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SUMMARY

Resistance to anthelmintics in gastrointestinal nematodes of livestock is a serious problem and appropriate methods are

required to identify and quantify resistance. However, quantification and assessment of resistance depend on an accurate

measure of treatment efficacy, and current methodologies fail to properly address the issue. The fecal egg count reduction

test (FECRT) is the practical gold standard formeasuring anthelmintic efficacy on farms, but these types of data are fraught

with high variability that greatly impacts the accuracy of inference on efficacy. This paper develops a statistical model to

measure, assess, and evaluate the efficacy of the anthelmintic treatment on horse farms as determined by FECRT. Novel

robust bootstrapmethods are developed to analyse the data and are compared to other suggestedmethods in the literature in

terms of Type I error and power. The results demonstrate that the bootstrapmethods have an optimal Type I error rate and

high power to detect differences between the presumed and true efficacy without the need to know the true distribution of

pre-treatment egg counts. Finally, data from multiple farms are studied and statistical models developed that take into

account between-farm variability. Our analysis establishes that if inter-farm variability is not taken into account,misleading

conclusions about resistance can be made.

Key words: efficacy, anthelmintic resistance, horse, beta-binomial model, logit-normal model, bootstrap methods, error

rates, power.

INTRODUCTION

In recent years, anthelmintic resistance in gastroin-

testinal nematode parasites of livestock has emerged

as an important problem worldwide. Multiple-drug-

resistant parasites threaten small ruminant industries

inmany areas of the world, and resistance in parasites

of horses and cattle is reaching alarming levels

(Kaplan, 2004). The theoretical gold standard for

diagnosing resistance to anthelmintics is achieved by

counting the total number of killed worms and live

worms following treatment; however, these data can

be obtained only by sacrificing the animals, which is

unrealistic on a farm. The practical gold standard

is to measure changes in the number of eggs being

produced by the parasites; these data can be obtained

bymeasuring the number of eggs in a sample of feces.

This procedure is called the fecal egg count reduction

test (FECRT) and is the most common means of

determining whether resistance is present on a farm

(Kaplan, 2002). However, the fecal egg count (FEC)

data are a surrogate measurement, which are subject

to many sources of variability. Furthermore, the

correlation between this surrogate measurement and

the number of worms that are actually present in a

horse is known to be weak (Lyons et al. 1983; Klei,

1986).

In a FECRT, fecal egg counts are compared in

the same animals both before and after treatment,

or between control and treated groups at some es-

tablished time-point after treatment. However,

there are many sources of animal-related and farm-

related variability in FEC data that can impact

the interpretation of results, especially when many

different farms are being studied. Some of the most

important sources of variability are: non-Gaussian

overdispersed distribution of parasites in host ani-

mals, causing large differences in pre-treatment

values between animals on the same farm; differences

in parasite infection intensities between farms, caus-

ing large differences in pre-treatment values between

farms; inherent variability in parasite egg numbers

within the fecal output of an animal, which results in

the collection of non-uniform samples (Warnick,

1992) ; variability in fecal egg counts resulting from

the non-uniform distribution of eggs in solutions

used for fecal egg count analysis; overall health and

body condition of animals that can impact drug

pharmacokinetics and pharmacodynamics; differ-

ences in age, breed, and sex of animals both on and

between farms; differences in nutritional programs
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between farms; spatial differences due to location

of farms; and temporal differences resulting from

non-uniform sampling times. These cause the

FECRT data to be skewed and multi-modal. To

overcome the problem of skewness, log and arcsine

data transformations have been suggested (Fulford,

1994; Pook et al. 2002).

Many studies have investigated these issues in

sheep and results have been used to develop methods

for the experimental design and data analysis of

FECRT (Coles et al. 1992). Although imperfect,

these recommendations are generally accepted by

parasitologists as being a useful standard. Un-

fortunately, virtually nothing has been done to

investigate these issues in horses and, therefore, no

accepted standards exist for either the design or data

analysis of FECRT on horse farms (Kaplan, 2002).

Furthermore, FECRT studies on horse farms are

fraught with more severe problems in study design

and analysis due to large numbers of horses with

FEC of zero, and often only small numbers of horses

available to test. Consequently, the study design used

for FECRT in horses tends to differ from that used in

sheep. In addition, major differences exist between

sheep and horses in the biology of the host-parasite

relationship. This implies that the metric used to

evaluate treatment effect needs to be different for

sheep and horses, which merits new statistical

methodology.

Parasite burdens in animals are characterized by

highly aggregated distributions within host popu-

lations (Crofton, 1971; Shaw and Dobson, 1995).

This overdispersed pattern can be described by the

negative binomial distribution (Shaw and Dobson,

1995). However, factors responsible for generating

these observed patterns of parasite dispersion have

not been well described, and although models have

been developed, producing a tractable mathematical

model for host-microparasite dynamics that allows

for both the origins and effects of aggregation is a

difficult technical problem (Anderson and Gordon,

1982; Grenfell et al. 1995). In parasitological in-

vestigations in animals, the issue of parasite distri-

bution among hosts can have important effects on

the interpretation of data. This is often addressed

either by using geometric means to normalize the

data set, or by using sufficiently large treatment

groups that minimize the effect of aggregation

(Fulford, 1994).

The approach for evaluating FECRT data in

horses is to examine the arithmetic sample mean for

percentage reduction, while some studies have used

logarithmic and arcsine transformations before cal-

culating the mean. An arbitrary percentage of either

90% or 95% reduction is often used to declare re-

sistance (Bauer et al. 1986; Coles et al. 1992; Craven

et al. 1998; Varady et al. 2000) while some studies

have used a reduction of 80% for declaring resistance,

with resistance suspected if the percentage reduction

is between 80% and 90% (Woods et al. 1998; Kaplan

et al. 2004).

Such approaches are based on the presumed effi-

cacy of the drug rather than on the true efficacy of the

drug at the time of treatment, which is unknown.

However, since the correlation between the number

of worms killed and the fecal egg count reduction

(FECR) is weak and the number of horses is small,

the accuracy of these arbitrary assignments of re-

sistance to farms is unclear. Thus what is required is

an extensive simulation study, which by design re-

flects the truth, so that we may begin to understand

(1) the role of efficacy in understanding resistance,

(2) statistical methods to evaluate efficacy, and (3)

the role of variability in understanding efficacy and

resistance.

In this paper, first we develop a theoretical

framework for understanding resistance and efficacy

that is free of distributional assumptions on the egg

count distributions. Second we develop a novel

bootstrap-based algorithm to assess efficacy, and we

compare our methods to the existing approaches

using extensive simulations. For this reason we de-

velop several novel simulation models to test our

methods. Finally, we show that these models can in

turn be used to model FECRT data. To illustrate

this, we provide an example using data from 2 horse

farms that were part of a larger study on anthelmintic

resistance using the FECRT.

Admittedly, the use of simulations to study re-

sistance is not new (e.g. Torgerson et al. 2005;

Morgan et al. 2005). However, the focus of the

simulations and the methods used to evaluate re-

sistance are new. In particular, we focus on hypoth-

esis testing and the use of bootstrap methodology in

this context.

MATERIALS AND METHODS

Modelling efficacy of anthelmintic treatment

FECRT data, as described above, are obtained by

counting the number of eggs in a fecal sample from a

horse. Let N denote the random variable describing

the number of eggs in a fecal sample. Let h(.) denote

the probability distribution of N. That is,

P(N=k)=h(k): (1)

Let l=E(N) denote the population mean of the egg

counts in a fecal sample while s2=Var(N) denotes

the population variance of the number of egg counts

in a fecal sample.

The effect of treatment is to kill worms and elim-

inate eggs. However, the FECRT data do not give

information about the actual number of worms

killed. Thus, if the treatment was efficacious (that is,

the worms were killed) then the egg counts would be

small, while if the treatment was not efficacious, the

egg counts will be large relative to pre-treatment
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counts.However, the conversemay not be true.A low

egg count in a sample may not necessarily mean the

treatment is efficacious. The small number may be

caused due to various factors affecting the egg count.

We say that a treatment efficacy exhibited through

FECR is p (0<p<1), if 100rp% of the eggs are

eliminated. This does not mean that the true efficacy

of the drug is p nor does it say that resistance is

(1xp). As mentioned in the introduction, several

factors contribute to the efficacy of the treatment and

hence it is not easy to diagnose resistance without

understanding efficacy.

In this work, we assume that the true efficacy is an

unknown parameter. We remark that even though

the true efficacy is p, this does not mean that in every

fecal sample 100rp% of eggs will be eliminated. The

actual variability and the sample size could lead to

variations around that number. It is often the case

that in small sample size experiments with ‘high’

efficacy, there would be differences between the ob-

served efficacy and the true efficacy. Thus without a

statistical procedure, it is impossible to identify and

evaluate the true efficacy of the treatment. The

question of diagnosing resistance is related to hy-

pothesis testing concerning efficacy but is more

complicated.

The post-treatment egg count is modelled based

on the pre-treatment egg count. Let N denote the

random variable describing the pre-treatment egg

count. Then the post-treatment egg count is mod-

elled as a binomial distribution with the parameters

pre-treatment egg count number and the efficacy,

that is

YjN :Bin(N, 1xp)

N :G(l, s2),
(2)

where G is an integer valued random variable

with population mean l and population variance s2.

The above model is based on the assumption that

given the pre-treatment egg count, the elimination

process acts independently on the existing eggs. This

is definitely a simplifying assumption but helps

illustrate the concepts. The above modelling implies

that the expected post-treatment egg count is

l(1xp). The variance of the post-treatment egg

count is

Var(Y)=lp(1xp)+s2(1xp)2: (3)

Frequently,N is modelled to be a Poisson random

variable with mean l. In this Poisson case, the vari-

ance of the post-treatment egg count reduces to

lp(1xp)+l(1xp)2, since for the Poisson distri-

bution mean=variance=l.
Due to the aggregation phenomenon present in the

FEC data, the negative binomial distribution

(Cornell, 2005) has been suggested as an alternative

to model the fecal egg counts. The negative binomial

distribution has 2 parameters, namely, the mean l

and the negative binomial constant r. The prob-

ability distribution is given by

Pr, l(N=k)=
C(r+k)

C(r)k!

r

r+l

� �r
l

r+l

� �k

, (4)

where C is the gamma function. The mean of

the negative binomial distribution is l and the

variance is l r+l
r

� �
. Thus, in this case, the variance

of the post-treatment egg count becomes

lp(1xp)+l r+l
r

� �
(1xp)2.

Thus, the variance of the post-treatment egg count

critically depends on the statistical model used for

the pre-treatment egg count. However, the number

of horses available to check the appropriateness of

this modelling assumption is too small. Hence, if the

assumed model for the pre-treatment egg count is

incorrect, the resulting inference concerning the

true efficacy of a drug and the resistance would

be incorrect. Therefore, it is imperative to have a

statistical methodology that is independent of the

distributional assumptions on the egg count dis-

tributions.

Statistical issues for single farm data

Let us describe the data set from a single farm con-

taining M horses with a positive pre-treatment egg

count. Let Ni and Yi denote the number of eggs in a

fecal sample taken from the horse i before and after

the anthelmintic treatment, respectively. Then

Xi=NixYi represents the change in the number of

eggs. We will assume that the pair (Ni,Yi) are in-

dependent and identically distributed random

variables and that the effect of treatment on all the

horses on the farm are the same. The meaning of this

assumption is that the pair (pre-treatment egg count,

post-treatment egg count) has the same statistical

distribution for all horses in a given farm; and

the outcome for a particular horse is statistically in-

dependent of the outcome from any other horse in

the same farm. However, the realized values of Yi

will depend on Ni. Let pi denote the efficacy of the

treatment on horse i. Our assumption that the effect

of treatment (i.e. proportion of worms killed) is

the same for all horses on a farm implies that the

probability of eliminating the worm eggs is also

the same for all horses on the farm. This assumption

allows us to set pi=p for all 1fifM. Much of

the work in this paper deals with estimation and

hypothesis testing concerning p.

To address the practical question of identifying

and diagnosing resistance, one needs to provide a

statistical estimate of p and test the hypothesis con-

cerning p using the data (N1,Y1),…(NM,YM). We

estimate p using the formula

p̂=
1

M

XM
i=1

Xi

Ni

: (5)
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This is an unbiased estimate of p and is also a con-

sistent estimator of p (Casella and Berger, 2001). The

differences in the pre-treatment egg counts of horses

are attributed to natural variation and hence the

randomness of the pre-treatment egg counts yields

unbiasedness of p̂. Let us call the quantity Xi

Ni
the

empirical efficacy from horse i. The above estimate of

p, namely p̂, is an average of the empirical efficacies

calculated from each horse. The empirical efficacies

from each horse take into account the differential

number of worms in horses. If the horse i has

a smaller number of worms, this will correspond to

smaller Ni and this will lead to giving higher weight

to the horse i.However, the variability from this horse

will also be larger since Var Xi

Ni
jNi

� �
=Nx1

i p(1xp).

Thus the estimator of the true efficacy can be viewed

as a weighted average of the change in egg counts in

horses, the weights being 1
Ni
. Furthermore, the

population variance of this estimator is given by
1
M
hp(1xp), where h is the population mean of the

inverse of the pre-treatment egg counts. It is usually

very difficult to calculate h even for some well-known

distributions. Our bootstrap methodology described

in the following section describes a scheme that

avoids this issue for a very general class of distri-

butions. We reiterate that the properties of the esti-

mator of p, namely p̂, defined in (5) above, hold

without any assumption concerning the distribution

of the pre-treatment fecal egg count data.

Alternatively, one could consider the following

unbiased estimator

p̂ 1=
PM

i=1 XiPM
i=1 Ni

:

This estimator assumes that there is no variability

between the horses, and does not allow the modelling

of variability. The estimator p̂1 is the maximum

likelihood estimator of p if there is no variability

between the horses.

We now turn to hypothesis testing concerning

p. Let H0 and H1 denote the null and the alternative

hypotheses concerning p, respectively. The null

hypothesis for p is a statement concerning the poss-

ible value of p. The alternative hypothesis, as the

name indicates, states alternative values for p and

is the research hypothesis. Typically, one tests if

the null hypothesis can be rejected in favour of

the alternative (research) hypothesis using the data.

Testing of the hypothesis leads to acceptance or

rejection of the null hypothesis which could be

in error. In fact, there are two types of error that

can arise and these are called Type I and Type II

error. We now briefly discuss the terms Type I error

and Type II error.

Type I error is caused by rejecting the null hy-

pothesis H0, when H0 is true; while Type II error

is caused by not rejecting H0 when the alternative

hypothesis H1 is true. Let the null hypothesis

concerning the percentage reduction be H0 :p=p0.

Let Tn denote the test statistic for testing H0. The

rejection region for testing H0 is given by [Tn>c]

where c is so chosen that P(Tn>c|H0)fa, where

P(.|H0) is the probability when the null hypothesis is

true. Since c depends on a, we will write ca to denote

c. Furthermore, since the null hypothesis is true

implies p=p0, the Type 1 error rate can be expressed

asPp0(Tn>ca). The power of a test is thenPp(Tn>ca),

which we denote by bn(p).
The number p0 is the presumed efficacy of the drug

at the time of treatment. For instance, it is believed

that ivermectin is 99.9% effective. In this case, one

takes p0=0.999. In general, the value of p0 can be

obtained either from historical data or regulatory

records.

Thus, when testing the hypothesis concerning

p for a single farm, one is testing if the treatment is as

efficacious as suggested in that farm using the data.

A veterinary advisor will typically be interested

in the answer to this question, which would help

in making appropriate drug selection and drug

treatment decisions.

Multiple farms

Frequently, a regulatory agency, a scientist or a

veterinarian is interested in understanding if a

particular treatment has certain levels of efficacy

before suggesting the treatment for widespread

use. In these situations, it is important to test the

hypothesis concerning p using data from several

farms. This will help in identifying the overall

efficacy rate of the treatment. The data set in this

case is a collection of single farm data from several

farms. More formally, let R denote the number of

farms and Mi denote the number of horses with

positive egg count from farm i. Let Nij and Yij

denote the number of eggs in a fecal sample taken

from the horse j before and after anthelmintic

treatment, respectively. Let Xij=NijxYij. Then,

Xij represents the number of eggs eliminated by

treating the jth horse on the ith farm. The effect of

anthelmintic treatment on horses within the farm

is the same but could differ between farms. We

will denote by pi the true efficacy of treatment on

the ith farm.

Statistical models for multiple farms

A parsimonious model for modelling the variability

between farms is to assume that the efficacies for

each farm pi’s are independent and identically dis-

tributed (i.i.d.) random variables taking values be-

tween 0 and 1. More precisely, let pi, 1fifR denote

independent random variables from a distribution

h(.). Conditionally on pi, Nij, we model Yij to be

binomially distributed with parameters Nij and pi.
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Symbolically,

Yijj(Nij, pi) :Bin(Nij, 1xpi)

Nij :Gi(l, s
2)

pi : h(:)

(6)

where pi’s are independent random variables taking

values on (0, 1) with distribution h(.) andNij are i.i.d.

distributed integer valued random variables from the

distributionGi. h(.) is called the mixing distribution.

Our methodology for assessing the overall efficacy

does not require any distributional assumption onGi.

The model described above is the so-called general-

ized mixed model. We now specify 2 important

special choices for h(.), namely the beta distribution

and the logit-normal distribution.

Beta-binomial model

In this model we assume that pi, 1fifR are i.i.d.

with a beta distribution with parameters d1 and d2 ;

that is, the function h(.) is the density function of a

beta random variable with parameters d1 and d2.

Under this assumption, (McCulloch and Searle,

2001)

E(pi)=
d1

d1+d2
(7)

while,

Var(pi)=
d1d2

(d1+d2)
2(d1+d2+1)

: (8)

Our model induces correlations in the changes in the

egg counts in the fecal samples from different horses

from the same farm.WhenNij andNik are equal to 1,

the correlation can be explicitly obtained using the

formula

Corr(Xij,Xik)=
1

d1+d2+1
, where jlk: (9)

In the case when they are not equal to 1, the corre-

lation is given by a complicated mathematical ex-

pression involving Nij and Nik. The overall

proportion reduction is now given by E(pi) and our

hypotheses concern the values taken by the ratio
d1

d1+d2
.

Logit-normal model

Frequently, it is difficult to model p to take values

between 0 and 1. For this reason, one models

log pi
1xpi

� �
to have a normal distribution. The func-

tion pi ! log pi
1xpi

� �
is called the logistic function and

the resulting model is called the logit-normal model.

Symbolically,

Xijjpi :Bin(Ni, pi)

log
pi

1xpi
:N(m, s2):

(10)

This model does not have closed form expressions

for the mean and the variance of pi, but can be

computed using numerical or Monte-Carlo algo-

rithms (McCulloch and Searle, 2001). Standard

software like SAS (Proc NLMIXED and PROC

GLIMMIX in version 9.1) produce estimates for the

mean and variances.

Proposed methods for assessing efficacy

As mentioned in the Introduction section, assessing

the efficacy of treatment using FECRT data is chal-

lenging due to the fact that it exhibits patterns of

aggregation, multi-modality and skewness. In this

section, we propose 2 new methods for analysing

FECRT data sets. We also describe the correct

method to implement the arcsine transformation and

the logarithmic transformation methods. Whereas

the arcsine and logarithmic transformation methods

require that assumptions be made about the nature

of the pre-treatment egg count distribution, the

bootstrap methods do not require any distributional

assumptions.

Bootstrap Method 1 for a single farm

Using the notations from above, note that the pre-

treatment data are {N1, N2, …, NM} while the post-

treatment data are {Y1,Y2, …, YM}. The estimator

of p as given in (5) is

p̂=
1

M

XM
i=1

Xi

Ni

:

We now describe our bootstrap algorithm to

test the null hypothesis concerning p, namely test

H0 :p=p (Efron and Tibshirani, 1993). Let B denote

the number of bootstrap samples. In this algorithm,

we keep the pre-treatment data fixed throughout the

algorithm, namely, pre=[N1, N2, …, NM].

1. Set k=1.

2. Generate post-treatment bootstrap sample for

the ith horse by simulating post-treatment data

from binomial distribution with parameters Ni

and p0. We repeat this process for all the horses

yielding the kth bootstrap sample of postk
*=

{Y1k
* , Y2k

* , …,YMk
* }. Define, for 1fifM,

Xik
* =NixYik

* .

3. Define p̂*(k)= 1
M

PM
i=1

X*ik
Ni

.
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4. Calculate the test statistic T*(k)=ffiffiffiffi
M

p
(p̂ *(k)xp0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ *(k)(1xp̂ *(k))cM

p , where cM= 1
M

PM
i=1

1
Ni

(McCulloch and Searle, 2001).

5. Increment k by 1.

6. If the new value of k is less thanB return to step

2. Else stop.

The distribution of the bootstrap samples

T*(1),…,T*(B) is called the bootstrap distribution

and can be used to approximate the distribution of

the test statistic Tn=
ffiffiffiffi
M

p
(p̂xp0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ (1xp̂ )cM

p . The inference for

p is now based on this bootstrap distribution. For

instance, the p-value of the test can be obtained

as the probability, calculated under the bootstrap

distribution, that the test statistic takes values at

least Tn. The confidence interval can similarly be

obtained using the quantile points from the bootstrap

distribution.

The above algorithm is repeated 5000 times to

evaluate the Type I error and the power of the

proposed methodologies.

Bootstrap Method 2 for a single farm

The main difference between the bootstrap Methods

1 and 2 is that in Method 2 we do not hold the pre-

data fixed. This offers a degree of robustness to the

statistical distribution of the pre-treatment egg count

data. Instead, we obtain bootstrap samples for the

pre-data and use these along with the bootstrap

Method 1 to construct confidence interval for p. The

actual steps of the algorithm are as follows:

1. Set k=1.

2. Generate pre-treatment bootstrap samples by

sampling from {N1,N2, …NM} with equal

probability. Let us denote the pre-treatment

bootstrap sample by

pre*k={N*
1k,N

*
2k, . . . ,N

*
Mk}: (11)

3. Now repeat the steps 2 through 6 of the boot-

strap Method 1 where Ni is replaced by Nik
* .

Confidence intervals and tests of hypotheses

are constructed exactly as in the bootstrap Method

1 using the p̂*(k) constructed in the present

algorithm.

Bootstrap methods for multiple farms

In the case of multiple farms, one first obtains the

efficacy of each farm and repeats the bootstrap

methods 1 or 2 for each farm. Finally, an appropriate

model is fit using the bootstrap estimates to obtain

the overall efficacy rate and the confidence interval

for the overall efficacy rate.

Other methods

In this section we describe other methods that have

been used to test hypotheses concerning p and which

we used to compare our bootstrap methods. The

methods that we focus on include t-test, t-test after

arcsine transformation and t-test after a log trans-

formation. The value of p̂ is obtained using the

formula (5) for single farms. In the case of multiple

farms, p̂ can be obtained using the standard statistical

software like SAS (Proc GLIMMIX, Proc

NLMIXED).

The t-test

The standard t-statistic for testing H0 :p=p0, is

given by

t=

ffiffiffiffiffiffi
M

p
(p̂xp0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂(1xp̂)cM
p (12)

where cM is defined as above. It is well known that,

under the null hypothesis, t is approximately dis-

tributed as a t-distribution with (Mx1) degrees of

freedom. Therefore, the rejection region is

jtj>tMx1, a2
, where tMx1, a2

is the critical value corre-

sponding to the Type 1 error rate of a.

Arcsine transformation

The test statistic, to test H0 :p=p0, correspond-

ing to data transformed using arcsine transform-

ation is

t=
sinx1

ffiffiffiffi
p̂

p� �
xsinx1 ffiffiffiffiffi

p0
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4M2

PM
i=1

1
Ni

� �r , (13)

where t is approximately distributed as a t-

distribution with (Mx1) degrees of freedom.

The denominator of the above test statistic is

actually a first order approximation to the vari-

ance of the numerator obtained using the delta

method. Even though the denominator of the

above expression does not involve p, the second

and higher order terms involve p. Therefore, the

rejection region is jtj>tMx1, a2
, where tMx1, a2

is

the critical value corresponding to the Type 1 error

rate of a.

Log transformation

The test statistic, to test H0 :p=p0, corresponding to

data transformed using log transformation is

t=
PM

i=1 log (Xi)xlog (Nip0)ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i=1

q̂
Nip̂

q , (14)
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where q̂=1xp̂ and t is approximately distributed as

a t-distribution with (Mx1) degrees of freedom.

Therefore, the rejection region is jtj>tMx1, a2
, where

tMx1, a2
is the critical value corresponding to the Type

1 error rate of a.
Throughout this paper we will choose a=0.05 and

B=2000.

Simulation models and methods for single and

multiple farms

In this section, we describe our basic setup for per-

forming simulations.We adopted a setup that reflects

the reality as closely as possible. In the discussions

below, the means (l) used for the simulations cor-

respond to the observed raw egg counts. The number

of eggs per gram (EPG) of feces is then obtained

using the formula sensitivityrl. In our lab sensi-

tivity=5.

Single farm. In several of the resistance studies on

horse farms investigated by the authors, data with a

very small to moderate pre-treatment fecal egg count

was common. For this reason, the pre-treatment data

were generated from a Poisson distribution with

mean l, where l=2 and negative binomial distri-

bution with l=60 and r=60. These numbers cor-

respond to the 60 and 300 EPG. We also performed

simulations in farms with large to very large

pre-treatment egg counts. These included data

from Poisson distribution with l=100 and l=500

and negative binomial distribution with l=250

(r=250), l=500 (r=500), and l=1000 (r=1000).

These correspond to between 500 and 5000 EPG

of feces. Since the number of horses per farm was

small, we chose 8 horses per farm. This yields pre-

treatment dataN1, N2, …, N8. Since the Type I error

rate is defined to be the probability of rejecting

H0 when H0 :p=p0 is true, the post-treatment data

Table 1. Type I error rates for a single farm at varying levels of H0 for five analysis methods examined

Distribution p0 t-test Bootstrap1 Boostrap2 arcsin log

Poisson 0.9 0.0388 0.0532 0.0516 0.0208 0.0418
l=12 0.92 0.0446 0.0462 0.0494 0.0222 0.0452

0.95 0.0616 0.0434 0.0456 0.0282 0.0614
0.97 0.0880 0.0250 0.0240 0.0610 0.0888
0.98 0.1518 0.0228 0.0202 0.1444 0.1518

Poisson 0.9 0.0192 0.0520 0.0520 0.0168 0.0190
l=100 0.92 0.0206 0.0506 0.0512 0.0166 0.0208

0.95 0.0276 0.0578 0.0576 0.0216 0.0282
0.97 0.0268 0.0504 0.0490 0.0208 0.0270
0.98 0.0324 0.0540 0.0510 0.0226 0.0322

Poisson 0.9 0.0186 0.0500 0.0490 0.0190 0.0188
l=500 0.92 0.0182 0.0528 0.0518 0.0178 0.0182

0.95 0.0188 0.0484 0.0472 0.0170 0.0186
0.97 0.0152 0.0482 0.0492 0.0148 0.0150
0.98 0.0174 0.0508 0.0500 0.0176 0.0172

Negative 0.9 0.0160 0.0464 0.0466 0.0132 0.0158
Binomial 0.92 0.0236 0.0464 0.0484 0.0202 0.0240
l=r=60 0.95 0.0256 0.0530 0.0518 0.0200 0.0260

0.98 0.0432 0.0494 0.0512 0.0190 0.0430
0.99 0.0650 0.0516 0.0568 0.0364 0.0648

Negative 0.9 0.0198 0.0526 0.0524 0.0188 0.0202
Binomial 0.92 0.0180 0.0492 0.0486 0.0180 0.0178
l=r=250 0.95 0.0196 0.0522 0.0528 0.0184 0.0196

0.98 0.0208 0.0510 0.0526 0.0192 0.0206
0.99 0.0326 0.0522 0.0542 0.0212 0.0328

Negative 0.9 0.0174 0.0510 0.0496 0.0180 0.0174
Binomial 0.92 0.0188 0.0544 0.0532 0.0178 0.0192
l=r=500 0.95 0.0188 0.0516 0.0532 0.0184 0.0184

0.98 0.0214 0.0512 0.0508 0.0198 0.0214
0.99 0.0232 0.0518 0.0508 0.0208 0.0232

Negative 0.9 0.0176 0.0532 0.0544 0.0172 0.0174
Binomial 0.92 0.0156 0.0516 0.0520 0.0160 0.0156
l=r=1000 0.95 0.0236 0.0532 0.0518 0.0224 0.0232

0.98 0.0190 0.0468 0.0486 0.0166 0.0188
0.99 0.0236 0.0574 0.0552 0.0206 0.0236

Column 1 represents the distribution with which the pre-data are generated.
Column 2 represents null hypothesis values of p.
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were generated, for the ith horse, using a binomial

distribution with parameters (Ni, p0). Based on the

pre-treatment and post-treatment data, bootstrap

confidence intervals were constructed using B=
2000 bootstrap samples. The Type I error rate

was calculated to be the percentage of times the null

hypothesis was incorrectly rejected amongst the

several simulated data sets. All our results are

based on 5000 simulations. Type I error rate was

evaluated at p0=0.90, 0.92, 0.95, 0.97, and 0.98

for the Poisson distribution and p0=0.9, 0.92,

0.95, 0.98, and 0.99 for the negative binomial

distribution.

Multiple farms. In this case our simulation results

are based on 10 farms and 8 horses per farm. The

pre-treatment data for each horse in a farm are simu-

lated from a Poisson distribution with l=12. The

post-treatment data are simulated using the beta-

binomial model and the logit-normal, respectively.

The Type I error rate was calculated to be the per-

centage of times the null hypothesis was incorrectly

rejected amongst the simulated data sets. All the re-

sults were based on 5000 simulations and the Type I

error was evaluated at p0=0.80, 0.85, 0.90, 0.95, and

0.98. These p0 values represent the population

averages and the actual efficiency varied between

farms around p0.

Simulated power. The power of the proposed

bootstrap methods and other methods can be ob-

tained using the simulations. To calculate the simu-

lated power, the post-treatment data are simulated

using the probability in the alternative hypothesis

and the bootstrap power is defined to be the pro-

portion of times the false null hypothesis is rejected

amongst the simulated data sets.

RESULTS

Results for Type I error rate

Table 1 presents Type I error rate results for the

proposed bootstrap methods and other methods for

data from a single farm for various values of the pre-

treatment egg count mean. From the table it is clear

that the Type I error rates are close to the nominal

5% level for the bootstrap method while for all other

methods the Type I error rates are less than the

nominal 5% level, as long as the mean raw pre-

treatment egg count is greater than 60. If the pre-

treatment egg count is small, then bootstrap methods

still yield optimal Type I error rates if the true effi-

cacy is less than or equal to 95%. However, for larger

efficacy rates while bootstrap methods yield lower

Type I error rates, other methods yield higher Type

I error rates. Results in Table 2 show that if the

Table 2. Type I error rates for both single farm and multiple farms at varying levels of H0 for five analysis

methods examined

p0 t-test Bootstrap1 Bootstrap2 arcsin log

Single farm 0.80 0.0260 0.0474 0.0472 0.0172 0.0278
0.85 0.0320 0.0518 0.0540 0.0212 0.0356
0.90 0.0388 0.0532 0.0516 0.0208 0.0418
0.95 0.0616 0.0434 0.0456 0.0282 0.0614
0.98 0.1518 0.0228 0.0202 0.1444 0.1518

Multiple farms 0.80 0.0680 0.0758 0.0760 0.0694 0.1504
Beta-binomial model 0.85 0.0794 0.0832 0.0840 0.0788 0.1300
Variance between farms=0.0004 0.90 0.0880 0.0972 0.0932 0.0888 0.1286

0.95 0.1356 0.1366 0.1376 0.1310 0.1584
0.98 0.2492 0.2412 0.2448 0.2424 0.2704

Multiple farms 0.80 0.0658 0.0678 0.0690 0.0628 0.1336
Logistic normal model 0.85 0.0614 0.0684 0.0670 0.0604 0.1146
Variance between farms=0.0004 0.90 0.0770 0.0816 0.0796 0.0746 0.1142

0.95 0.1166 0.1194 0.1202 0.1136 0.1378
0.98 0.1544 0.1472 0.1450 0.1414 0.1676

Multiple farms 0.80 0.2640 0.2722 0.2718 0.2602 0.3466
Beta-binomial model 0.85 0.2998 0.3040 0.3044 0.2968 0.3600
Variance between farms=0.004 0.90 0.3654 0.3738 0.3736 0.3652 0.4188

0.95 0.5046 0.5022 0.5016 0.4966 0.5364
0.98 0.6946 0.6926 0.6930 0.6916 0.7236

Multiple farms 0.80 0.2334 0.2448 0.2448 0.2324 0.3166
Logistic normal model 0.85 0.2658 0.2706 0.2752 0.2634 0.3234
Variance between farms=0.004 0.90 0.3096 0.3142 0.3134 0.3042 0.3590

0.95 0.4324 0.4248 0.4292 0.4256 0.4610
0.98 0.6326 0.6178 0.6166 0.6236 0.6578

Column 2 represents null hypothesis values of p.
Pre-data are generated from the Poisson distribution with l=12.
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variability is not taken into account in the analysis,

Type I error rates increase for all the methods.

Power results

Table 3 presents the power analysis for a single farm

data when the mean of the pre-treatment raw egg

count distribution is 60 or equivalently 300 eggs per

gram (EPG) of feces. The results clearly show that

both the bootstrap methods have substantial power

to detect changes close to the null hypothesis as

compared to the other methods. Tables 4 and 5 give

the simulated power results for data from multiple

farms with different distributions for variability.

Again these results demonstrate that the bootstrap

method has ‘reasonable’ power to detect differences

from the null hypothesis.

Figure 1 shows that the distribution of the change

in egg count has an approximately similar shape for

various efficacy levels and for various pre-treatment

egg count mean levels. This shows why detecting

even 5% change in efficacy is such an arduous task in

these data.

Real data example

In this section we analysed a real data set that was

collected as part of a study on anthelmintic efficacy

across various farms in the southeastern United

States (Kaplan et al. 2004). For this illustration, we

focused on the farms in the state of Louisiana. Nine

farms were included in the Louisiana study and

horses on each farmwere assigned randomly to one of

several anthelmintic treatments. One of the treat-

ments was ivermectin. We analysed the data for all

the 9 farms. All of the farms except ASHU and EHS

had 100% reduction. Hence, p-values and confidence

intervals are provided for only ASHU and EHS. On

the farms with 100% reduction, since there is no

variation in the data, the lower and upper confidence

limits coincide and equal 1. The 95% confidence

intervals and p-values for test of H0 :p=0.98 are

given in Table 6.

The bootstrap confidence interval for percentage

reduction for ASHU farm is (0.962, 0.971) indi-

cating, perhaps, the beginning stages of resistance,

while that of EHS is (0.995, 1.0) indicating that the

efficacy was very high. However, for the ASHU

farm, the confidence interval that takes into account

the variability between farms was determined to be

(0.992, 0.999) yielding that there were no initial

stages of resistance. To validate these results, the

experiment was repeated at the ASHU farm for

ivermectin using an increased number of horses and

no resistance was detected.

DISCUSSION

The work presented in this paper addresses 4 fun-

damental issues. First, development of a statistical

model for understanding efficacy. Second, methods

to analyse efficacy on farms with small pre-treatment

egg counts with small number of horses. Third, the

role and desirability of data transformations; and

fourth, the impact of variability between farms on the

accurate measurement of efficacy.

Our theoretical framework assumes a conditional

independence model for elimination of eggs and

clarifies differences between resistance and efficacy.

A population model is assumed and all statistical

analyses are made relative to the assumed population

model. The role of variability in the initial egg count

Table 3. Power function for a single farm at varying levels of the true efficacy rate p

H0 p t-test Bootstrap1 Bootstrap2 arcsin log

p0=0.95 0.89 0.9846 0.9978 0.9970 0.9906 0.9848
0.9 0.9272 0.9848 0.9858 0.9524 0.9288
0.92 0.5028 0.7690 0.7696 0.6052 0.5092
0.93 0.2114 0.4754 0.4780 0.2928 0.2162
0.94 0.0404 0.1700 0.1698 0.0734 0.0434

p0=0.97 0.9 0.9998 1.0000 1.0000 1.0000 0.9998
0.92 0.9788 0.9974 0.9970 0.9912 0.9796
0.93 0.9014 0.9824 0.9822 0.9484 0.9014
0.94 0.6650 0.8898 0.8890 0.7696 0.6694
0.95 0.2962 0.6236 0.6228 0.4210 0.2994
0.96 0.0576 0.2464 0.2478 0.1128 0.0594

p0=0.99 0.9 1.0000 1.0000 1.0000 1.0000 1.0000
0.92 1.0000 1.0000 1.0000 1.0000 1.0000
0.95 0.9884 0.9998 0.9996 0.9978 0.9890
0.96 0.9042 0.9922 0.9914 0.9690 0.9078
0.97 0.5816 0.9012 0.8994 0.7740 0.5850
0.98 0.1050 0.4824 0.4794 0.2620 0.1068

Pre-data are generated using negative binomial distribution with l=60 and r=60.
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is brought out and its impact on assessing efficacy is

studied.

FECRT data exhibit various peculiarities that

make analysis particularly challenging and, for a

number of reasons described previously, these diffi-

culties are magnified in horses. Bootstrap method-

ology is a theoretically sound technique for

performing inference with minimal assumptions on

the statistical distribution of the data. The method is

especially applicable to small data sets, namely data

sets with small pre-treatment egg counts and few

horses per farm, since one can approximate the

sampling distribution of the test statistic by simu-

lating a large number of bootstrap samples.

Furthermore, the methodology is easily adaptable

and implementable in complex problems involving

complicated models since, unlike the other methods

presented, bootstrap methods do not require calcu-

lation of the variance of the statistic as was shown in

the previous section. All that is needed is to generate

data from the specifiedmodel, and then calculation of

the test statistic.

When studying resistance on a single farm, our

results convincingly showed that bootstrap methods

perform optimally both in terms of Type I error and

the power, even when the pre-treatment egg counts

are small. On farms with large pre-treatment egg

counts, it is believed that t-tests would work well,

since the t-distribution is ‘well ’ approximated by the

normal distribution. The statistical reason behind

this belief is the so-called central limit theorem

(Billingsley, 1995), which states that as the sample

size n increases without bound, the difference in the

probabilities calculated using the t-distribution with

n degrees of freedom and the normal distribution

decreases to 0. However, how fast the difference goes

to 0 depends on the values of p0. This phenomenon is

well explained by our results in Tables 1 and 3.

The problem of assessing efficacy of treatment on

farms with small egg counts is very difficult. Even on

farmswithmean egg counts of 100 or 200, it is hard to

detect even a 5% drop in efficacy with 8 horses. This

leads to a substantial difference in the presumed

efficacy and the true efficacy of the treatment.

A practical consequence of this effect is that resist-

ance, if properly defined, will go undetected in many

instances. The variability in the pre-treatment egg

count compounds the problem and in some cases

even a 10% drop in treatment efficacy can go un-

detected. Figure 1 reiterates this phenomenon.

Table 4. Power function for multiple farms with data generated using the beta-binomial model at varying

levels of the efficacy rate p

Variance H0 p t-test Bootstrap1 Bootstrap2 arcsin log

0.0004 p0=0.9 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 0.9834 0.9864 0.9870 0.9856 0.9956
0.90 0.0880 0.0972 0.0932 0.0888 0.1286
0.95 0.9978 0.9976 0.9974 0.9976 0.9942
0.98 1.0000 1.0000 1.0000 1.0000 1.0000

p0=0.95 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 1.0000 1.0000 1.0000 1.0000 1.0000
0.90 0.9972 0.9984 0.9982 0.9978 0.9994
0.95 0.1356 0.1366 0.1376 0.1310 0.1584
0.98 0.9688 0.9610 0.9616 0.9620 0.9538

0.004 p0=0.9 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 0.9998 1.0000 1.0000 1.0000 1.0000
0.85 0.8854 0.9006 0.9030 0.8938 0.9428
0.90 0.3654 0.3738 0.3736 0.3652 0.4188
0.95 0.9146 0.9104 0.9102 0.9098 0.8788
0.98 0.9870 0.9858 0.9860 0.9860 0.9722

p0=0.95 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 1.0000 1.0000 1.0000 1.0000 1.0000
0.90 0.9448 0.9572 0.9584 0.9532 0.9688
0.95 0.5046 0.5022 0.5016 0.4966 0.5364
0.98 0.8682 0.8616 0.8618 0.8638 0.8690

Shaded row represents the Type I error rate.
Column 1 represents the variance between farms.
Pre-data are generated from the Poisson distribution with l=12.
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When performing FECRT in horses, arbitrary

minimum EPG cutoffs are typically used for ac-

cepting horses into the study. The logic used is that

higher EPG will yield a more accurate measurement

of efficacy. However, results of simulations challenge

the validity of this logic. These simulation data

demonstrate that reductions in fecal egg counts are

inherently highly variable, causing difficulty in as-

sessing the true efficacy. We can see that this

phenomenon changes little as the EPG changes from

60 to 5000. The practical significance of this finding

is that it is very difficult to distinguish a true egg

count reduction of 90% from that of 95% when

testing only small numbers of horses. Consequently,

our results suggest that it is preferable to include as

many horses as possible in a FECRT, even those with

low EPG, and to use a more sensitive assay for

measuring EPG.

In the context of multiple farms, our results clearly

show that the variability between farms will have

to be taken into account to detect efficacy. Not ac-

counting for the variability usually leads to increased

Type I error. The practical significance of this

phenomenon is a more frequent, albeit incorrect,

diagnosis of resistance leading to an overestimation

of resistance prevalence.

The models introduced in this paper, namely the

beta-binomial model and the logit-normal model,

can be used to model variability between farms.With

the help of these models one can estimate the true

efficacy and perform hypothesis tests along the

methods presented in the Materials and Methods

Section. As mentioned previously, when performing

hypothesis tests, the bootstrap method is signifi-

cantly easier since it only requires simulating data

according to the fitted model, unlike other methods

which require complicated calculations to determine

the variance.

Finally, using our theoretical framework it is

possible to introduce a notion of resistance based on

the estimate of efficacy and the presumed efficacy. In

our limited simulation study, we see that large

number of horses per farm are required before

making unequivocal statements concerning resist-

ance. We are currently addressing these and other

pertinent issues using a number of different statisti-

cal approaches with the goal of improving our

understanding of efficacy, and our understanding of

Table 5. Power function for multiple farms with data generated using the logistic normal model at varying

levels of the efficacy rate p

Variance H0 p t-test Bootstrap1 Bootstrap2 arcsin log

0.0004 p0=0.9 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 0.9864 0.9908 0.9904 0.9890 0.9968
0.90 0.0770 0.0816 0.0796 0.0746 0.1142
0.95 0.9992 0.9988 0.9988 0.9992 0.9978
0.98 1.0000 1.0000 1.0000 1.0000 1.0000

p0=0.95 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 1.0000 1.0000 1.0000 1.0000 1.0000
0.90 0.9982 0.9990 0.9992 0.9990 0.9992
0.95 0.1166 0.1194 0.1202 0.1136 0.1378
0.98 0.9892 0.9854 0.9852 0.9866 0.9834

0.004 p0=0.9 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 0.9044 0.9178 0.9162 0.9116 0.9530
0.90 0.3096 0.3142 0.3134 0.3042 0.3590
0.95 0.9446 0.9410 0.9392 0.9400 0.9126
0.98 0.9868 0.9864 0.9862 0.9862 0.9804

p0=0.95 0.70 1.0000 1.0000 1.0000 1.0000 1.0000
0.75 1.0000 1.0000 1.0000 1.0000 1.0000
0.80 1.0000 1.0000 1.0000 1.0000 1.0000
0.85 1.0000 1.0000 1.0000 1.0000 1.0000
0.90 0.9616 0.9700 0.9700 0.9678 0.9780
0.95 0.4324 0.4248 0.4292 0.4256 0.4610
0.98 0.8928 0.8870 0.8872 0.8876 0.8992

Shaded row represents the Type I error rate.
Column 1 represents the variance between farms.
Pre-data are generated from the Poisson distribution with l=12.
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Fig. 1. Histograms of the simulated distribution of pre-treatment egg counts minus post-treatment egg counts. The

pre-treatment egg counts were generated using various distributions, under the following true efficacy rates: (A)

Poisson (l=50), p=0.9; (B) Poisson (l=50), p=0.95; (C) Poisson (l=100), p=0.9; (D) Poisson (l=100), p=0.95;

(E) Negative Binomial (l=250, r=250), p=0.9; (F) Negative Binomial (l=250, r=250), p=0.95.

Table 6. Analysis of Louisiana farms for horse data

Farm t-test Bootstrap1 Bootstrap2 arcsin log

ASHU point estimate 0.96654 0.96654 0.96654 0.96654 0.96654
lower CI 0.96193 0.96234 0.96249 0.96178 0.95861
upper CI 0.97114 0.97079 0.97071 0.97099 0.96778
p-value 0.000035 0.000000 0.000000 0.000011 0.000004

EHS point estimate 0.99772 0.99772 0.99772 0.99772 0.99772
lower CI 0.99400 0.99493 0.99424 0.99250 0.99399
upper CI 1.00140 1.00020 1.00020 0.99992 1.00140
p-value 0.000064 0.000000 0.000000 0.001580 0.000062

Treatment is ivermectin.
p-value is calculated under the null hypothesis H0 : p=0.98.
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how to make an accurate diagnosis of resistance on

the basis of fecal egg count data.
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