
Maximum Likelihood Estimation

Suppose it is known that X1, X2, ..., Xn are independent and identically distributed
(iid) Poisson random variables with parameter θ, but the value of θ is unknown. We
can estimate θ by finding the value of θ which is most compatible with the observed
sample, using Pθ(X = x) as the measure of compatibility. Viewing Pθ(X = x) as a
function of θ, it is called the likelihood function, and we seek the value of θ which
maximizes it. This value of θ is called the maximum likelihood estimate (mle), and
the associated estimator is the maximum likelihood estimator (MLE).

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

X

P
ro

ba
bi

lit
y

theta=0.5
theta=1.0
theta=1.5

Figure 1: Poisson pmf with different values of θ

Given the observed sample

x1 = 0, x2 = 1, x3 = 1, x4 = 3, x5 = 0,

we have
Pθ=0.5(X = x)

.
= 0.00043,

Pθ=1.0(X = x)
.
= 0.00112,

and
Pθ=1.5(X = x)

.
= 0.00070.

So among the three values of θ considered, putting θ = 1.0 maximizes the likelihood.
But what about other values θ could be?
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Letting L(θ) = Pθ(X = x), we have

L(θ) =
n
∏

i=1

Pθ(Xi = xi)

=
n
∏

i=1

θxie−θ

xi!

=
θΣxie−nθ

∏n
i=1 xi!

.

Solving L′(θ) = 0 and determining that the solution is a maximizing value, it can
be concluded that the maximum likelihood estimate is x̄, the sample mean.

It is often easier to work with the log-likelihood, ℓ(θ) = log L(θ). The value of
θ which maximizes ℓ(θ) is the same as the value of θ which maximizes L(θ). Letting
c =

∏n
i=1 xi!, for the Poisson case we have

ℓ(θ) =
∑

xi log(θ) − nθ − log(c).

So

ℓ′(θ) =
Σxi

θ
− n,

and ℓ′(θ) = 0 implies θ = Σxi

n
= x̄. The second derivative test can be used to deter-

mine that x̄ is a maximizing value.

For continuous random variables, the joint pdf, instead of the joint pmf, is used
for the likelihood function.

Suppose X1, X2, ..., Xn are independent and identically distributed Normal random
variables with mean µ and variance 1 and we want to obtain the mle of µ. We have

L(µ) =
n
∏

i=1

1√
2π

e−(xi−µ)2/2

= (2π)−n/2 exp
(

−1
2

∑n
i=1[xi − µ]2

)

.
So

ℓ(µ) = −n

2
log(2π) − 1

2

n
∑

i=1

[xi − µ]2,

and

ℓ′(µ) =
n
∑

i=1

[xi − µ] =
n
∑

i=1

xi − nµ.

Setting ℓ′(µ) equal to 0, it can be found that µ̂mle = x̄.
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Now consider iid N(µ, σ2) random variables, X1, X2, ..., Xn, where both µ and σ2

are unknown.

L(µ, σ2) = (2πσ2)−n/2 exp

(

− 1

2σ2

n
∑

i=1

[xi − µ]2
)

and

ℓ(µ, σ2) = −n

2
log(2πσ2) − 1

2σ2

n
∑

i=1

[xi − µ]2.

To maximize the log-likelihood, it is clear that we need to minimize
∑n

i=1[xi − µ]2,
which again gives us that µ̂mle = x̄.

With the time series model considered in E&T, writing down a likelihood in terms
of the Yt or the Zt variables may at first be difficult due to the lack of independence.
But the disturbance random variables are independent, and so we have

f(e) =
v
∏

t=u

1√
2πσ

exp(−e2
t /(2σ2))

= (2πσ2)−(v−u+1)/2 exp
(

− 1
2σ2

∑v
t=u e2

t

)

.

Now using (8.15) from p. 93 of E&T we can put this in terms of the zt:

f(z) = (2πσ2)−(v−u+1)/2 exp

(

− 1

2σ2

v
∑

t=u

[zt − βzt−1]
2

)

.

Taking the estimated zt from (8.19) on p. 94, we can write a log-likelihood in terms
of the zt:

ℓ(β, σ2) = −(v − u + 1)

2
log(2πσ2) − 1

2σ2

v
∑

t=u

[zt − βzt−1]
2.

To maximize the log-likelihood we minimize
∑v

t=u[zt − βzt−1]
2. We have

d

dβ

v
∑

t=u

[zt − βzt−1]
2 = −2

v
∑

t=u

{zt−1[zt − βzt−1]}.

Setting this to 0 we get
v
∑

t=u

zt−1zt = β
v
∑

t=u

z2
t−1.

So the estimate of β is

β̂ =

∑v
t=u zt−1zt
∑v

t=u z2
t−1

.
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Below is the R code to obtain the plot of the three Poisson probability mass func-
tions:

> pr1=numeric(6)

> pr2=numeric(6)

> pr3=numeric(6)

> for (i in 1:6) pr1[i]=dpois(i-1,0.5)

> for (i in 1:6) pr2[i]=dpois(i-1,1)

> for (i in 1:6) pr3[i]=dpois(i-1,1.5)

> x1=c(-0.05, 0.95, 1.95, 2.95, 3.95, 4.95)

> x2=c(0:5)

> x3=c(0.05, 1.05, 2.05, 3.05, 4.05, 5.05)

> plot(x1, pr1, type="h", col="4", ylab="Probability", xlab="X",

+ lwd="3")

> lines(x2,pr2, type="h", col="green", lwd="3")

> lines(x3, pr3, type="h", col="10", lwd="3")

> legend( x="topright", cex=0.8, bty="n", legend=c("theta=0.5",

+ "theta=1.0", "theta=1.5"), col = c(4,"green",10),lwd=c(3,3,3))
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