George Mason University CLIM 752 Ocean General Circulation

Introduction

Reading: Ocean Circulation in Three Dimensions, Chapters I and II

Barry A. Klinger Spring 2017

CLIM 752 Ocean General Circulation: Goals

Dr. Barry A. Klinger, <u>bklinger@gmu.edu</u>

Atmospheric, Oceanic, and Earth Sci. Dept. 116 Research Hall, 3-9227 (best reached via email)

You have already seen:

- Description of major ocean gyres
- Linear theory of wind-driven barotropic circulation (Sverdrup, Stommel, Munk)
- Description of deep meridional overturning and water masses
- Stommel-Arons theory of horizontal flow patterns in deep ocean

Some questions this class will address:

- How does the ocean circulation affect climate?
- What does the 3D wind-driven circulation look like?
- How do we deduce this 3D flow from first principles?
- How are subduction regions and equatorial upwelling linked?
- What determines the strength of the deep meridional overturning?
- Can the meridional overturning undergo catastrophic change?

CLIM 752 Outline of Topics

- 1. Intro: Dynamics, Kinematics, Heat Transport
- 2. Review of wind-driven gyres: observation and theory
- 3. Three-dimensional barotropic flow
- 4. Surface Properties and Mixed Layer
- 5. Subduction and Luyten-Pedlosky-Stommel theory
- 6. The Equatorial Undercurrent
- 7. Shallow Overturning: Tropical and Subtropical Cells
- 8. Eddies and Turbulence
- 9. Deep Meridional Overturning Observations
- 10. Deep Meridional Overturning Models and Theory
- 11. Southern Ocean and Antarctic Circumpolar Current
- 12. Multiple states and time variability of the deep merid overturning

Grades

30% of grade: problem set every week or two40% of grade: final exam30% of grade: paper on topic relevant to course (1000-1500 words)

Reference Material

Required Reading

Klinger and Haine: Ocean Circulation in Three Dimensions, Cambridge University Press, Draft at <u>http://mason.gmu.edu/~bklinger/bookhome.html</u>

Recommended Reading

Pedlosky, 1996: Ocean Circulation Theory, Springer-Verlag

Schmittner, Chiang, and Hemming, eds., 2007: Ocean Circulation, Mechanisms and Impacts, American Geophysical Union

Siedler, Church, and Gould, eds., 2001: Ocean Circulation and Climate, Academic Press

Tomczak and Godfrey, 1994: *Regional Oceanography*, Pergamon Press

Van Aken, 2007: The Oceanic Thermohaline Circulation, An Introduction, Springer

Some ways ocean circulation affects climate:

- biological productivity → gas exchange
- direct transport of gases (e.g., the carbon cycle)
- ice → albedo
- heat exchange with atmosphere

Annual Average Net Heat Flux Into Ocean

contours at 0, ±20, 40, 80, 160, 320 W/m²

Heat exchange with atmosphere indicates ocean influence on climate

- Heat flux magnitudes comparable to solar irradiance.
- Ocean absorbs heat at equator, releases heat at mid-high latitudes
- Also zonal structure: heat absorption in east, emission in west
- Differences between oceans and between N and S hemispheres

Ocean and Atmospheric Meridional Heat Transport

Ocean clearly important in tropics Latest observations → smaller ocean role at high latitudes (still significant uncertainties)

Ocean Features Occur on Wide Space and Time Scales

Different spatial scales also reveal different structures

http://podaac.jpl.nasa.gov/Multi-scale_Ultrahigh_Resolution_MUR-SST MUR L6 – 64 km resolution

http://podaac.jpl.nasa.gov/Multi-scale_Ultrahigh_Resolution_MUR-SST MUR L12 – 1 km resolution

Ocean Time and Space Scales

Difficulties in Measuring Ocean Flow

Almost no remote sensing below surface

 Point measurements (thermal wind, floats, current meters)
 aliasing from interannual, seasonal, and mesoscale
 (exception: acoustic tomography theoretically promising, not used so much so far)

Velocity/mass-transport dilemma:

(small velocity error) X (over large depth range) = big transport error

Satellite altimeters have greatly improved in last decade

but O(few cm) errors in variability and somewhat larger in mean

WOCE (World Ocean Circulation Experiment)

greatly expanded data in last 10 yr attempted transition from qualitative to quantitative partially successful?

A Quick Review of Some Ocean Dynamics

0. Equations of Motion

Momentum equation:

Incompressibility:

<u>Heat conservation</u>:

Salt conservation:

Equation of state:

$$\frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho_0} \nabla p - \frac{\rho}{\rho_0} g \mathbf{\hat{z}} - 2\mathbf{\Omega} \times \mathbf{u} + \nabla \cdot \mathbf{D}_{\mathbf{u}}(\mathbf{u})$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{D\theta}{Dt} = \nabla \cdot \mathbf{D}_{\theta}(\theta) + \mathcal{F}_{\theta}$$

$$\frac{DS}{Dt} = \nabla \cdot \mathbf{D}_{S}(S)$$

$$\rho = \rho(\theta, S, z),$$

...and Boundary Conditions

Variable	Solid bndries (usual)	Surface bndry (usual)
$\vec{u} \cdot \hat{n}$ (normal vel.)	No flow	No flow
$\vec{u} \cdot \hat{t}$ (tangent vel.)	No-slip, others	Given flux (=wind stress)
S salinity	No flux	S or flux may be given
θ temperature	No flux	θ or heat flux given

2. Decomposition of flow in rotating system $\frac{\partial \mathbf{u}_{H}}{\partial t} + \mathbf{u}_{H} \cdot \nabla \mathbf{u}_{H} = -\frac{1}{\rho_{0}} \nabla_{H} p - f \hat{\mathbf{z}} \times \mathbf{u}_{H} + \frac{\partial}{\partial z} \left(\nu_{v} \frac{\partial \mathbf{u}_{H}}{\partial z} \right) + \nabla_{H} \cdot \left(\nu_{h} \nabla \mathbf{u}_{H} \right) + w \frac{\partial \mathbf{u}_{H}}{\partial z}.$ geostrophy

Rotating sphere with period T and rotation rate $\Omega = 2\pi/T$ with θ = latitude

Coriolis parameter: $f = 2\Omega \sin(\theta)$

General circulation (speed *U*, horizontal length scale *L*) usually concerned with small Rossby Number

$$Ro = \frac{U}{fL} \ll 1$$

A useful decomposition of ocean flow:

$$\vec{u} = \vec{u}_{\text{Geostrophic}} + \vec{u}_{\text{Ekman}} + \vec{u}_{\text{Other}}$$

Ekman component only important near surface (and sometimes near bottom), given by

$$\int \vec{u_E} dz = \frac{\vec{\tau} \times \hat{z}}{f\rho}$$

For large-scale flow, generally ignore $\vec{u}_{\rm O}$ due to nonlinear terms, timevariations, and viscosity.

2. Hydrostatic Balance

constant reference density ρ_0 and varying part $\rho'(\mathbf{x}, t)$,

$$\rho = \rho_0 + \rho'.$$
 $p = p_0(z) + p'(\mathbf{x}, t)$

 $p_0(z \leq 0) = -g\rho_0 z$ is a background pressure that always increases with depth

p' is the **dynamic pressure**

"barotropic" "baroclinic"Use these terms w/ caution.Different authors use them somewhat differently.

3. Components of Geostrophy

$$f\hat{\mathbf{z}} \times \mathbf{u}_G = -\frac{1}{\rho} \nabla_h p$$
, Or in Cartesian coordinates

$$f\mathbf{u}_G = \hat{\mathbf{z}} \times \frac{1}{\rho} \nabla_h p.$$

Using previous decomposition of pressure \rightarrow and taking $\rho(x, y, z) \approx \rho_0$

nates

$$\int -fv_G = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$fu_G = -\frac{1}{\rho} \frac{\partial p}{\partial y},$$

$$p'(\mathbf{x}) = \int_0^{\eta} g\rho_0 dz + \int_z^{\eta} g\rho' dz.$$

$$\vec{u}_G = \vec{u}_S(x, y) + \vec{u}_\rho(x, y, z) = \frac{1}{f}\hat{z} \times g\left[\nabla \eta + \frac{1}{\rho_0} \nabla \left(\int_z^0 \rho' dz\right)\right]$$

Combine geostrophy w/ hydrostatic relation $(\partial p/\partial z = -\rho g)$

So if we know ρ but not η , we can still get geostrophic vertical shear

Don't forget:

- sea surface slope does not ALWAYS balance isopycnal slope
- surface slope gives surface current, NOT depth-avg current $(\int \rho_x dz \neq 0$ for instance)

Density of Sea Water

 $\beta \approx .8 \text{ kg m}^{-3} \text{ psu}^{-1}$ to an accuracy of about 10%.

McDougall, 1987: Neutral Surfaces, *JPO*, 17, 1950 – 1964.

Potential density allows us to compare ρ parcels at 2 different depths. **But** which depth? Parcel 1, parcel 2, or somewhere inbetween? If they have different θ and *S*,

- #1 might be denser at some level
- #2 might be denser at another level

Solution: construct **neutral surface** linking two regions of ocean. At every point, surface is tangent to potential density surface **Referenced to that depth**.

[Warning: don't confuse this with *in situ* density] This is surface a parcel would slide along **if no change in** (θ, S) .

OK, but how much does this matter really? Usually not too much. Sometimes a lot.

Hirst, Jackett & McDougall, 1996: JPO