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1 Dimensions of OctaGlobe

The OctaGlobe is a polyhedron composed of faces which are rectangles, trapezoids, and

octagons (Fig. 1a). Each face represents a sector of a sphere bounded by given circles of

longitude and latitude. Octagons represent longitude circles (Fig. 1b) and latitude circles

(fig. 1c). Therefore each face represents 1/8th of a circle or 45o in latitude and longitude,

except for the polar faces, which contain all longitudes within 22.5o of the poles (Fig. 1c).
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Figure 1: “OctaGlobe” polyhedron shown in (a) perspective, (b) side view (polar regions at
top and bottom), and (c) top view (tropical regions around perimeter).

The polyhedron can be unfolded to form a flat series of connected rectangles and

trapezoids (Fig. 2) as well as the polar octagons shown in Fig. 1c. In order to produce the

appropriate projection, we must find the relationship between the height A and width B of

the low-latitude rectangles and the height C and high-latitude width D of the mid-latitude

trapezoids (Fig. 2). The width D also tells us the size of the high-latitude octagons. Readers

who do not wish to review the derivation can skip to the end of this section for the values

of these distances.

In order to give an approximate representation of a sphere, the polyhedron’s vertices

touch the surface of a sphere. The vertices occur at latitude θ of ±22.5o and ±67.5o, and at

1



 A
 B

 D

 C

Figure 2: “Unfolded” OctaGlobe as it would appear if tropical and mid-latitude faces were
laid flat.

longitudes φ of 0o, 45o, 90o, ..., 315o. We can calculate the relationship between the radius R

of the sphere and A,B,C,D by considering vectors ~xn connecting the center of the sphere

to various vertices. These lengths represent the magnitudes of the difference of several ~xn.

We compute the magnitudes by writing the vectors in cartesian coordinates, using

x = R(cos θ) cosφ (1a)

y = R(cos θ) sinφ (1b)

z = R sin θ, (1c)

where (x, y, z) are the Cartesian coordinates for the vector going from the center of the sphere

to latitude and longitude (θ, φ). The distance A represents the magnitude of the difference

between ~x1, the vertex at (θ1, φ1) = (−22.5o, 0) and ~x2, the vertex at (θ2, φ2) = (22.5o, 0).

Individual Cartesian coordinates for ~x2 − ~x1, according to (1), are given by

x2 − x1 = R[cos θ2 − cos θ2] = 0 (2a)

y2 − y1 = 0 (2b)

z1 − z2 = 2R sin θ1 (2c)

For B, the appropriate vectors are ~x2 and ~x3, the vertex at (θ3, φ3) = (22.5o, 45o),

with Cartesian values

x3 − x2 = R cos θ2[cosφ3 − cosφ1] (3a)

y3 − y2 = R cos θ2[sinφ3] (3b)

z3 − z2 = 0 (3c)
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where we use the fact that φ2 = φ1. The distance D is given by the difference between ~x4
at (θ4, φ4) = (67.5o, 0o) and ~x5 at (θ5, φ5) = (67.5o, 45o), with

x5 − x4 = R cos θ4[cosφ3 − cosφ1] (4a)

y5 − y4 = R cos θ4[sinφ3 − sinφ1] (4b)

z5 − z4 = 0. (4c)

The calculation for C is slightly more complicated, because it represents the distance

not between vertices but between the midpoints of pairs of vertices. The midpoints are

~x6 between (22.5o, 0o) and (22.5o, 45o), and ~x7 between (67.5o, 0o) and (67.5o, 45o). The

corresponding Cartesian coordinates are

x7 − x6 =
1

2
[R cos θ4 −R cos θ2][cosφ1 + cosφ3] (5a)

y7 − y6 =
1

2
[R cos θ4 −R cos θ2][sinφ1 + sinφ3] (5b)

z7 − z6 = R sin θ4 −R sin θ1. (5c)

Given the Cartesian differences (∆x,∆y,∆z), the magnitudes are
√

∆x2 + ∆y2 + ∆z2.

Using the expressions above for individual Cartesian components, we get

A = 2R sin θ2 (6a)

B = R cos θ2
√

sin2 φ3 + (1− sinφ3)2 (6b)

C = R

√
1

4
(cos θ4 − cos θ2)2[(1 + cosφ3)2 + sin2 φ3] + (sin θ4 − sin θ2)2 (6c)

D = R cos θ4

√
2 sin2 φ3 + 1− 2 sinφ3 (6d)

where we also use the fact that φ1 = 0.

While computers can easily calculate the numerical values of the sines and cosines in

the preceding formulas, it is worth noting that these all involve special angles. Thus we have

cosφ3 = sinφ3 = 1/
√

2. Since θ2 = φ3/2, we can use the half angle formulas,

sinα =
√

(1− cos 2α)/2 (7a)

cosα =
√

(1 + cos 2α)/2, (7b)

which give

sin θ2 =
√

(1− 1/
√

2)/2 (8a)

cos θ2 =
√

(1 + 1/
√

2)/2. (8b)
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Finally, since θ4 = 90o − θ2, sin θ4 = cos θ2 and cos θ4 = sin θ2.

Inserting the numerical values above into the distance formulas (6), after some ma-

nipulation we obtain,

A/R =
√√

2(
√

2− 1) ≈ .7654 (9a)

B/R = 1/
√

2 ≈ .7071 (9b)

C/R =
√

5/4− 1/
√

2 ≈ .7368 (9c)

D/R =
√

3/2−
√

2 ≈ .2929. (9d)

Our calculations show that A 6= B (B/A ≈ .9626), even though they represent a sector

that is 45o wide in both latitude and longitude. This reflects the fact that at ±22.5o, the

east-west distance for a small change in longitude is slightly smaller than the north-south

distance for the same change in latitude.

2 Projection on to OctaGlobe

Having established the dimensions of the OctaGlobe, we can now write the formulas for

projecting a latitude-longitude location (θ, φ) on to the flat surface in Fig. 2. The projection

is relatively simple because the faces of the OctaGlobe align with latitude and longitude.

Figure 3: Polar octagon illustrating projection from latitude-longitude coordinates.

For the tropical and mid-latitude faces, we map the latitude linearly on to the vertical

distance from the centerline (y = 0) of the figure, with the equator at y = 0, θ = ±22.5o at

y = ±A/2, and θ = ±67.5o at y± (A/2 +C). Similarly, each 45o longitude sector is mapped

linearly into the horizontal distance across the rectangle (equatorward of 22.5o) or trapezoid

(poleward of 22.5o). For the polar octagons, we first find the location along the perimeter of

the octagon that corresponds to the longitude (Fig. 3, point marked by small open circle).

The distance along the perimeter corresponds to the latitude. The mapped point will fall
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somewhere along the line between this point and the center of the octagon (Fig. 3, dashed

line). The distance along the line is proportional to the difference in latitude from the pole

(Fig. 3, small filled circle making a given latitude), with a latitude of 67.5o falling on the

perimeter.

For (latitude, longitude) (θ, φ), the projection formulas are as follows. We define

(X, Y ) as distances in the (horizontal, vertical) directions in Fig. 2. For |θ| < 22.5o,

X = B(φ/45o) (10a)

Y = A(θ/45o). (10b)

For 22.5o < |θ| ≤ 67.5o, we first define φ0, the longitude 22.5o + (45o)n (where n is an

integer) closest to φ. Then ∆φ = φ− φ0. The projection is given by

X = B(φ0/45o) + [B − (B −D)(|θ| − 22.5o)/45o](∆φ/45o) (11a)

Y = sgn(θ)(A/2 + C(|θ| − 22.5o)/45o) (11b)

For |θ| > 67.5o, we define

r = (1 +
√

2)D(90o − |θ|/45o)/ cos(|∆φ|) (12)

The location of the point within each octagon, using Cartesian coordinates (XO, YO) centered

on the pole, is

XO = r cosφP (13a)

YO = r sinφP (13b)

where φP is given by

φP = (φ− 157.5o) (θ > 0) (14a)

φP = (−φ− 22.5o) (θ < 0). (14b)

Another possible projection would be to use the line intersecting the center of the

sphere and a given (latitude, longitude) location on the sphere. The intersection of this

line with the OctaGlobe would give the projection on to the OctaGlobe faces. The formula

for such a projection is somewhat more complicated than what we have described above.

Since the faces of the Octaglobe are fairly close to the surface of the sphere, the difference

in location between the two methods is small and so here we use the simpler formula.
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