Solutions for Extra Ch. 3 Problems

1) There are three equally likely outcomes in the reduced sample space: $(4,6),(5,5)$, and $(6,4)$. Two of these have at least one 6 , and so the desired conditional probability is simply $2 / 3$.
2) Letting W be the event the first two are white, and B be the event the last two are black, the desired probability is

$$
\begin{aligned}
P(W \cap B) & =P(W) P(B \mid W) \\
& =\frac{\binom{9}{2}}{\binom{15}{2}} \frac{\binom{6}{2}}{\binom{13}{2}} \\
& =\left(\frac{36}{105}\right)\left(\frac{15}{78}\right) \\
& =6 / 91 .
\end{aligned}
$$

Alternatively, letting W_{1} be the event the 1 st ball is white, W_{2} be the event the 2 nd ball is white, B_{1} be the event the 3rd ball is black, and B_{2} be the event the 4 th ball is black, the desired probability is $P\left(B_{2} \mid B_{1} W_{2} W_{1}\right) P\left(B_{1} \mid W_{2} W_{1}\right) P\left(W_{2} \mid W_{1}\right) P\left(W_{1}\right)=(5 / 12)(6 / 13)(8 / 14)(9 / 15)=6 / 91$.
3) Letting B be the event that Barbara hits the duck, and D be the event that Dianne hits the duck, the desired probability is

$$
\begin{aligned}
P(B \cap D \mid B \cup D) & =\frac{P(B \cap D)}{P(B \cup D)} \\
& =\frac{P(B \cap D)}{P(B)+P(D)-P(B \cap D)} \\
& =\frac{P(B) P(D)}{P(B)+P(D)-P(B) P(D)} \\
& =\frac{p_{1} p_{2}}{p_{1}+p_{2}-p_{1} p_{2}}
\end{aligned}
$$

4) Letting B_{1} be the event the 1st ball is black, B_{2} be the event the 2 nd ball is black, W_{1} be the event the 3rd ball is white, and W_{2} be the event the 4 th ball is white, the desired probability is

$$
P\left(B_{1} B_{2} W_{1} W_{2}\right)
$$

which is equal to

$$
P\left(W_{2} \mid B_{1} B_{2} W_{1}\right) P\left(W_{1} \mid B_{1} B_{2}\right) P\left(B_{2} \mid B_{1}\right) P\left(B_{1}\right)=(6 / 16)(4 / 14)(8 / 12)(6 / 10)=3 / 70 \doteq 0.0429
$$

5) Letting F be the event the student is female and C be the event the student is majoring in computer science, the desired probability is

$$
P(F \mid C)=\frac{P(F \cap C)}{P(C)}=0.02 / 0.06=1 / 3 \doteq 0.333
$$

6) Letting N_{i} be the event that exactly i of the first three balls drawn are new, and E be the event that the single ball drawn is new, the desired probability is

$$
\begin{aligned}
P(E) & =\sum_{i=0}^{3} P\left(E \mid N_{i}\right) P\left(N_{i}\right) \\
& =\sum_{i=0}^{3}\left(\frac{9-i}{15}\right) \frac{\binom{9}{i}\binom{6}{3-i}}{\binom{15}{3}} \\
& =(9 / 15)(20 / 455)+(8 / 15)(135 / 455)+(7 / 15)(216 / 455)+(6 / 15)(84 / 455) \\
& =12 / 25 \\
& =0.48 .
\end{aligned}
$$

7) Bayes's formula can be used. Letting H be the event the coin results in heads, and W be the event the ball selected is white, the desired probability is

$$
\begin{aligned}
P\left(H^{C} \mid W\right) & =\frac{P\left(W \mid H^{C}\right) P\left(H^{C}\right)}{P(W \mid H) P(H)+P\left(W \mid H^{C}\right) P\left(H^{C}\right)} \\
& =\frac{(3 / 15)(1 / 2)}{(4 / 12)(1 / 2)+(3 / 15)(1 / 2)} \\
& =\frac{(1 / 5)(1 / 2)}{(1 / 3)(1 / 2)+(1 / 5)(1 / 2)} \\
& =\frac{(1 / 5)}{(1 / 3)+(1 / 5)} \\
& =3 / 8 \\
& =0.375
\end{aligned}
$$

