

So altogether we have

$$
F_{X}(x)= \begin{cases}1-10 / x, & x>10 \\ 0, & x \leq 10\end{cases}
$$

