Solutions for Extra Ch. 3 and Ch. 4 Problems

1) The answer is no. E is a proper subset of F, so that $F \cap E=E$. This gives us that $P(F \mid E)=$ $P(F \cap E) / P(E)=P(E) / P(E)=1$, which is not equal to $P(F)$ and $P\left(F \mid E^{C}\right)$, which are less than 1 .
2) The desired probability is $1 / 2$, by symmetry.
3) The desired probability is 1 . (Since A is a subset of B we have $B \cap A=A$, which gives us $P(B \mid A)=$ $P(B \cap A) / P(A)=P(A) / P(A)=1)$.
4) $\{1,2,3,4,5,6\}$
5) Clearly $P(X \geq 0)=1$ (since X can't be less than 0). For X to take a value of at least 1 , player 1 must have the higher number (compared to player 2) in his first comparison. So, by symmetry, $P(X \geq 1)=1 / 2$. For player 1 to win his first two comparisons, he needs the highest number among the first three players. So, again by symmetry, $P(X \geq 2)=1 / 3$. Similarly, $P(X \geq 3)=1 / 4$ and $P(X \geq 4)=1 / 5$. Now clearly $P(X=4)=P(X \geq 4)=1 / 5$ (since X cannot assume a value greater than 4). We also have $P(X=3)=$ $P(X \geq 3)-P(X \geq 4)=1 / 4-1 / 5=1 / 20, P(X=2)=P(X \geq 2)-P(X \geq 3)=1 / 3-1 / 4=1 / 12, P(X=$ 1) $=P(X \geq 1)-P(X \geq 2)=1 / 2-1 / 3=1 / 6$, and $P(X=0)=P(X \geq 0)-P(X \geq 1)=1-1 / 2=1 / 2$. To summarize, we have

$$
P(X=0)=1 / 2, \quad P(X=1)=1 / 6, \quad P(X=2)=1 / 12, \quad P(X=3)=1 / 20, \quad P(X=4)=1 / 5
$$

