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This document gives advice on

• How to make scientific graphics clearer.

• A collection of Matlab mscripts I have written to assist in producing improved figures

with Matlab.

This guide is not an introduction to Matlab. Many of the ideas discussed here will translate

to other programming languages too. This guide does not discuss all the mscripts in the

collection; see a separate listing for these.

“Beautiful graphics” can have at least two meanings in scientific communication. One is the

aesthetic values of the figures, how they are decorated, how the space around them might be

designed to achieve a certain psychological effect, etc. As far as I can tell, these are all pretty

irrelevant to the goal of the figure and can actually get in the way of good communication.

The second is how well the figures explain something. Generally the purpose of such a figure

is to answer some question. A plot may seem complete, but if the reader can’t find key

information because the axis labels are too small to decipher, or the figure is too crowded,

or a key feature is not visible because of poor choice of contour values or colors, then the

figure has not achieved its purpose. Here then are some techniques to help create beautiful

graphics - in the second sense of the phrase.
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1 Use of Colors to Represent Fields

Matlab coloring of surfaces with contours (contourf.m) or pixel-coloring (fill.m) maps

numerical values to colors via a colormap. The default colormap is jet, which has a color

sequence similar to a rainbow. The Matlab mapping to the rainbow palette has a number

of problems which are solved with my routine contourfP.m and related mscripts.
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Figure 1: Problematic Matlab output: Annual average meridional velocity from the
POP ocean general circulation model in the North Pacific, uniform contour interval and jet
colormap. From fPdemo1.m.

Using rainbow colors for representing numerical data is problematic for several reasons (Light

and Bartlein, 2004, Eos, 85, pp. 385, 391)1 . The rainbow palette relies on transitions be-

tween different colors, including blue and green, but a significant minority of men have

trouble distinguishing blue and green due to colorblindness. More fundamentally, numeri-

cal fields such as temperature or speed are usually approximately continuous, but humans

perceive colors as falling into a small number of distinct groups (blue, green, yellow, etc.).

Therefore there is a natural tendency to infer special signifance to transitions between dif-

ferent groups (for instance a border between yellow and green). This can be misleading in

many graphs.

The rainbow palette is also ill-suited for displaying data for which we want to clearly show

the difference between positive and negative values. Fig. 1 illustrates this problem; even with

the colorbar next to the figure it is hard to tell exactly which shade of green is positive and

1Thanks to Jennifer Adams at COLA for pointing out sources on this subject and for subsequent discus-
sion.
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which is negative. We could attach labels to the contours but if the colors are not helping

the viewer extract information from the figure, why bother having the colors?
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Figure 2: Annual average meridional velocity from the POP ocean general circulation model
in the North Pacific, exponentially growing contour intervals and blue/red color scheme.
From fPdemo1.m.

A related problem in using contours or colors to represent an array of numbers is that

sometimes very different contour intervals are needed for different ranges of numbers. In

Fig. 1, most of the section has small v, but a small region has a large value. Both regimes

contribute comparable amounts to the total transport. A uniform contour interval will be

too big to resolve structures in the small-v regions or so small that the region of large values

will be cluttered or saturated. Fig. 1 actually has both problems! Even if variable contour

intervals are used, the Matlab colormap will make the color difference across small contour

intervals much smaller than the color difference across large intervals. Often in this case the

colors between many of the contour levels become indistinguishable.

Illustrating a better alternative to the rainbow palette, Fig. 2 uses different families of shades

for positive and negative values, unevenly spaced contours, and comparable steps in shading

across all contours. This set of choices make positive and negative parts of the field obvious,

reveals previously-hidden structures such as the relatively strong negative values in the east,

and allows the viewer to see the magnitude of the field at all locations. The contour values

increase exponentially in magnitude, taking values of 0,±.5,±1,±2...±64. The exponential

sequence allows us to vary the contour interval over a wide range but in a regular and

understandable way. A similar way to show positive and negative values is to shade for the

magnitude and color the contours for the sign, as in Fig. 3.
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Figure 3: Annual average meridional velocity from the POP ocean general circulation model
in the North Pacific, exponentially growing contour intervals, gray shades for magnitude, and
and blue/red/green contours for positive/negative/zero contour values. From fPdemo1.m.

Besides differentiating positive and negative regions of a field, different colors can be used

to emphasize features of the field. In Fig. 4, water from surface sources in the northern and

southern hemispheres are colored in shades of orange and green, respectively. Because small

salinity gradients are more significant in the deep water than near the surface, the contour

interval is smaller between 34 psu and 35 psu which corresponds to deep water. One should

use caution in using colors and uneven contour intervals in this way because it is easy to

give a misleading impression by choosing colors or contours in a certain way. In Fig. 4 the

different contour intervals are marked by using thicker lines for contours that are separated

by the larger interval. Generally the figure caption or text should flag the use of non-uniform

contours or sharp color transitions in order to avoid misleading the reader.
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Figure 4: Ocean salinity (from World Ocean Atlas 2001), using two colors and two different
contour intervals.

2 Contour Plots: contourfP.m, colorpal.m, maptoint.m

A powerful way to make filled contour plots with the features displayed in the previous

section is to use the mscript contourfP.m. This script creates a colormap from a collection

of pre-assigned palettes. It associates each contour interval in a sequence of contours with a

color in the colormap. There is an option to use gray shades for magnitudes with different

color contour lines for positive, negative, and zero values. There are also options to modify

the linewidth and to modify the palette.

[cs,han]=contourfP(x,y,A,ci,Fcol,xBrk,Lcol,lthick,xlohi);

% (x,y,A,ci) = coords, array, and contour values as in contourf.m.

% Fcol = string of letters representing sequence of colors.

% xBrk = for each color in Fcol, corresponding element in vector

% xBrk tells which value of ci marks beginning of next color.

% Lcol = line color, ’none’, single letter, or 3 letters for +/-/0.

% Lthick = line thickness (default = .5)

% xlohi = array for fraction of palette used, each row of array

% corresponds to color in Fcol and modifies range of

% shades (ex: [.1 .8] goes from 10% to 80% through palette)

A useful script to generate an exponentially varying vector of contour values (including

negative and zero values) is
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ci=expci(cimin,N,base);

% raise base (default=2) to powers 0 to N-1 and multiply by +/- cimin

The key part of the script fPdemo2.m to make Fig. 2 is relatively simple:

ci=expci(.5,8);

contourfP(xnon,-znon,vv,ci,’bR’,0,’w’,1,[.1 1; .1 1]);

The text bR creates a colormap consisting of blue shades (b) followed by red shades (R), with

lower case letters representing palettes that go from dark to light as data values increase, and

upper case letters representing palettes that go from light to dark. The parameter 0 tells the

script to switch colors from blue to red at ci=0. The w makes contour lines be white, and

the 1 gives the linewidth of the contours. The colors are determined from standard palettes

by contourfP.m calling colorpal.m (described below). In this example, the .1’s make the

lightest colors in the palette be a little darker than the lightest color in the base palette.

The main code to make Fig. 3 is

ciG=expci(.5,-8); % negative N ==> exclude negative values

contourfP(xnon,-znon,vv,ciG,’A’,0,’rbg’,.5,[.1 .8]);

Here the A specifies a grAy palette, and the use of three letters for the contour colors (in this

case rbg for red-blue-green) tells the mscript to use the stated colors for positive, negative,

and zero contours, respectively. Note that for this plot, the contour lines are thinner and

darkest shades are lighter than in Fig. 2.

The color palettes used in the contourfP.m examples above were created with a routine

called colorpal.m which returns an N × 3 array which can then be used to set a colormap:

colpal=colorpal(col,ncol,xlohi);

colormap(colpal);

The first input parameter col, is a string representing the colors to be used in the colormap.

If the first letter of the string is h or H, calling the function will write help notes to the

Matlab window and will display all the available palettes in a graphics window (Fig. 5,

top row). The palettes are largely (but not entirely) based on those shown at the website

colorbrewer2.org. The vector ncol gives the number of shades to be used for each color.

If the length of col is greater than the length of ncol, then colorpal will plot the colors

represented by the output vector colpal (Fig. 5, bottom two rows). Shades in each palette
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colorpal(’hk’); % h,H: help, k,K: do not clf first

colorpal(’bRk’,[8 8]); % lowercase: dark−>light; uppercase: light−>dark

colorpal(’bgnk’,[6 4 4],[.1 .9; .5 1; .25 .75]);

Figure 5: Top: available colormap palettes available through colorpal.m. Letter used to
call each color are given at left in the panel. Middle: example of a blue-red colormap.
Bottom: example of a blue-green-brown colormap with the range of shades altered by the
last parameter in the function. From colorpaldemo.m

are interpolated from each family of 9 shades shown at top of Fig. 5. The range of shades

can be compressed with input array xlohi; each row of xlohi has two numbers, each between

0 and 1, which represent the minimum and maximum fraction of the entire shade range will

be used.

In contourfP.m the colors are assigned to integers 1,2,..., so in a colorbar the labels will

default to these values. To give the correct labels (here selected as every other contour

values), colorbar must be called with some updated parameters, for instance:

ibar=1:2:length(ci);

colorbar(’ytick’,ibar,’yticklabel’,ci(ibar))
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3 Vectors and Surfaces

Matlab provides a script called quiver for graphing two-dimensional vector fields. Such

fields present a graphical challenge because there is a tension between showing each vector

large enough to see it clearly and showing all the vectors in a wide region. Figure 6, upper

left, shows a typical example. While this figure conveys the main idea—there is a strong

current leaving the coast and flowing to the northeast—it’s hard to learn more than that

because the arrows in the strong currents are crowded and the arrows in the weak currents

are nearly invisible. The upper right figure reduces the crowding by skipping every vector,

but the low resolution makes it hard to tell where the edges of the strong current are. My

routine quivcheck (lower left) omits data in a checkerboard pattern. I find this is often a

good compromise. Especially for arrows that mostly point in the horizontal or vertical (in

the figure) directions, the checkerboard pattern reduces crowding while preserving features.

Of course, for very high resolution data it may be best to reduce the resolution (as in upper

right panel) and use quivcheck. Finally, my colleague Jay McCreary taught me that letting

arrow length be proportional to the square root of the vector magnitude (instead of it being

proportional to the vector magnitude), as in the lower right panel, allows us to see both the

strong and weak currents in the same plot. This can be done with my routine quivsqr,

which is also called by one option of quivcheck.

For conveying quantitative information, 2D contour or shading plots are usually better than

perspective 3D plots. Occasionally one may want to convey a more visually appealing im-

pression with a perspective plot. Matlab routines such as surf (Figure 7, upper panel) and

mesh (not shown) illustrate a 2D surface as if looking at it in 3D. They smoothly connect

each value in the array. Sometimes one wants to emphasize that each array value represents

a grid box with a constant value. This can be shown by transforming the data with my

routine plateau and plotting the result with mesh (bottom panel) or surf.
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Figure 6: North Atlantic surface velocity climatology to illustrate various quiver options
(quivdemo). Each point shows average of 3X3 set of gridpoints centered on the point.
Data is from www.aoml.noaa.gov/phod/dac/drifter climatology.html (Lumpkin and Gar-
raffo, 2005: J. Atmos. Oceanic Techn.).

4 Figure and Axis Control

A number of my scripts to control figure and axis characteristics are very short but I use

them so often that it is still useful to call them rather than to write out the few lines of code

that they contain.

A few scripts deal with figure control, both how to place the figure window on the screen

and how to arrange the characteristics of the figure when it is printed on the page. I have

a procedure for organizing my windows which I find very useful: relatively small Matlab
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Figure 7: North Atlantic topography to illustrate use of plateau script (plateaudemo).

window in one corner of my display screen, an editor window in the other screen, and Matlab

figure windows in the remaining corners. This way I can see the script, the command line,

and the output all at once. I’ve noticed that many students who don’t do this seem to have to

rearrange all their windows every time they do anything. For myself, trying to move things

with the mouse or other pointing device is usually much more timeconsuming than typing a

line of text, so I’ve created a few Matlab commands to manipulate the windows. I use newfig

to create a new graphics window; this includes parameters for which window to open, where

to put it on the screen, and how big to make it. For instance, newfig(2,4,’long’) opens

figure window (2), puts it in the upper right hand of the screen, and gives it a relatively

long height relative to its width. The window can be enlarged with bigger, shrunk with

smaller, and, if covered by another window, can be made visible with top.
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Figure 8: Illustration of a difficult-to-read figure (wrongright, option 1).

Setting the size of the rectangle where all graphics will be printed (on a given page) can

be done with paper for portrait orientation or landscape for landscape orientation. The

Matlab default has rather wide margins at the top and the bottom, so I often use paper([1

1]) to give 1 inch margins everywhere.

I’ve written a number of very simple scripts to faciliate various graphical good practices.

Figure 8 shows a graph which wastes a lot of space with no information, has a curve that is

hard to see because the (default) linewidth is so small, and uses a small font size that is also

hard to see. Students will often create a stack of pages or files with such graphs; when these

are viewed on the computer screen the images must be shrunk down to see them all at once,

but then the labels are nearly invisible. Also it’s hard to get quantitative information from

the graph; even seeing where the curve is positive or negative takes some work. Figure 9

shows an improved version. More than one graph is placed on the page. The script thickline

controls the width of the curve, marker (not used here) controls the size of plotting symbols
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Figure 9: Improved version of Fig. 8, illustrating scripts xaxis, textsiz, and thickline
(wrongright, option 1).
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such as circles or squares, textsiz controls the text size, and originx places a line on the

x axis. Standard Matlab commands also allow for other good practices, such as axis labels,

title, and a grid to make it easier to estimate quantitative information from the graph. My

script overgrid (not used here) gives control over some grid properties and allows the grid

to be placed over graphs that use the pcolor Matlab command. The scripts xaxis and

yaxis change the limits of only one axis of the graph without the programmer needing to

think about what the limits of the other axis are. textcorn is useful for putting panel labels

(such as (a), (b), etc) on the graph.
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Figure 10: Scripts to help use nonlinear scale using (a) two different scales or (b) distance
proportional to square root of variable (breaktaxisdemo).

While its sometimes ill-advised to put only a single graph on a page, it is often even worse

to put too many on a single page. Are you sure you need a single page with all 12 global

maps of pressure anomalies superimposed on sea surface temperature? Such a graph may be

okay when viewed as a PDF on a computer screen, where the viewer can zoom in to various

panels at will. It can be quite deadly when used as a slide for a seminar.

Sometimes it is convenient to have one or more axes have a nonlinear scale. There are Matlab

functions for plotting on a log scale, but I’ve found some other scales also useful when a lot

more is happening in one small part of the domain than in the rest. This often occurs in the

depth coordinate (top few hundred meters of the ocean have more change than bottom few

kilometers) or sometimes in the time coordinate. One solution is to use two different scales
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(Figure 10a), using breaktaxis to define nonlinear variable and tickmark labels. Another

is to plot the square root of the axis variable (Figure 10b), using xyticksq to label the axis

appropriately. This script was also used to make the nonlinear horizontal and vertical axes

in Figs. 1, 2, and 3.
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5 Map Projections

There are many different ways to project part of a sphere on to a plane. I’ve only implemented

azimuthal equal area and some polar projections. “Azimuthal” means that the equator maps

to a straight line (none of the other latitude circles do), and “equal area” means that two

regions that have the same area on a sphere have the same area when projected on to the

plane. Equal area projections are useful because they don’t exaggerate the size of some

features; the main drawback of such projections is that they don’t preserve angles. For

instance, two vectors that are at right angles to each other on the sphere will not necessarily

be at right angles in the projection.

The main building block of all the routines is projea, which transforms any set of (lati-

tude,longitude) locations into a set of (x,y) positions on a plane using an azimuthal equal

area projection. The script projquiv projects a vector field; projquiv doesn’t contain any

graphics, but returns (x,y) and (u,v) values which can then be graphed with quiver or the

other vector plotting routines. To make contour plots, the original (lon,lat) grid vectors (or

2D arrays) can be converted to (x,y) arrays which can then be used with contouring scripts

such as contour.m or contourfP.m. Finally, glatlon plots a grid of latitude and longitude

circles on to the graph. Figure 11 shows an example using these scripts.

Figure 11: Contour and quiver plots using an azimuthal equal area projection with same
data as in Fig. 6 (projdemo).

I’ve also included a script to project global data. The projection used in projea looks

increasingly distorted as the longitude range becomes bigger, and for a longitude range of

360 degrees the script fails. Therefore I plot global data on a series of smaller sectors of a

sphere. One complication with global data is that the western and eastern “edges” of the
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data (usually either 180o longitude or 0o longitude) will usually fall inside some ocean—not

a good way to display ocean data. Mscript loncycle solves this problem by shifting the

coordinates to whatever boundaries are desired. The global projection routines for contour

plots and quiver plots are contglobe and quivglobe (Fig. 12). Note that contglobe calls

contourfP.m. The global contouring in Fig. 12 is done with a single call to contglobeP:

contglobeP(lon,lat,D/1000,ci,’w-’,’bg’,0,’none’,.5,xlohi);

The parameters passed to contglobeP in the example above tell the routine to use a solid

white lat-lon grid, a color palette with blues for negative values and greens for positive

values, no contour lines, and color ranges modified by the array xlohi. I experimented

with combining the Atlantic and Indian in a single projection, but the format shown here

produces less distortion around the edges, at the cost of having more edges. Longitude bands

at the edges of the sectors are included in neighboring sectors. The demonstration script

for these functions, globedemo.m, must be run in a directory with files bathdeg.mat and

surfvelclim.mat.

Figure 12: Global contour and quiver plots (topography and surface velocity) using an
azimuthal equal area projection (globdemo, which caclls contglobe.m and quivglobe.m).

Polar projections are illustrated in Fig. 13 and can be used for creating contours (pro-

jpol.m), velocity vectors (poluvc.m), and latitude-longitude grids (polgrid.m). The

scripts choose whether to project around the north pole or south pole based on the range of

latitudes passed to the script. The polar projection scripts give three options for projections.

A conceptually simple projection is the “view from infinity” which is to project the globe
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into the equatorial plane (Fig. 13, option 2). This introduces fairly substantial distortions

equatorward of 45o and is not an equal-area projection. The equal area-projection is defined

by the criterion that a ring between latitude φ and φ + dφ on the Earth has the same area

as the ring between radius r and r + dr in the projection plane. It is represented by

r dr = − cos(φ) dφ (1)

where there is a negative sign because increasing φ corresponds to decreasing r. This pro-

jection is option 3 (Fig. 13). Integrating this equation gives us the relationship between

latitude and radial distance on the projection:

r =
√

2
√

1− sin(φ). (2)

The simplest option is to make r proportional to the latitude distance (on a sphere) from

the pole (Fig. 13, option 1). As the figure shows, option 3 is fairly similar to the equal-area

option, and all three options give fairly similar results within 45o of the pole. Therefore I

usually use option 1 which is easy to describe and interpret and which is relatively close to

being an equal-area projection.
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Figure 13: Three polar projections showing latitude circles and northern hemisphere topog-
raphy.
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