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In a variety of applications, particularly in financial and actuarial
mathematics, it is of interest to characterize the tail distribution of a

random variable V satisfying the distributional equation V
D
= f(V ),

for some random function f . This paper is concerned with computa-
tional methods for evaluating these tail probabilities. We introduce
a novel dynamic importance sampling algorithm, involving an expo-
nential shift over a random time interval, for estimating such rare
event probabilities. We prove that the proposed estimator is: (i) con-
sistent; (ii) strongly efficient; and (iii) optimal within a wide class of
dynamic importance sampling estimators. Moreover, using extensions
of ideas from nonlinear renewal theory, we provide a precise descrip-
tion of the running time of our algorithm. To establish these results,
we develop new techniques concerning the convergence of moments
of stopped perpetuity sequences, and the first entrance and last exit
times of associated Markov chains on R. We illustrate our methods
with a variety of numerical examples that demonstrate the ease and
scope of the implementation.

1. Introduction. Recently there has been much attention focused on the
study of stochastic fixed point equations. This interest has been largely fu-
eled by contemporary applications, including aspects of financial time series
modeling, actuarial mathematics, the study of perpetuities, and the anal-
ysis of algorithms. An original motivation for this article came from one
such application, namely the desire to provide a useful and implementable
algorithm—that is theoretically justified—for calculating the probability of
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ruin for an insurance company under the Cramér-Lundberg model, but in
the presence of stochastic investments. A closely related problem is that of
obtaining precise estimates for the tail probabilities in the GARCH(1,1) and
ARCH(1) financial time series models, which are needed for Value-at-Risk or
expected shortfall calculations in risk management. In spite of the relevance
of these and a number of related problems, effective computational methods
for evaluating these rare event probabilities have, to date, been investigated
rather poorly.

This paper is concerned with importance sampling methods for calculating
the stationary tail probabilities of a stochastic fixed point equation (SFPE).
In general, an SFPE assumes the form

V
D
= f(V ),(1.1)

where f is a random function satisfying certain regularity conditions and is
independent of V . When f(v) = Av+B, where E [logA] < 0, this problem has
a long history beginning with the works of Solomon (1972), Kesten (1973),
and Vervaat (1979). In this work, we consider a generalization of their model,
namely Letac’s (1986) Model E, whose SFPE is given by

(1.2) V
D
= Amax(D,V ) +B.

This recurrence equation is known to be quite general in the sense that it
characterizes a wide variety of mathematical problems of applied impor-
tance. These applications include the ruin problem with investments, the
GARCH(1,1) and ARCH(1) financial time series models, the AR(1) time se-
ries model with random coefficients, and the classical GI/G/1 queue, among
others.

In a recent work, Collamore and Vidyashankar (2011) extended earlier
results of Kesten (1973) and Goldie (1991), establishing

lim
u→∞

uξP (V > u) = C(1.3)

for finite positive constants C and ξ, where C is identified as the difference of
the ξth moments of a perpetuity sequence and another “backward sequence,”
and ξ is identified as the nonzero solution to the equation E

[
Aξ
]

= 1. To
obtain an exact estimate for P (V > u), however, it is natural to turn to
computational methods and particularly to importance sampling.

In large deviation problems for sums of i.i.d. or Markov random walks,
importance sampling methods have been developed by a number of authors.
Following the lines of Hammersley and Handscomb (1964), an early work
is Siegmund (1976), who introduced an algorithm for computing the level
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crossing probabilities in the sequential probability ratio test. This method was
later generalized to other large deviation problems in, e.g., Asmussen (1985),
Lehtonen and Nyrhinen (1992), Bucklew et al. (1990), Collamore (2002), Chan
and Lai (2007), and Blanchet and Liu (2010).

The problem we consider here is different, since we study processes with
both multiplicative and additive components. Indeed, if one directly adopts
importance sampling methods for either light- or heavy-tailed sums, then
the resulting estimator will not be efficient. Instead, we propose a different
approach, involving a dual change of measure over a random time interval,
simulated over the finite-time excursions of {Vn} emanating from a certain set
C ⊂ R and returning to this set. This dual change of measure can be viewed as
a dynamic importance sampling algorithm, as introduced formally in Dupuis
and Wang (2005); i.e., the change of measure depends on the outcome of the
simulation experiment.

The motivation for our algorithm is the observation that the SFPE (1.3)
induces a forward recursive sequence, namely,

(1.4) Vn = An max (Dn, Vn−1) +Bn, n = 1, 2, . . . , V0 = v,

where {(An, Bn, Dn) : n ∈ Z+} is an i.i.d. sequence having the same law
as (A,B,D). Then {Vn} is a Harris recurrent Markov chain, and hence it
returns with probability one to any set C intersecting the support of its sta-
tionary measure. Thus we may study {Vn} over the excursions from a set C.
It is important to observe that in many applications, such as with perpetu-
ities, the mathematical process under study is usually obtained through the
backward iterates of the given SFPE (as described Letac (1986) or Collam-
ore and Vidyashankar (2011), Section 2.1). In particular, the linear recursion
f(v) = Av+B induces the backward recursive sequence or perpetuity sequence

(1.5) Zn = V0 +
B1

A1
+

B2

A1A2
+ · · ·+ Bn

A1 . . . An
, n = 1, 2, . . . .

However, {Zn} is not Markovian, and it is much less natural to simulate the
sequence {Zn} as compared with the forward sequence {Vn}. Thus, a central
aspect of our approach is the conversion of the given perpetuity sequence, via
its SFPE, into a forward recursive sequence which we then simulate. We note
that the ruin problem with investments is similar, where again the underlying
process is typically described via a backward sequence.

We remark that another importance sampling algorithm, specifically for
perpetuities with positive Bi’s, was recently proposed in Blanchet et al.
(2011). Their approach is considerably different from ours, as they analyze
(1.5) directly, and thus their methods do not generalize to the other processes
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studied in this paper, such as the ruin problem with investments or further
processes governed by Letac’s Model E. Moreover, in the context of perpetu-
ity sequences, their methods yield quite different results compared with ours;
see the discussion in Section 4 below. In another direction, although distinct
from the main focus of this paper, there is also an interesting connection of
our work to the problem of simulating the stationary distribution of perpetu-
ities, which has received some recent attention in the literature (cf. Fill and
Huber (2010) or Devroye and Fawzi (2010)).

We conclude this introduction with a brief discussion of our results and
some of the main contributions of this article. Section 2 is devoted to a de-
scription of our main results. Utilizing a dual change of measure over a random
time interval and the forward recursive sequence {Vn} generated by the given
SFPE, we obtain an algorithm which, based on our main theorems, is: (i) con-
sistent; (ii) asymptotically efficient in the sense that it has bounded relative
error; and (iii) optimal among a wide class of possible importance sampling
algorithms.

In Section 3, we provide a proof of consistency and asymptotic efficiency
for our algorithm. The proof of consistency requires that we relate P (V > u)
to the number of exceedances of {Vn} over a cycle which emanates from a
given set C ⊂ R and terminates upon the return to C. The representation
formula we obtain involves an embedding of the given Markov chain into a
Markov additive process and uses aspects of Markov renewal theory.

In the proof of efficiency, we encounter perpetuity sequences similar to
(1.5), albeit more general. In the context of (1.5), it is known that while
the series converges to a finite limit under minimal conditions, the necessary
and sufficient condition for the Lβ convergence of {Zn} is that E

[
A−β

]
< 1;

cf. Alsmeyer et al. (2009). However, our analysis will involve moments of
quantities similar to {Zn}, but where E

[
A−β

]
is greater than one, and hence

our perpetuity sequences will necessarily diverge in Lβ. To circumvent this
problem, we will study these perpetuity sequences over randomly stopped
intervals in the sense described in the previous paragraph, that is, over cycles
emanating from, and returning to, a given subset C of R. Thus, instead we
study ZK , where K denotes the first return time to C, and we establish the Lβ
convergence of this quantity. We establish this convergence not only under
the assumption that E

[
A−β

]
∈ (1,∞) but, more surprisingly, also when

E
[
A−β

]
= ∞. This result, obtained in the proof of Theorem 2.3 below, will

rely on estimates for the return times of {Vn} to C. It is worth noting that if K
were replaced by the more commonly studied regeneration time τ of the chain
{Vn}, then the existing literature on Markov chain theory would not shed
much light on the tails of τ , and hence the convergence of Vτ . Thus, the fact
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that K has sufficient exponential tails for the convergence of VK is due to the
recursive structure of the particular class of Markov chains which we consider
here and seems to be a general property for this class of Markov chains.
These results concerning the moments of Lβ-divergent perpetuity sequences
complement the known literature on perpetuities and appear to be of some
independent interest.

In Section 4, which contains examples, numerical results and a discussion
of the implementation of the algorithm, we describe various numerical strate-
gies for dealing with models of practical interest, such as ruin models with
stochastic investments and the ARCH(1) and GARCH(1,1) financial time
series models.

Sections 5 and 6 are devoted to sharp asymptotic estimates for the running
time of the algorithm and to the optimality of the algorithm, respectively. In
particular, motivated by the Wentzell-Freidlin theory of large deviations, we
consider other possible measures for generating the process {Vn}, which are
allowed to depend on the level of the scaled process {log Vn−1/ log u} and on
whether or not {Vn} has exceeded u prior to the present time. We then show
that our algorithm is, in fact, the only one which attains bounded relative
error, establishing rather definitively the validity of the algorithm, at least in
an asymptotic sense as the tail parameter u → ∞. In proving these results,
particularly relating to the running time of the algorithm, we encounter a
variety of nonstandard issues which we resolve using techniques involving first
entrance and last exit times of the Markov chain {Vn} generated under various
measures, and nonlinear renewal theory. Finally, some concluding remarks are
given in Section 7.

2. The algorithm and a statement of the main results.

2.1. Background, hypotheses, and the algorithm. In this section we intro-
duce our importance sampling algorithm and discuss its theoretical proper-
ties. We begin by describing the so-called forward and backward iterates of
an SFPE. In general, an SFPE can be written as a function of the unknown
random variable V and an environmental random vector Y, specifically,

(2.1) V
D
= F (V, Y ),

where F : R × Rd → R is a deterministic measurable function which is
continuous in its first component. For convenience, we also write Fy(v) =
F (v, y), where y ∈ Rd. In particular, Letac’s (1986) Model E—which will be

the main focus of this article—is given by V
D
= FY (V ), where

FY (v, Y ) = Amax (D, v) +B and Y = (A,B,D),
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where typically (A,B,D) are correlated.
Let v be an element of the range of F , and let {Yn} be an independent and

identically distributed (i.i.d.) sequence of random variables such that Yn
D
= Y

for all n. Then the forward equation generated by the SFPE (2.1) is defined
by

(2.2) Vn(v) = FYn ◦ FYn−1 ◦ · · · ◦ FY1(v), n = 1, 2, . . . , V0 = v,

and the backward equation generated by this SFPE is defined by

(2.3) Zn(v) = FY1 ◦ FY2 ◦ · · · ◦ FYn(v), n = 1, 2, . . . , Z0 = v.

While the forward equation is always Markovian, the backward equation need
not be Markovian; however, for every v and every n, Vn(v) and Zn(v) are
identically distributed. This observation is critical since it suggests that—
regardless of whether the SFPE was originally obtained via forward or back-
ward iteration—the natural way to analyze the process is through its forward
iterates.

Returning to Letac’s Model E, the forward equation reduces to

(2.4) Vn = An max (Dn, Vn−1) +Bn, n = 1, 2, . . . , V0 = v,

which upon iteration yields (with B0 ≡ V0) that

(2.5) Vn = max

 n∑
i=0

Bi

n∏
j=i+1

Aj ,

n∨
k=1

 n∑
i=k

Bi

n∏
j=i+1

Aj +Dk

n∏
j=k

Aj

 .

The regularity properties of {Vn} have been described in Collamore and
Vidyashankar (2011). To state the properties relevant for this article, we first
need to introduce some notations and hypotheses, as follows. Let

λ(α) = E [Aα] and Λ(α) = log λ(α), α ∈ R.

Let µ denote the distribution of Y := (logA,B,D), and let µα denote the
α-shifted distribution with respect to the first variable; that is,

(2.6) µα(E) :=
1

λ(α)

∫
E
eαxdµ(x, y, z), E ∈ B(R3), α ∈ R,

where here and in the following, B(Rd) denotes the Borel sets of Rd, for any
d ∈ Z+. Let Eα [·] denote expectation with respect to this α-shifted measure.

For any random variable X, let L(X) denote the probability law of X, and
let supp (X) denote the support of X. Also, write X ∼ L(X) to denote that
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X has this probability law. Given an i.i.d. sequence {Xi}, we will often write
X for a “generic” element of this sequence. Finally, for any function f , let
dom (f) denote the domain of f , and let f ′ denote its first derivative, f (2) its
second derivative, and so on.

Hypotheses:
(H1): The random variable A has an absolutely continuous component

with respect to Lebesgue measure and satisfies Λ(ξ) = 0 for
some ξ ∈ (0,∞). Moreover, Λ(3) is finite on {0, ξ}.

(H2): E
[
|B|ξ

]
<∞ and E

[
(A|D|)ξ

]
<∞.

(H3): P (A > 1, B > 0) > 0 or P (A > 1, B ≥ 0, D > 0) > 0.

The parameter ξ appearing in (H1) will play an important role in the
sequel, since we will use the ξ-shifted measure defined in (2.6) to develop
our algorithm. Under the above hypotheses, it is shown in Collamore and
Vidyashankar (2011), Section 5, that the following path properties hold:

Lemma 2.1. Assume Letac’s Model E, and let {Vn} denote the forward
recursive sequence corresponding to this SFPE. Assume that (H1), (H2), and
(H3) are satisfied. Then:

(i) {Vn} is ϕ-irreducible and geometrically ergodic. Moreover,

lim
n→∞

P (Vn > u) = P (V > u) .

(ii) Under the measure µξ,

Vn ↗ +∞ w.p. 1 as n→∞.

Thus, the Markov chain {Vn} is transient in the ξ-shifted measure.

We note that the proof of part (i), providing the uniqueness of the solution
of the SFPE, is obtained from Letac’s principle. The following tail estimate
is fundamental for the development of the results of this paper.

Theorem 2.1. Assume Letac’s Model E, and suppose that (H1), (H2),
and (H3) are satisfied. Then

lim
u→∞

uξP (V > u) = C(2.7)

for a finite positive constant C.

The limit result (2.7) appears in Goldie (1991), while the explicit identifi-
cation of the constant C is given in Collamore and Vidyashankar (2011).



8 J. F. COLLAMORE ET AL.

The above theorem shows that the tail of V decays at a polynomial rate
and hence for large u, P (V > u) constitutes a rare event probability. Thus
standard Monte Carlo methods break down for large u, in the sense that
the relative error of the estimator will tend to infinity as the probability in
question tends to zero (cf. Asmussen and Glynn (2007), Chapter 6). The es-
sential reason is that the Markov chain will frequently fail to reach the high
level u. Large deviation theory then suggests that we consider shifted distri-
butions, and based on known techniques used in the classical ruin problem,
it is natural to shift using the parameter ξ > 0 satisfying E

[
Aξ
]

= 1. As a
starting point, we observe that under the measure µξ, the process {Vn} will
be transient by Lemma 2.1 (ii). Thus under the shifted measure µξ, {Vn} will
ultimately attain the high level u.

Hence a reasonable first step is to simulate the process from the distribution
µξ. To relate P (V > u) to the paths of {Vn} under µξ-measure, let C :=
[−M,M ] for some M ≥ 0, and let π denote the stationary distribution of
{Vn}, and define a probability measure γ on C by setting

γ(E) =
π(E)

π(C)
, for all Borel subsets E of C.(2.8)

Let K := inf {n ≥ 1 : Vn ∈ C} denote the first return time to C. Then we will
establish below that

(2.9) P (V > u) = Eγ [Nu] , where Nu :=
K−1∑
i=0

1{Vn>n}.

This representation formula suggests that we simulate {Vn} over a cycle em-
anating from the set C and then returning to C.

For (2.9) to be useful, it is necessary that we simulate the process over a
cycle that terminates. Since {Vn} is transient in the ξ-shifted measure, it is
natural to simulate in the original measure after the rare event {Vn > u} has
occurred. Thus, we propose to simulate the process under a dual change of
measure, namely

(D) L
(

logAn, Bn, Dn

)
=

{
µξ for n = 1, . . . , Tu,
µ for n > Tu,

where µξ is defined as in (2.6) and ξ is given as in (H1). Roughly speaking, the
dual measure shifts the distribution of logAn on a path of random duration
terminating at time Tu, reverting to the original measure thereafter. Let ED [·]
denote expectation with respect to the dual measure (D).

Finally, to relate the simulated quantity in the ξ-shifted measure to the
required probability in the original measure, introduce an appropriate weight-
ing factor. In the proof of Theorem 2.2 below, we will show that ED [Eu] =
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π(C)ED

[
Nue

−ξSTu1{Tu<K} |V0 ∼ γ
]
, where γ is given as in (2.8). Using this

identity, it is natural to introduce the importance sampling estimator

(2.10) Eu = Nue
−ξSTu1{Tu<K}.

Then it will be shown in the proof of Theorem 2.2 that π(C)Eu is an unbiased
estimator for P (V > u). However, since in practice the stationary distribu-
tion π and hence γ is seldom known—even if the underlying distribution of
(A,B,D) is known—we first run multiple realizations of {Vn} according to
the known µ and thereby estimate π(C) and γ. Let π̂k(C) denote the estimate
obtained for π(C), and let Êu,n denote the estimate obtained upon averaging
the realizations of Eu. This yields the estimator π̂k(C)Êu,n. The above discus-
sion can be formalized as an algorithm as follows:

Algorithm. Step 1. Estimate the stationary measure π of the process
{Vn}. Namely, generate i.i.d. realizations {Vn,j : j = 1, . . . , k} of Vn and
estimate

π̂k(C) =
1

k

k∑
j=1

1{Vn,j∈C}.

Set γ̂k(E) = π̂k(E)/π̂k(C), for any Borel set E ⊂ C, and set γ̂k(Cc) = 0.
Step 2. Generate a new process having the initial state V0 ∼ γ̂k. Now, given

Vn−1, generate Vn using the forward recursion of the SFPE and the shifted
measure µξ. If Vn ∈ C, then stop and set Eu = 0. If Vn > u, then go to Step
3. If not, then repeat Step 2.

Step 3. Generate the process {Vn} according to its original distribution
until the first time the process enters the set C.

Step 4. Compute the importance sampling estimator, namely

Eu = Nue
−ξSTu1{Tu<K},

where Nu denotes the number of exceedances of the process {Vn} above level
u prior to time K. We notice here that Eu = Eu(k), since the initial distri-
bution of the Markov chain depends on k. (We will frequently suppress the
dependence on k when there is no cause for confusion.)

Step 5. Repeat Steps 2-4 n times, each time calculating the importance
sampling estimator Eu, yielding the jth realization Eu,j , j = 1, . . . , n. Then
compute the average,

Êu,n = Êu,n(k) =
1

n

n∑
j=1

Eu,j(k).

Finally, estimate P (V > u) by setting this quantity equal to π̂k(C)Êu,n(k).
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It is worth observing that in the special case that D = 1 and B = 0, Letac’s
Model E reduces to multiplicative random walk, and in this case, one can
always take γ to be point mass at {1}, at which point the process regenerates.
In this much-simplified setting, our algorithm reduces to a more standard
regenerative importance sampling regime, as may be used to evaluate the
stationary exceedance probabilities in a GI/G/1 queue. We now turn to the
properties of our algorithm.

2.2. Consistency and efficiency of the algorithm. Our first result is con-
cerned with consistency; that is, for any fixed u, the estimator given in (2.10)
converges to P (V > u) with probability one (w.p. 1) as u→∞.

Theorem 2.2. Assume that hypotheses (H1), (H2), and (H3) hold. Then
for any C intersecting supp(π) and for any u sufficiently large such that u /∈ C,
the algorithm is strongly consistent; that is,

(2.11) lim
k→∞

lim
n→∞

π̂k(C)Êu,n(k) = P (V > u) a.s.

Remark 2.1. If the stationary distribution π of {Vn} is known on C (as
would be the case if C = {v} for some point v ∈ R), then it will follow from
the proof that π(C)Êu,n is an unbiased estimator for P (V > u).

We emphasize that the choice of the set C := [−M,M ] is not critical for
obtaining consistency, and C can be taken to be any set having a non-empty
intersection with the support of the stationary measure π. However, under
an appropriate choice of M , we will establish that the estimator is strongly
efficient in the sense that it has bounded relative error. Before stating this
next result, we introduce a slight modification of hypothesis (H2).

Hypothesis:
(H ′2): E

[ (
A−1|B|2

)α ]
<∞ and E

[ (
A|D|2

)α ]
<∞, for some α > ξ.

Theorem 2.3. Assume that hypotheses (H1), (H ′2), and (H3) hold and
that λ(α) <∞ for some α < −ξ. Then there exists an M > 0 such that

(2.12) sup
u≥0

sup
k∈Z+

u2ξED

[
E2
u

∣∣V0 ∼ γk
]
<∞.

Moreover, even if λ(α) = ∞ for all α < −ξ, then (2.12) still holds provided
that E

[(
|D|+A−1|B|)

)α]
<∞ for all α > 0.



IMPORTANCE SAMPLING FOR SFPE 11

Eq. (2.12) implies that our estimator exhibits bounded relative error, that
is, the ratio ED,γ

[
E2
u

]
/ (ED,γ [Eu])2 is uniformly bounded in u and, in partic-

ular, remains bounded in the limit as u→∞. It is worth noticing that even if
λ(−ξ) <∞, the relative error could not be bounded without the presence of
the term 1{Tu<K} in the definition of Eu. For further discussion of this point
and its relationship to perpetuity estimates, see the discussion in Section 3
following the proof of this theorem.

A good choice of M is critical for the practical usefulness of the algorithm.
A canonical method for choosing M can be based on the drift condition
satisfied by {Vn}, generated in its α-shifted measure, with α = 0 and α = −ξ.
Indeed, we will use this approach in Lemma 3.3 to provide a formula for
M . Admittedly, this method may not always yield a good choice for M .
For instance, a relatively large value for M could lead to an increase in the
initial rejections, thus leading to an increase in the number of Monte Carlo
simulations needed for accurate results. Indeed, the choice of M is problem-
dependent and we outline an alternative numerical method in Section 4 to
address this issue.

2.3. Running time of the algorithm. Next we focus on the running time of
the proposed algorithm, which will clearly depend on the following three quan-
tities under the dual change of measure: (i) the return time K on {K <∞};
(ii) the time Tu needed to reach the level u; and (iii) the time K−Tu to return
to the set C, where the latter quantity is evaluated on the set {K > Tu}. The
expected behavior of these three quantities is the subject of our next main
theorem. First we need to impose a mild regularity condition.

Hypothesis:
(H4): Pξ

(
V1 ≤ 1|V0 = v

)
= o(v−ε) as v →∞, for some ε > 0.

Theorem 2.4. Assume that hypotheses (H1)-(H4) hold. Then:

(i) Under the measure µD, the return time K has finite expectation on
{K <∞}; that is, ED

[
K1{K<∞}

]
<∞.

(ii) Conditional on the event {Tu < K}, we have under the measure µD that

ED

[
Tu

log u

∣∣∣Tu < K

]
→ 1

Λ′(ξ)
as u→∞.

(iii) Furthermore, conditional on the event {Tu < K}, we also have that

ED

[
K − Tu

log u

∣∣∣Tu < K

]
→ 1

|Λ′(0)|
as u→∞.
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Note that the ultimate objective of the algorithm is to minimize cost, i.e.,
the total number of Monte Carlo simulations needed to attain a given accu-
racy. Thus, it is upon combining Theorem 2.3 with Theorem 2.4 that we see
that our algorithm is actually efficient. For further details, see Remark 2.2
below.

Several sufficient conditions for (H ′3) can be provided. For the case B > 0
and D = 0 (which corresponds to the special case of a perpetuity sequence),
it is easy to see that (H ′3) always holds, since by Chebyshev’s inequality,

(2.13) Pξ(V1 ≤ 1|V0 = v) ≤ P
(
A ≤ v−1

)
≤ Eξ

[
A−ε

]
v−ε,

and for ε > 0 sufficiently small, Eξ [A−ε] = λ(ξ − ε) ∈ (0, 1). When B and
D assume values in R, a slight modification of (2.13) yields that (H4) holds
under appropriate moment conditions on B/A and D. In general, (H4) is a
very weak condition which is easily verified in all of the examples considered
in this article.

2.4. Optimality of the algorithm. We conclude with a comparison of our
algorithm to other algorithms obtained using alternative measure transforma-
tions. A natural alternative would be to simulate with a measure µα until the
time Tu = inf{n : Vn > u} and revert to some other measure µβ thereafter.
More generally, we may consider a general class of distributions with some
form of state dependence, as we now describe.

Let ν(·;w, q) denote a probability measure on B(R3) indexed by two pa-
rameters, w ∈ [0, 1] and q ∈ {0, 1}. Intuitively, (w, q) denotes a realization of
(W ′n, Qn), where

W ′n :=
log Vn−1

log u
and Qn := 1{Tu<n}.

Now suppose that we shift the driving sequence {Yn} of the process {Vn}, i.e.,
we change the distribution of Yn := (An, Bn, Dn) ∼ µ. In a general sense, we
would like to allow the simulation distribution of Yn to depend on (Wn, Qn),
i.e. on the level of the scaled process {log Vn/ log u} at the prior time n− 1,
and on whether or not the process {Vn} has exceeded the level u by that time.
To be more precise, let W ′n be defined as above and set

Wn =

{
W ′n, if W ′n ∈ [0, 1],
(W ′n ∧ 1) ∨ 0 otherwise.

Next, suppose that {νn} is a family of random measures satisfying

(2.14) νn(E) = ν(E;Wn, Qn), for all E ∈ B(R3),
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for some given measure ν.

Condition (C0): For any measure ν, where µ� ν,

ED

[
log

(
dµ

dν
(Yn;Wn, Qn)

) ∣∣∣Wn = w

]
is piecewise continuous as a function of w, for any fixed Qn ∈ {0, 1}.

Class M: Define

(2.15) M =
{
{νn} : νn(·) = ν(·;Wn, Qn) and ν satisfies (C0), for all n

}
.

Thus, M denotes the class of all sequences of measures {νn} obtained from
the construction (2.14), where (C0) is satisfied and we also assume that µ
is absolutely continuous with respect to ν(·;w, q) for any w ∈ [0, 1] and q ∈
{0, 1}. Set ν = {ν1, ν2, . . .}, and let Eν [·] denote expectation with respect to
this state-dependent collection of simulation distributions.

¿From a practical perspective, (C0) is no real restriction on the class of
possible simulation distributions. In practice, it is natural to simulate using a
class of exponential transforms determined by a multidimensional parameter
β = β(w, q), where for some normalizing factor c,

µβ(E) =
1

c

∫
E
eβ1x+β2y+β3zdµ(x, y, z), E ∈ B(R3),

and L(logAn, Bn, Dn) ∼ µβ. In other words, we shift all three members of the
driving sequence Yn = (logAn, Bn, Dn) in some way, allowing dependence on
the history of the process through the parameters (w, q), where w corresponds
to the realization of log Vn−1/ log u while q corresponds to the realization of
1{Tu<n}. It is reasonable to expect that the optimal β(w, q) depends on w, or
that it changes in the event that a threshold is achieved, e.g., when the process
Vn first exceeds u. Such scenarios will always lead to members ν = (ν1, ν2, . . .)
belonging to the class M and, in particular, satisfying (C0).

Now suppose that simulation is performed using a modification of our pre-
vious algorithm, where Yn ∼ νn for some ν = {ν1, ν2, . . .} ∈ M. For the
importance sampling estimator, set

(2.16) E(ν)
u = Nu

{
Tu∏
i=1

dµ

dνi
(Yi;Wi, Qi)

}
1{Tu<K}.

Let π̂k denote an empirical estimate for π, as obtained in Step 1 of our main

algorithm, and let E(ν)
u,1 , . . . , E

(ν)
u,n denote simulated estimates for E(ν)

u obtained
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by repeating this algorithm but with {νn} in place of the dual measure (D).
Then it is easily shown by a slight modification of Theorem 2.2 that

(2.17) lim
n→∞

π̂k(n)Ê(ν)
u,n = P (V > u) ,

where Ê(ν)
u,n denotes the average of n simulated samples of E(ν)

u . It remains to
compare the variance of these estimators, which is the subject of the next
theorem.

Theorem 2.5. Assume that the conditions of Theorems 2.3 and 2.4 hold.
Let ν be a probability measure on B(R3) indexed by parameters w ∈ [0, 1] and
q ∈ {0, 1}, and assume that ν ∈M. Then for any for any initial state v ∈ C,

(2.18) lim inf
u→∞

1

log u
log
(
u2ξEν

[(
E(ν)
u

)2∣∣∣V0 = v
])
≥ 0.

Moreover, equality holds in this inequality if and only if ν(·;w, 0) = µξ and
ν(·;w, 1) = µ, for all w ∈ [0, 1]. Thus, the dual measure in (D) is the unique
optimal simulation strategy in the class M.

Remark 2.2. In practice, the objective should be to minimize the total
number of random variables generated in order to obtain a given accuracy.
This grows according to

(2.19) Var
(
E(ν)
u

) {
c1Eν [K |Tu < K ] + c2Eν

[
K1{Tu≥K}

]}
as u→∞

for appropriate constants c1 and c2; cf. Hammersley and Handscomb (1964),
Siegmund (1976). However, as a consequence of Theorem 2.4 (ii) and (iii), we
have under the dual measure (D) that

ED [K |Tu < K ] ∼ Θ log u as u→∞,

for some positive constant Θ, while the second term in (2.19) converges to
a finite constant, by Theorem 2.4 (i). Thus, under the dual measure, it is
sufficient to minimize the second moment in the asymptotic limit as u→∞.
Consequently we conclude that simulation under the dual measure (D) is
indeed asymptotically efficient and optimal.

3. Proofs of consistency and efficiency. Set A0 ≡ 1, and define

Sn =

n∑
i=1

logAi, i = 1, 2, . . . ; S0 = 0;

Zn =
Vn

A0 · · ·An
, n = 0, 1, . . . ; and Z̄(p) =

∞∑
n=0

B̃n
A0 · · ·An

1{K>n},
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where
B̃0 = |V0| and B̃n = An|Dn|+ |Bn|.

In the following lemma, we summarize some regularity properties satisfied
by {Zn} and the corresponding perpetuity sequence Z̄(p).

Lemma 3.1. Assume Letac’s Model E, and suppose that (H1), (H2), and
(H3) are satisfied. Then:

(i) Zn → Z with respect to the measure µξ, where Z is a proper random
variable supported on (0,∞).

(ii) Eξ

[
(Z̄(p))ξ

]
<∞, and for all n and all u,

(3.1)
∣∣Zn1{n<K}∣∣ ≤ Z̄(p) and

∣∣ZTu1{Tu<K}∣∣ ≤ Z̄(p).

Moreover,

(3.2) ZTu1{Tu<K} ≤
∞∑
n=0

B̃n
A0 · · ·An

1{n≤Tu<K}.

Proof. These properties through (3.1) are established in Collamore and
Vidyashankar (2011), Lemma 5.5. (Although we have replaced the stopping
time τ of that article with K in (3.1), the proofs remain unchanged.)

For (3.2), apply Eq. (5.32) in Lemma 5.5 of Collamore and Vidyashankar
(2011) to obtain that

(3.3) Zn ≤
n∑
i=0

B̃i
A0 · · ·Ai

, n = 0, 1, . . . .

Then (3.2) follows from (3.3). 2

A second basic result which will be used throughout this article is a change
of measure formula, which allows one to compare an expectation under a par-
ticular measure to an expectation under another measure. Frequently we will
take this other measure to be the dual measure. In the following lemma as-
sume, quite generally, that νn denotes the distribution of {(An, Bn, Dn)}, pos-
sibly depending on the past history of {Vn}, that is on the vector (V0, . . . , Vn−1).
To be more precise, let vn = (v0, . . . , vn−1) denote a vector in Rn, and intro-
duce the family of measures

{νn(E; vn) : E ∈ B(R3),vn ∈ Rn, n ∈ Z+}.

Then our objective is to compare expectations under the original measure to
expectations under the driving sequence

Yn := (An, Bn, Dn) ∼ νn(·;V0, . . . , Vn−1).
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Let Eν(n) [·] denote expectation with respect to the family {ν1, . . . , νn} just
described. With a slight abuse of notation, we will surpress the dependence
on n in this last expectation. Then we have the following:

Lemma 3.2. Assume Letac’s Model E, and suppose that µ � νn a.s.
for all n. Let g : R∞ → [0,∞] be a deterministic function, and let gn de-
note its projection onto the first n + 1 coordinates; that is, gn(x0, . . . , xn) =
g(x0, . . . , xn, 0, 0, . . .). Then for any n ∈ N,

(3.4) E [gn(V0, . . . , Vn)] = Eν

[(
n∏
i=1

dµ

dνi
(Yi)

)
gn(V0, . . . , Vn)

]
.

Proof. This result follows by induction. Assume that the result holds for
some positive integer n, for any given function g, and consider

Eν

[(
n+1∏
i=1

dµ

dνi
(Yi)

)
gn+1(V0, . . . , Vn+1)

]
(3.5)

= Eν

[(
n∏
i=1

dµ

dνi
(Yi)

)
hn(V0, . . . , Vn)

]
,

where

hn(V0, . . . , Vn) := Eν

[
dµ

dνn+1
(Yn+1)gn+1(V0, . . . , Vn+1)

∣∣∣∣V0, . . . , Vn

]
.

By direct calculation,

hn(V0, . . . , Vn) = E [gn+1(V0, . . . , Vn+1)|V0, . . . , Vn] .

Now apply the inductive hypothesis to obtain

Eν

[(
n∏
i=1

dµ

dνi
(Yi)

)
hn(V0, . . . , Vn)

]
= E

[
hn(V0, . . . , Vn)

]
.

Substituting these last two equations into the right-hand side of (3.5) yields
(3.4), as required. 2

We will be particularly interested in applying the previous lemma to dual
measures of the form

(Dα) L
(

logAn, Bn, Dn

)
=

{
µα for n = 1, . . . , Tu,
µ for n > Tu,

where α ∈ dom (Λ). By conditioning on {Tu = m,K = n} and summing over
all possible values of m and n, we obtain the following:
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Corollary 3.1. Assume the conditions of the previous lemma. Then for
any α ∈ dom (Λ),

E [gK(V0, . . . , VK)] = EDα

[
gK(V0, . . . , VK)e−αSTu (λ(α))Tu 1{Tu<K}

]
(3.6)

+ EDα

[
gK(V0, . . . , VK)e−αSK (λ(α))K 1{Tu≥K}

]
,

where EDα [·] denotes expectation with respect to the dual measure in (Dα)
above.

For notational convenience, here and in the following, we write EDξ [·] as
ED [·], i.e., we suppress ξ in the special case that α = ξ. Moreover, we use
the notation Pα (·) and Eα [·] when the random variables under consideration
have the distribution µα for all n.

We now turn to the proof of Theorem 2.2. The main complications in the
proof are that: (i) we work with the return times rather than the regeneration
times of the Markov chain; and (ii) we utilize an empirical approximation to
the stationary distribution. The consequence of (i) is that the cycles induced
by the return times are not i.i.d. We begin with a summary of the main steps
of the proof.

Step 1. Letting K1,K2, . . . denote the return times of the process {Vn} to
C, we show that the stopped process Xn = VKn , n = 1, 2, . . . , is a stationary
Markov chain whose stationary distribution is given by γ(E) = π(E)/π(C),
for any Borel set E ⊂ C, where π is the stationary distribution of {Vn}.

Step 2. We derive an expression for the total number of exceedances Nu

above the level u which occur over a cycle emanating from C and terminating
upon its return to C, assuming that the initial distribution satisfies V0 ∼ γ.

Step 3. We relate the expression obtained in Step 2 to the object of interest,
namely P (V > u).

Step 4. We verify that, if the true stationary distribution γ is replaced with
the empirical distribution γk, then the resulting estimator is consistent in the
asymptotic limit where γk ⇒ γ.

Proof of Theorem 2.2. Step 1. Let K1,K2, . . . denote the successive
return times of {Vn} to C; that is, K0 = 0 and Kn = inf {i > Kn−1 : Vi ∈ C}
for n = 1, 2, . . . . Set

Xn = VKn , n = 0, 1, . . . .

Note that {Xn} is a Markov chain with state space C. We will now show
that {Xn} has a stationary distribution given by γ(E) = π(E)/π(C), for all
Borel sets E ⊂ C. First observe that {Vn} is ϕ-irreducible and geometrically
ergodic, by Lemma 2.1 (i). It follows by the definitions of irreducibility and
ergodicity that {Xn} is also ϕ-irreducible and geometrically ergodic. Thus
{Vn} and {Xn} are both positive chains.
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Hence applying the law of large numbers (Meyn and Tweedie (1993), The-
orem 17.1.7 with f(x) = 1E(x), where 1E is the indicator function on the set
E), we obtain that

(3.7) lim
n→∞

1

n

n∑
i=1

1{Vi∈E} = π(E) a.s., for all E ⊂ C.

Next, let Nn :=
∑n

i=1 1{Xi∈C} denote the number of visits of {Xn} to C occur-
ring by time n. Since {Vn} is a recurrent Markov chain, it follows that Nn ↑ ∞
w.p. 1. Applying (3.7) with E = C, we obtain that π(C) = limn→∞Nn/n a.s.
Similarly, applying (3.7) with E ⊂ C and utilizing the definition of {Xn}, we
also obtain that

π(E) = lim
n→∞

Nn

n

(
1

Nn

Nn∑
i=1

1{Xi∈E}

)
a.s.

Hence

(3.8) lim
n→∞

1

Nn

Nn∑
i=1

1{Xi∈E} =
π(E)

π(C)
a.s.

Finally, by yet another application of the law of large numbers for Markov
chains, now applied to {Xn}, we obtain that the left-hand side of (3.8) con-
verges to the stationary distribution of {Xn}. Thus, it follows that γ(E) :=
π(E)/π(C) is the stationary distribution of {Xn}.

Step 2. Let Nu,1, Nu,2, . . . denote the number of exceedances above level
u which occur over the successive cycles starting from C; that is, Nu,n :=∑Kn−1

i=Kn−1
1{Vi>u}. Set SN0 = 0 and SNn = Nu,1 + · · · + Nu,n, n = 1, 2, . . . .

Then {(Xn, S
N
n ) : n = 0, 1, . . .} is a Markov random walk. To view {SNn } as a

sum of the functionals of a Markov chain, first introduce the adjoined Markov
chain

{(
Xn, Nu,n

)}
. Since the distribution of Nu,n is determined entirely by

Xn, where {Xn} has stationary distribution γ, it follows that the stationary
distribution of this adjoined chain is given by

(3.9) γ̃(E × F ) =

∫
E

P
(
Nu,1 ∈ F

∣∣X1 = x
)
dγ(x).

Moreover, as {Xn} is a positive Harris chain, it follows that
{(
Xn, Nu,n

)}
is also a positive Harris chain. Hence the law of large numbers for Markov
chains applies, yielding (after observing Eγ̃ [Nu] = Eγ [Nu]) that

(3.10) Eγ

[
Nu

]
= lim

n→∞

SNn
n

:= lim
n→∞

1

n

Kn−1∑
n=0

1{Vi>u} a.s.,
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provided that the expectation on the left-hand side is finite.
To see that this quantity is finite, recall that {Vn} is geometrically recur-

rent. Then since {Kn} denotes the return times of this process to its C-set,
we have that supv∈C Ev [Kn −Kn−1] < ∞. Since Nu,n denotes the number
of exceedances above level u occurring over the nth such cycle, we obviously
have Nu,n ≤ (Kn −Kn−1), and thus Eγ

[
Nu

]
<∞.

Step 3. Next, we identify the limit on the right-hand side of (3.10). First
recall that Nn is the number of returns to C occurring by time n; thus KNn is
the last return time occurring in [0, n]. Now apply the law of large numbers
for Markov chains to obtain that

(3.11) P (V > u) := π(u,∞) = lim
n→∞

1

n

{KNn−1∑
i=0

1{Vi>u} +
n∑

i=KNn

1{Vi>u}

}
.

We claim that the last term on the right-hand side is asymptotically neg-
ligible. To justify this fact, we apply a Markovian renewal theorem given in
Iscoe et al. (1985). To this end, first introduce the augmented chain {(Vn, ηn)},
where {ηn} is an i.i.d. sequence of Bernoulli random variables, independent of
{Vn}, with P (ηn = 1) = δ. Here δ is the constant appearing in the minoriza-
tion condition of the Markov chain {Vn}. Then the event {Vn ∈ C, ηn = 1} is
a regeneration time (Nummelin (1984), Chapter 4). Let I(n) denote the last
regeneration time occurring in the interval [0, n], and let J(n) denote the first
regeneration time occurring after this time. Since regeneration only occurs at
the return times to C for which ηi = 1 (so regeneration is “less frequent” than
returns to C), we have that I(n) ≤ KNn ≤ n ≤ J(n)− 1. Hence

(3.12)
n∑

i=KNn

1{Vi>u} ≤
J(n)−1∑
i=I(n)

1{Vi>u}.

Now apply Lemma 6.2 of Iscoe et al. (1985) to the right-hand side of this
equation. Letting τ denote a typical interregeneration time and letting ν
denote the measure appearing in the minorization for {Vn}, then Lemma 6.2
of Iscoe et al. (1985) states that

(3.13) lim
n→∞

J(n)−1∑
i=I(n)

1{Vi>u} =
1

E [τ ]
E

[
τ
( n∑
i=0

1{Vi>u}

)∣∣∣V0 ∼ ν

]
.

Since {Vn} is geometrically ergodic, E [τ ] <∞. Substituting (3.12) and (3.13)
into (3.11), we conclude

(3.14) P (V > u) = lim
n→∞

Nn

n

 1

Nn

KNn−1∑
i=0

1{Vi>u}

 .



20 J. F. COLLAMORE ET AL.

Since Nn/n→ π(C) as n→∞, it follows from (3.10) and (3.14) that

(3.15) P (V > u) = π(C)Eγ

[
Nu

]
.

Next apply Corollary 3.1 to the second term on the right-hand side of
(3.15) to obtain that

(3.16) P (V > u) = π(C)ED,γ

[
Nue

−ξSTu1{Tu<K}

]
:= π(C)ED,γ [Eu] .

This shows that if we could choose V0 ∼ γ, that is, if we knew the stationary
distribution of {Vn} exactly, then π(C)Eu would be an unbiased estimator for
P (V > u).

Step 4. Now suppose that we approximate γ with the empirical measure
γk described in Step 1 of the algorithm. Then it remains to show that

lim
k→∞

ED

[
Nue

−ξSTu1{Tu<K}

∣∣∣V0 ∼ γk
]

(3.17)

= ED

[
Nue

−ξSTu1{Tu<K}

∣∣∣V0 ∼ γ
]
.

Set

(3.18) H(v) = ED

[
ED [Nu |FTu ] e−ξSTu1{Tu<K}

∣∣∣V0 = v
]
.

We now claim that H(v) is uniformly bounded in v ∈ C. To establish this
claim, first apply Theorem 4.2 of Collamore and Vidyashankar (2011) to ob-
tain that

(3.19) ED [Nu |FTu ] 1{Tu<K} ≤
(
C1(u) log

(
VTu
u

)
+ C2(u)

)
1{Tu<τ},

where τ ≥ K is the first regeneration time, and Ci(u)→ Ci <∞ for i = 1, 2.
Moreover, by the definition of {Zn},

(3.20) e−ξSTu = u−ξ
(
VTu
u

)−ξ
ZξTu .

Substituting the last two equations into (3.18) yields

(3.21) |H(v)| ≤ ΘED

[∣∣ZξTu1{Tu<τ}∣∣ ∣∣∣V0 = v
]

for some finite constant Θ, independent of u. Next apply Lemma 5.5 (ii) of
Collamore and Vidyashankar (2011) and the definition of Z̄(p) to obtain that

(3.22) ED

[∣∣ZξTu1{Tu<τ}∣∣ ∣∣∣V0 = v
]
≤ ED

[(
Z̄(p)

)ξ∣∣∣V0 = v
]
.
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By Lemma 3.1 (ii), the right-hand side of (3.22) is bounded, uniformly in
v ∈ C. Consequently H(v) is bounded in v ∈ C. Moreover, the function
H is also continuous, as can be seen by observing that for any fixed l,
{V1(w), . . . , Vl(w)} converges pointwise to {V1(v), . . . , Vl(v)} as the initial
state w → v. Summing over all realizations {K = l} and using the definition
H(v) = ED

[
Nue

−ξSTu1{Tu<K}|V0 = v
]

obtains continuity. Finally, since γk
and γ are both supported on C, it then follows from the weak convergence
γk ⇒ γ that

lim
k→∞

∫
C
H(v)dγk(v) =

∫
C
H(v)dγ(v),

which is (3.17). 2

Next we turn to the proof of efficiency. Suppose now that Yn ∼ µβ for all n,
where Y = (An, Bn, Dn) and β ∈ dom (Λ), and where µβ is defined according
to (2.6). Let

λβ(α) =

∫
R
eαxdµβ(x, y, z), Λβ(α) = log λβ(α), for all α ∈ R,

and note by the definition of µβ that

(3.23) Λβ(α) = Λ(α+ β)− Λ(β).

In the following lemma, we summarize some standard results concerning
the return times to the set C under this β-shifted measure. Letting P denote
the transition kernel of {Vn}, then we say that {Vn} satisfies a drift condition
if there exists a function h : R→ [0,∞) such that

(D)

∫
S
h(y)P (x, dy) ≤ ρh(x), for all x /∈ C,

where ρ ∈ (0, 1) and C is some Borel subset of R. We note that this definition
differs slightly from the more standard definition given in Meyn and Tweedie
(1993), but will be more convenient for our purposes here.

Lemma 3.3. Assume Letac’s Model E, and suppose that (H1), (H2), and
(H3) are satisfied. Let {Vn} denote the forward recursive sequence generated
by this SFPE under the measure µβ, chosen such that infα>0 λβ(α) < 1. Then
the drift condition (D) holds with h(x) = |x|α, where α > 0 is any constant
satisfying the equation Λβ(α) < 0. Moreover, in this case, we may take ρ = ρβ
and C = [−Mβ,Mβ], where

(3.24) ρβ := tλβ(α), for some t ∈
(

1,
1

λβ(α)

)
,
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and

(3.25) Mβ :=


(
Eβ

[
B̃α
])1/α (

λβ(α) (t− 1)
)−1/α

, if α ∈ (0, 1),(
Eβ

[
B̃α
])1/α (

(λβ(α))1/α (t1/α − 1
) )−1

, if α ≥ 1.

Furthermore, for any (ρβ,Mβ) satisfying this pair of equations, we have

(3.26) sup
v∈C

Pβ (K > n|V0 = v) ≤ ρnβ, for all n ∈ Z+.

Proof. To verify (D) and identify ρβ and Mβ explicitly, first observe that

(3.27) |Vn| ≤ An|Vn−1|+ B̃n, for all n,

where B̃n := An|Dn|+ |Bn|. If α ≥ 1, then it follows by Minkowskii’s inequal-
ity that

Eβ

[
|V1|α

∣∣V0 = v
]
≤
((

Eβ

[
Aα
])1/α

v +
(
Eβ

[
B̃α
])1/α

)α
(3.28)

= ρβv
α

 1

t1/α
+

(
Eβ

[
B̃α
])1/α

ρ
1/α
β v


α

, where ρβ := tλβ(α).

Thus (D) holds with h(v) = |v|α and ρβ = tλβ(α) < 1 for t ∈
(
1, (λβ(α))−1

)
,

provided that the quantity inside the parentheses on the right of (3.28) is less

than one for v /∈ C. Setting t−1/α +
(
Eβ

[
B̃α
])1/α

/(ρ
1/α
β v) = 1 and solving for

v, we obtain the expression given on the right-hand side of (3.25) for the case
α ≥ 1.

If α < 1, then an analogous condition is obtained by employing the deter-
ministic inequality |x+ y|α ≤ |x|α + |y|α in place of Hölder’s inequality.

Once (D) is established, the proof of (3.26) is obtained as in Nummelin
and Tuominen (1982) or Nummelin (1984). Namely, observe by (D) and an
inductive argument that

(3.29) E

[
h(Vn)

n∏
i=1

1{Vi /∈C}

∣∣∣V0

]
≤ ρnβh(V0), n = 1, 2, . . . .

Since h(Vn) ≥ h(V0) on {Vn /∈ C, V0 ∈ C}, it follows that P (K > n) ≤ ρnβ,
uniformly in V0 ∈ C. 2

Proof of Theorem 2.3. In the proof, set

Pn = A0 · · ·An, n = 0, 1, . . . ,
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and assume V0 = v ∈ C. We will show that the result holds uniformly in
v ∈ C.

Case 1: λ(α) <∞, for some α < −ξ. To evaluate

ED

[
E2
u

]
:= ED

[
N2
ue
−2ξSTu1{Tu<K}

]
,

note by definition that Vne
−Sn := Vn/Pn := Zn. Since VTu > u, it follows that

0 ≤ ue−STu ≤ ZTu . Consequently by Lemma 3.1 (ii),

(3.30) u2ξED

[
E2
u

]
≤ ED

N2
u

( ∞∑
n=0

B̃n
Pn

)2ξ

1{n≤Tu<K}

 ,
where {B̃n} is defined as in the discussion prior to Lemma 3.1. If 2ξ ≥ 1, then
using Minkowskii’s inequality on the right-hand side, we obtain

(
u2ξED

[
E2
u

])1/2ξ
≤
∞∑
n=0

(
ED

[
N2
u

(
B̃n
Pn

)2ξ

1{n≤Tu<K}

])1/2ξ

(3.31)

=
∞∑
n=0

(
E
[
N2
uP
−ξ
n B̃2ξ

n 1{n≤Tu<K}

])1/2ξ
,

where in the last step we have used the change-of-measure formula in Corol-
lary 3.1. Now apply Hölder’s inequality to the right-hand side. Using the
independence of (An, B̃n) from 1{n−1<Tu∧K}, we obtain that the left-hand
side of (3.31) is bounded above by

∞∑
n=0

(
E
[
N2r
u

])1/2rξ (
E

[(
A−1
n B̃2

n

)sξ])1/2sξ (
E
[
P−sξn−11{n−1<Tu∧K}

])1/2sξ
,

where r−1 + s−1 = 1. Now set ζ = sξ for the remainder of the proof. Next,
by Lemma 3.2 (cf. Corollary 3.1), the last term on the right-hand side of the
previous equation may be expressed as

E
[
P−ζn−11{n−1<Tu∧K}

]
=
(
λ(−ζ)

)n−1
P−ζ (n− 1 < Tu ∧K) .

On the right-hand side, we have used the fact that for all n < Tu, the dual
measure (D−ζ) agrees with the (−ζ)-shifted measure. Substituting the last
equation into the upper bound for (3.31), we conclude that

(3.32)
(
u2ξED

[
E2
u

])1/2ξ
≤
∞∑
n=0

Jn
{(
λ(−ζ)

)n−1
P−ζ (n− 1 < Tu ∧K)

}1/2ζ
,
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where

Jn :=
(
E
[
N2r
u

])1/2rξ (
E
[(
A−1
n B̃2

n

)ζ])1/2ζ
, n = 0, 1, . . . .

Since Nu ≤ K, Lemma 3.3 (with β = 0) yields

(3.33) sup
v∈C

E
[
N2r
u |V0 = v

]
<∞, for any finite constant r.

Moreover, for sufficiently small s > 1 and ζ = sξ, it follows by (H ′2) that

E
[(
A−1B̃2

)ζ ]
< ∞. Thus, to show that the quantity on the left-hand side

of (3.32) is finite, it is sufficient to show that for some ζ > ξ and some t > 1,

(3.34) P−ζ (n− 1 < Tu ∧K) ≤
(
tλ(−ζ)

)−n+1
, for all n ≥ some N0,

and that this last equation holds uniformly in u and uniformly in v ∈ C. Note
that {Tu ∧K > n− 1} ⊂ {K > n− 1}, and by Lemma 3.3,

(3.35) sup
v∈C

P−ζ (K > n− 1|V0 = v) ≤
(
tλ(−ζ)

)−n+1
,

where C := [−M,M ] and M > M−ξ. (Since ζ > ξ was arbitrary, we have
replaced M−ζ with M−ξ in this last expression. We note that we also require
M > M0, so that (3.33) will hold.) This proves (3.34), thus establishing the
theorem for the case 2ξ ≥ 1.

If 2ξ < 1 then, in place of Minkowskii’s inequality, we use the determin-
istic inequality |x + y|α ≤ |x|α + |y|α, for α ∈ (0, 1]. This yields (3.31), but
without the powers “1/2ξ” on the left- and right-hand sides. Once this mod-
ification has been made, the previous argument can be repeated to obtain
that u2ξED

[
E2
u

]
is bounded uniformly in u and v ∈ C, completing the proof.

Case 2: λ(−ζ) =∞ for ζ > ξ, but E
[
(A−1B̃)α

]
<∞ for all α > 0.

We modify the previous argument, now employing a truncation argument

as follows. First assume 2ξ ≥ 1. Then as before, we obtain that
(
u2ξED

[
E2
u

])1/2ξ
is bounded above by the right-hand side of (3.31), and it is sufficient to show

that E
[
P−ζn−11{n−1<Tu∧K}

]
<∞ for some ζ > ξ. Set Wn = P−ζn−11{n−1<Tu∧K},

and first observe that E [Wn] <∞. Indeed, using the inequality (3.27), namely

|Vn| ≤ An|Vn−1|

(
1 +

B̃n
An|Vn−1|

)
, n = 1, 2, . . . ,

and observing that n− 1 < Tu ∧K =⇒ |Vi| ∈ (M,u) for i = 1, . . . , n− 1, we
obtain as a rough upper bound that

(3.36) A−ζi ≤
( u
M

)ζ (
1 +

B̃i
MAi

)ζ
, i = 1, . . . , n− 1 on {n− 1 < Tu ∧K}.
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Then this equation yields an upper bound for Pn−1. Using the assumption

that E
[
(A−1B̃)α

]
<∞ for all α > 0, we conclude by (3.36) that E [Wn] <∞.

Next let {Lk} be a sequence of positive real numbers such that Lk ↓ 0 as
k → ∞, and set Fk =

⋂k−1
i=1 {Ai ≥ Lk}. Assume that Lk has been chosen

sufficiently small such that

(3.37) E
[
Wk1F ck

]
≤ 1

k2
, k = 1, 2, . . . .

Then it remains to show that

∞∑
k=0

E [Wk1Fk ] <∞.(3.38)

To verify that (3.38) holds, set Ā0,k = 1 and

Ān,k = An1{An≥Lk} + Lk1{An<Lk}, n = 1, 2, . . . .

Let λk(α) = E
[
Āα1,k

]
, and define W̄k = (Ā0 · · · Āk−1)−ζ1{k−1<Tu∧K}. Since

{k − 1 < Tu ∧ K} ⊂ {k − 1 < K}, it follows by Lemma 3.2 (similarly to
Corollary 3.1) that

(3.39) E
[
W̄k

]
≤ (λk(−ζ))k−1E−ζ

[
1{K>k−1}1Fk

]
.

To evaluate the expectation on the right-hand side, we apply a direct argu-
ment to obtain a drift condition (rather than Lemma 3.3, as we used before).
In particular, start with the forward recursion

(3.40) |Vn,k| ≤ Ān,k|Vn−1,k|

(
1 +

B̃n
Ān,k|Vn−1,k|

)
, n = 1, 2, . . . .

Write E−ζ,w [·] = E−ζ [·|V0,k = w]. Now let β > 0 and take the βth moment
in (3.40) for the one-step transition which starts at V0,k = w. To simplify the
expression on the right-hand side, use the definition (2.6) of µ−ζ (but applied
to the truncated random variable Ā1,k) to express this expectation in terms
of the original measure. This yields

(3.41) E−ζ,w

[
|V1,k|β

]
≤ wβ

λk(−ζ)
E

(Ā1,k

)β−ζ (
1 +

B̃1

wĀ1,k

)β .
Hence by Hölder’s inequality,

(3.42) E−ζ,w

[
|V1,k|β

]
≤ ρkwβ

t−qE
(1 +

B̃1

wĀ1,k

)qβ1/q

,
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where ρk :=
(
E
[(
Ā1,k

)p(β−ζ)])1/p (
t/λk(−ζ)

)
and p−1 + q−1 = 1.

Set β̂ = arg minα λ(α) and choose β such that p(β − ζ) = β̂, and assume
that p has been chosen sufficiently close to one so that the expectation in the
definition of ρk is finite. Since Lk ↓ 0 as k →∞,

(3.43) lim
k→∞

λk(α) = λ(α), α ≥ 0,

by a monotone convergence argument. Moreover, (H1) implies that λ achieves
its minimum on the positive axis, at which point λ(β̂) < 1. Thus we conclude

that for t ∈
(

1,
(
λ(β̂)

)−1/p
)

and for some constant ρ ∈ (0, 1),

(3.44) lim
k→∞

λk(−ζ)ρk = t
(
λ(β̂)

)1/p
< ρ.

Then λk(−ζ)ρk ≤ ρ for all k ≥ k0, and with this value of ρ, we obtain by
(3.42) that

(3.45) E−ζ,w

[
|V1,k|β

]
≤ ρwβ

λk(−ζ)
, for all k ≥ k0,

provided that

(3.46) t−qE

[(
1 +

B̃1

wĀ1,k

)qβ]
≤ 1.

Our next objective is to find a set C = [−M,M ] such that for all w /∈ C,
(3.46) holds. First assume qβ ≥ 1 and apply Minkowskii’s inequality to the
left-hand side of (3.46). Then set this quantity equal to one, solve for w, and
set w = Mk. After some algebra, this yields

(3.47) Mk =
1

t1/β − 1

(
E

[(
B̃1

Ā1,k

)qβ])1/qβ

.

The quantity in parentheses tends to E
[(
A−1B̃

)qβ]
as k → ∞. Using the

assumption that E
[(
A−1B̃

)α]
< ∞ for all α > 0, we conclude that M :=

supkMk <∞.
If qβ < 1, then a similar expression is obtained for M by using the deter-

ministic inequality |x+ y|β ≤ |x|β + |y|β in place of Minkowskii’s inequality.
To complete the proof observe that, as in the proof of Lemma 3.3 (cf.

(3.29)), we obtain upon iterating (3.45) with C = [−M,M ] that

(3.48) E−ζ
[
1{K>k−1}1Fk

]
≤
(

ρ

λ(−ζ)

)−k+1

, for all k ≥ k0.
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Note that on the set Fk, the sequences {Vn,k : 1 ≤ n ≤ k} and {Vn : 1 ≤ n ≤
k} agree, and thus the event {K > k − 1} coincides for these two sequences.
Finally, substituting (3.48) into (3.39) yields (3.38), as required. If 2ξ < 1,
then the above argument may be modified in the same manner as for Case 1,
and the required estimate still holds. 2

Returning to the remark concerning the assumption that λ(α) < ∞ for

some α < −ξ, we notice that ED

[ (
P−1
n B̃n

)2ξ ]
= ∞ (see Alsmeyer et al.

(2009)). Thus, even though the expectation of the perpetuity sequence is
infinite, it converges when studied on the set {Tu < K}. We emphasize here
that some of the above calculations could be made much simpler if we were
to work with assumptions such as B > 0 and D > 0. However, these are quite
strong assumptions from an applied perspective.

4. Examples and simulations. In this section we provide several ex-
amples which illustrate how to implement the algorithm. As seen in Sections 2
and 3, while the use of a drift condition provides a formula for M , it may not
be optimal in a practical sense. This is due to the fact that the estimate for
V α
n typically uses Minkowskii- or Hölder-type inequalities, which are usually

not very sharp. We begin by outlining an alternative method for obtaining
M and use it to verify that it yields meaningful answers from a practical
perspective.

4.1. Numerical procedure for calculating M . The numerical procedure in-
volves a Monte Carlo method for calculating the conditional expectation ap-
pearing in the drift condition, that is, for evaluating

Eβ

[(
V1

V0

)α ∣∣∣V0 = v

]
= Eβ

[(
Amax

(
D

v
, 1

)
+
B

v

)α]
when β = 0 and β = −ξ. The goal is to find an α such thatM := max(M0,M−ξ)
is minimized, where Mβ satisfies

Eβ

[(
Amax

(
D

v
, 1

)
+
B

v

)α]
≤ ρβ, for all v > Mβ and some ρβ ∈ (0, 1).

In this expression, α is necessarily chosen such that Eβ [Aα] ∈ (0, 1), and
hence we expect that ρβ ∈ (Eβ [Aα] , 1). Note that M depends on the choice
of α; thus, we also minimize over all possible α such that Eβ [Aα] ∈ (0, 1).

Let {(Ai, Bi, Di) : 1 ≤ i ≤ N} denote a collection of i.i.d random variables
having the same distribution as that of (A,B,D). The numerical method for
finding an optimal choice of M proceeds as follows:
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Step 1. Using a root finding algorithm, obtain ξ. That is, solve for ξ in
the equation E[Aξ] = 1. If an analytic expression for E[Aξ] is not available,
numerical approximations such as Gauss-Hermite quadrature methods can be
applied.

Step 2. For Eβ [Aα] < 1, use a Monte Carlo procedure to compute Eβ

[
|V1|α|

V0 = v
]

and solve for v in the formula

1

N

N∑
i=1

∣∣∣∣Ai max

(
Di

v
, 1

)
+
Bi
v

∣∣∣∣α = ρβ,

where this quantity is computed in the β-shifted measure for β = 0 and
β = −ξ and where ρβ < 1. Then select α so that it provides the smallest
possible value of v. Set Mβ > v for β = 0 and β = −ξ.

Step 3. Set M = max(M0,M−ξ).

We now turn to some specific examples.

4.2. The ruin problem with stochastic investments. Assume that the fluc-
tuations in the insurance business are governed by the classical Cramér-
Lundberg model,

(4.1) Xt = u+ ct−
Nt∑
n=1

ζn,

where u denotes the company’s initial capital, c its premiums income rate,
{ζn} its claims losses, and Nt the number of Poisson claims occurring in the
interval [0, t]. It is assumed that {ζn} is i.i.d. and independent of {Nt}. We
now depart from this classical model by assuming that at the discrete times
n = 1, 2, . . . , the surplus capital is invested, earning stochastic returns {Rn}
which are assumed to be i.i.d. Let Ln := − (Xn −Xn−1) denote the losses
incurred by the insurance business during the nth discrete time interval. Then
the total capital of the insurance company at time n is described by the
recursive sequence of equations

(4.2) Yn = RnYn−1 − Ln, n = 1, 2, . . . , Y0 = u.

It is typically assumed that E [logR] > 0 and E [L] < 0.
Our objective is to determine the probability of ruin using importance

sampling, namely to estimate

(4.3) Ψ(u) := P (Yn < 0, for some n ∈ Z+ |Y0 = u) .

Iterating (4.2) yields Yn = (R1R2 · · ·Rn) (Y0 − Ln) , where

Ln :=
L1

R1
+ · · ·+ Ln

R1R2 · · ·Rn
,(4.4)
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and hence Ψ(u) = P (Ln > u, some n). Setting L =
(
supn∈Z+

Ln
)
∨ 0, then

from (4.4) and an elementary argument we obtain that L satisfies the SFPE

(4.5) L D= (AL+B)+ , where A :=
1

R1
and B =

L1

R1
.

This can be viewed as a special case of Letac’s Model E with D := −B/A.

4.2.1. Implementing the algorithm. To implement the algorithm in this
example, we generated investment returns according to the Black-Scholes
model. Specifically, we chose

(4.6) An = exp

{
−
(
µ− σ2

2

)
− σZn

}
, for all n,

where {Zn} is an i.i.d. sequence of standard Gaussian random variables. Then

(4.7) Λ(α) = −α
(
µ− σ2

2

)
+
α2σ2

2
.

Thus ξ = 2µ/σ2 − 1 and µξ ∼ Normal(µ− σ2/2, σ2).
We set µ = 0.2 and σ2 = 0.25. Regarding the insurance model, we set the

premiums rate c = 1, {ζn} to be exponential with parameter 1, and {Nt} to be
a Poisson process with parameter 1/2. Applying the procedure described at
the beginning of this section to this model, we obtained that M0 = 0 = M−ξ.
Thus M = 0.

In this example, we can actually deduce that M = 0 by a more elementary
argument. Arguing as in the proof of Lemma 3.3, we obtain that Mβ =

mini=1,2M
(i)
β , where

(4.8) M
(1)
β = inf

α∈(0,1)∩Φ

||B+
1 ||β,α

(1− ||A1||αβ,α)1/α
, M

(2)
β = inf

α∈[1,∞)∩Φ

||B+
1 ||β,α

1− ||A1||β,α
,

and Φ = {α ∈ R : Eβ [Aα] < 1}. Here, || · ||β,α denotes the Lα norm under
the β-shifted measure µβ, where we again consider the two cases β = 0 and
β = −ξ. For each of these cases, this infimum may be computed numerically,
yielding M0 = 0 = M−ξ and thus M = 0, just as before.

In choosing M = 0, the algorithm in Section 2 simplifies considerably,
since in this case we can take the measure γ to be a point mass at the origin.
Moreover, it can be observed that {0} is an atom of the the Markov chain
{Vn}. Consequently, it follows that a cycle originating at {0} and then stopped
upon its return to {0} forms a regeneration cycle of the Markov chain (cf.
Nummelin (1984), Chapter 4).
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We implemented the algorithm in Section 2 to estimate the probabilities
of ruin for u = 10, 20, 100, 500, 103, 5 × 103, 104, 5 × 104, and 105. In
all our simulations, the distribution in Step 1 was based on k = 104, and
V1000 was taken as an approximation to the limit random variable V . We
arrived at this choice using extensive exploratory analysis comparing V1000

and Vn. The comparisons involved studying the empirical cumulative distri-
bution functions and two-sample comparisons using Kolmogrov-Smirnov tests
between V1000 and other values of Vn. Specifically, based on 105 samples and
two-sample Kolmogrov-Smirnov tests, there were no statistically significant
differences between V1000 and V2000, V5000, and V10,000 (with p-values ≥ 0.185).

Table 4.1 summarizes the probabilities of ruin (with M = 0) and the lower
and upper bounds of the 95% confidence intervals (LCL, UCL) based on 106

simulations. The confidence intervals in this example and other examples in
this section are based on the simulations; that is, the lower 2.5% and upper
97.5% quantiles of the simulated values of P(V > u). We also evaluated the
true constant C of tail decay in Theorem 2.1 and the relative error (RE). Even
in the extreme tail—far below the probabilities of practical interest in this
problem—the algorithm works effectively and is clearly seen to have bounded
relative error. For comparison, we also present here the crude Monte Carlo
estimates of the probabilities of ruin based on 5 × 106 realizations of V2000.
We observe that for small values of u, the importance sampling estimate
and the crude Monte Carlo estimates are close, which provides an empirical
validation of the algorithm for small values of u. Admittedly, the value of the
crude estimate for u = 105 is questionable. Finally, since all of the conditions
of Theorems 2.3 and 2.5 are satisfied, our algorithm is optimal and efficient,
as can also be seen from the values of the relative error.

Table 4.1. Importance sampling estimation for the ruin probability with
investments obtained using M = 0.

u P(V > u) LCL UCL C RE Crude Est.
1.0e+01 5.86e-02 5.65e-02 6.07e-02 2.33e-01 1.84e+01 5.73e-02
2.0e+01 3.66e-02 3.52e-02 3.81e-02 2.21e-01 1.98e+01 3.54e-02
1.0e+02 1.33e-02 1.28e-02 1.39e-02 2.11e-01 2.12e+01 1.29e-02
5.0e+02 4.95e-03 4.74e-03 5.15e-03 2.06e-01 2.09e+01 4.85e-03
1.0e+03 3.27e-03 3.14e-03 3.41e-03 2.07e-01 2.12e+01 3.21e-03
5.0e+03 1.25e-03 1.19e-03 1.30e-03 2.06e-01 2.18e+01 1.23e-03
1.0e+04 8.13e-04 7.78e-04 8.49e-04 2.04e-01 2.24e+01 8.01e-04
5.0e+04 3.06e-04 2.93e-04 3.20e-04 2.02e-01 2.22e+01 3.27e-04
1.0e+05 1.98e-04 1.90e-04 2.07e-04 1.98e-01 2.16e+01 2.10e-04

4.3. Perpetuity sequences. A similar mathematical problem arises when
one estimates the tail of a perpetuity sequence {Ln} as defined in (4.4),
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namely

(4.9) L∗ := B0 +A0B1 +A0A1B2 + · · · .

Note that by choosing Ai = R−1
i and Li = Bi (and B0 ≡ 0), we are back in

the setting of the previous example (except that we now consider limn→∞ Ln
rather than L :=

(
supn∈Z+

Ln
)
∨ 0, which we considered before). This leads

to the SFPE

(4.10) L∗ = AL∗ +B.

If B ≥ 0, then this is a special case of (4.5).
The sequence (4.9) is of importance in life insurance mathematics. In that

context, {An} denotes the discounted financial returns due, e.g., to inflation,
while {Bn} denotes the future financial obligations of the company, generally
taken to be positive. Then it is of interest to study P (L∗ > u) as u → ∞,
i.e., the stationary tail on this sequence.

Note that (4.9) can be viewed a backward sequence generated by the SFPE
(4.10), while we simulate the forward sequence generated by the same SFPE.
These two limiting distributions must be the same due to Letac’s principle
(cf. Letac (1986), Collamore and Vidyashankar (2011), Lemma 2.1).

4.4. The ARCH(1) process. We now estimate the tail probabilities of the
ARCH(1) financial process, which were also studied in Blanchet et al. (2011).
Originally introduced by Engle (1982), this process models the squared re-
turns on an asset using the recurrence equation

R2
n =

(
a+ bR2

n−1

)
ζ2
n = AnR

2
n−1 +Bn, n = 1, 2, . . . ,

where An = bζ2
n and Bn = aζ2

n and {ζn} is an i.i.d. Gaussian sequence. These
assumptions imply E [logA] < ∞, and the additional assumptions of our
theorems are easily seen to be satisfied. Setting Vn = R2

n, we obtain that

V := limn→∞ Vn satisfies the SFPE V
D
= AV + B, which is the same as

(4.10). Again, it is of interest to determine the tail behavior of {Vn} under
stationarity, that is, P (V > u) for large values of u. Next we describe how
our algorithm can be implemented to estimate these probabilities.

4.4.1. Implementation. We set b = 4/5 and considered the following val-
ues for a: 1.9× 10−5, 1, and 2. It can be shown that

E [Aαn] =
(2b)αΓ(α+ 1/2)

Γ(1/2)
.
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We solved the equation E
[
Aξn
]

= 1 using Gauss-Hermite quadrature to obtain
ξ = 1.3438. Under the ξ-shifted measure, An = bXn and Bn = aXn where
Xn ∼ Γ(ξ + 1/2, 2). Using the formulae in (4.8) for M , we obtained (upon
taking the limit as β → 0 and using the Taylor approximation Γ(β + 1/2) =
Γ(1/2)+βΓ′(1/2)+O(β2)) that M0 = 0.362, 0.724, 6.879×10−6 when a = 1, 2,
and 1.9 × 10−5, respectively. Next we observed that M−ξ does not exist,
since λ(−ξ) = ∞ in this example. However, using the numerical procedure
at the beginning of this section, we deduced that, in fact, M−ξ = 0. Thus
we set M = M0. We also computed M0 using the algorithm described at the
beginning of this section and obtained similar estimates.

Table 4.2 summarizes the simulation results for tail probabilities of the
ARCH(1) process based on 106 simulations. We notice a substantial agree-
ment between the crude Monte Carlo estimates and those produced by our
algorithm for small values of u. More importantly, we observe that the rela-
tive error remains bounded in all of the cases considered, while the simulation
results in the paper of Blanchet, Lam, and Zwart (2011) show that the relative
error based on their algorithm increases as the parameter u→∞.

4.5. The GARCH(1,1) process. A variant of the last example is the so-
called GARCH(1,1) financial process introduced by Bollerslev (1986). Here
the logarithmic returns on an asset are modeled as Rn = σnζn, where σn
denotes the stochastic volatility at time n and {ζn} is i.i.d. Gaussian. It is
assumed that the squared volatility satisfies the recurrence equation

(4.11) σ2
n = a0 + b1σ

2
n−1 + a1R

2
n−1, n = 1, 2, . . . .

Then V := limn→∞ σ
2
n satisfies the SFPE

(4.12) V
D
= AV +B, where A =

(
b1 + a1ζ

2
1

)
and B = a0.

To study the large exceedances of {Rn} under stationarity, it is of primary
interest to determine P (V > u) as u → ∞. Let µ̂ denote the distribution of
A. Then it is easy to see that

µ̂((−∞, x]) =

0 for x ≤ b1,
1− 2Φ

(√
x−b1
a1

)
for x > b1,

where Φ(·) is the distribution function of a standard Gaussian random vari-
able. Hence, under the ξ-shifted measure, the random variable A has the
probability law

µ̂ξ(E) :=

∫
E
yξdµ(y), E ∈ B(R).



IMPORTANCE SAMPLING FOR SFPE 33

Table 4.2. Importance sampling estimation for the tail probability of
ARCH(1) financial process with a = 1, 2, 1.9× 10−5.

u P(V > u) LCL UCL C RE Crude Est.
a = 1

1.0e+01 7.73e-02 7.64e-02 7.83e-02 1.71e+00 6.21e+00 7.75e-02
2.0e+01 3.43e-02 3.35e-02 3.51e-02 1.92e+00 1.18e+01 3.43e-02
1.0e+02 4.34e-03 4.23e-03 4.45e-03 2.11e+00 1.29e+01 4.28e-03
5.0e+02 5.07e-04 4.96e-04 5.18e-04 2.15e+00 1.13e+01 5.21e-04
1.0e+03 2.04e-04 1.99e-04 2.09e-04 2.20e+00 1.28e+01 2.07e-04
5.0e+03 2.32e-05 2.28e-05 2.36e-05 2.17e+00 8.08e+00 2.00e-05
1.0e+04 9.00e-06 8.88e-06 9.12e-06 2.14e+00 6.83e+00 9.00e-06
5.0e+04 1.07e-06 1.05e-06 1.10e-06 2.21e+00 1.27e+01 2.00e-06
1.0e+05 4.11e-07 4.04e-07 4.18e-07 2.15e+00 8.51e+00 NA

a = 2
1.0e+01 1.62e-01 1.60e-01 1.64e-01 3.57e+00 5.99e+00 1.62e-01
2.0e+01 7.73e-02 7.64e-02 7.83e-02 4.33e+00 6.21e+00 7.78e-02
1.0e+02 1.08e-02 1.05e-02 1.11e-02 5.25e+00 1.34e+01 1.06e-02
5.0e+02 1.28e-03 1.25e-03 1.31e-03 5.43e+00 1.14e+01 1.33e-03
1.0e+03 5.07e-04 4.96e-04 5.18e-04 5.45e+00 1.13e+01 5.44e-04
5.0e+03 5.96e-05 5.81e-05 6.11e-05 5.57e+00 1.27e+01 7.70e-05
1.0e+04 2.32e-05 2.28e-05 2.36e-05 5.51e+00 8.08e+00 3.50e-05
5.0e+04 2.64e-06 2.60e-06 2.68e-06 5.44e+00 7.60e+00 3.00e-06
1.0e+05 1.07e-06 1.05e-06 1.10e-06 5.61e+00 1.27e+01 1.00e-06

a = 1.9× 10−5

1.0e+01 4.45e-08 4.38e-08 4.52e-08 9.82e-07 8.38e+00 NA
2.0e+01 1.75e-08 1.72e-08 1.78e-08 9.80e-07 1.00e+01 NA
1.0e+02 2.02e-09 1.98e-09 2.05e-09 9.82e-07 9.29e+00 NA
5.0e+02 2.66e-10 1.99e-10 3.32e-10 1.13e-06 1.27e+02 NA
1.0e+03 9.59e-11 8.77e-11 1.04e-10 1.03e-06 4.38e+01 NA
5.0e+03 1.04e-11 1.02e-11 1.06e-11 9.75e-07 1.01e+01 NA
1.0e+04 4.15e-12 4.05e-12 4.26e-12 9.85e-07 1.32e+01 NA
5.0e+04 4.78e-13 4.66e-13 4.91e-13 9.86e-07 1.34e+01 NA
1.0e+05 1.91e-13 1.83e-13 1.99e-13 1.00e-06 2.19e+01 NA

Unlike in the ARCH(1) example, there is no closed form expression for µ̂ξ, so
generating data from this distribution is more difficult. However, generating
data from the shifted empirical distribution is easy, since it amounts to gen-
erating data from a multinomial distribution. Let µ̂β,k denote the empirical
distribution based on a sample of k observations from µβ for β = 0 and β = ξ;
thus,

µ̂ξ,k(E) :=

∫
E y

ξdµ0,k(y)∫
R y

ξdµ0,k(y)
, E ∈ B(R).

In our simulations, we chose k = 106 and a0 = 10−7, a1 = 0.11, and b1 =
0.88. Also, solving the equation E[Aξ] = 1 numerically, we obtained ξ =
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1.838. Furthermore, the minimum of ||A||α is 0.98. Hence M0 = 50a0. Under
the (−ξ)-shifted measure, the minimum of ||A||α is 0 and thus M−ξ = a0.
Therefore M = 50a0. The same value of M was obtained using the procedure
described at the beginning of this section.

Results for the estimation of the tail probabilities are summarized in Table
4.3. As in the previous examples, the algorithm works effectively and is clearly
seen to have bounded relative error. In addition, we considered the value
a0 = 0.01. In all of these simulation results, we see once again that the
importance sampling estimate agrees very well with the crude Monte Carlo
estimate for small values of u (where it is sensible to make this comparison).

Table 4.3. Importance sampling Estimation for the tail probability of
GARCH(1,1) financial process.

u P(V > u) LCL UCL C R.E.
1.0e+01 3.61e-12 3.42e-12 3.80e-12 2.49e-10 2.67e+01
2.0e+01 1.03e-12 9.89e-13 1.07e-12 2.54e-10 1.95e+01
1.0e+02 5.24e-14 5.05e-14 5.43e-14 2.49e-10 1.88e+01
5.0e+02 2.58e-15 2.52e-15 2.64e-15 2.36e-10 1.17e+01
1.0e+03 7.75e-16 7.38e-16 8.11e-16 2.53e-10 2.40e+01
5.0e+03 3.96e-17 3.85e-17 4.06e-17 2.49e-10 1.37e+01
1.0e+04 1.09e-17 1.07e-17 1.12e-17 2.46e-10 1.28e+01
5.0e+04 5.78e-19 5.59e-19 5.97e-19 2.51e-10 1.67e+01
1.0e+05 1.56e-19 1.53e-19 1.60e-19 2.43e-10 1.28e+01

We end this section with a brief comparison of our work with that of
Blanchet, Lam, and Zwart (2011). As shown above, our method works effec-
tively and is comparatively easy to implement. The complex nature of their
algorithm can be attributed to their alternative approach, which relies on us-
ing complex asymptotic estimates. Furthermore, a critical issue with their al-
gorithm is that it depends on several parameters, and effectively tuning them
to produce optimal results seems to be challenging even when specialized to
the simpler case of perpetuities without invoking Markov state-dependence.
Additionally, their results on crude Monte Carlo—even for small values of u
corresponding to ∆ = 0.1 and 0.5 in their paper—are quite different from
ours. We emphasize that our crude Monte Carlo estimates are based on five
million simulations and on the approximation of the limit variable V by V2000.
The latter approximation was based on extensive exploratory analysis. We
are not able to explain this discrepancy with their results (as the implemen-
tation details are not available in their manuscript). However, we emphasize
that our crude Monte Carlo estimates and importance sampling estimates are
quite close to one another for moderate values of u, as one should expect. Fi-
nally, it is unclear from their numerical results whether their state-dependent
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sampler yields unbiased point estimates or bounded relative error.

5. Proofs of results concerning running time of the algorithm.
We now turn to the proof of Theorem 2.4, which will rely on ideas from
nonlinear renewal theory and Markov chain theory. In the proof, we will
utilize the following:

Lemma 5.1. There exist positive constants M̄ and β and a constant ρ ∈
(0, 1) such that

Eξ [h(Vn)|Vn−1] ≤ ρh(Vn−1) on {Vn−1 ≥ M̄},(5.1)

where h(x) := x−β1{x>1} + 1{x≤1}.

Proof. Without loss of generality, assume that Vn−1 = v > 1. Then by
strong Markov property,

Eξ [h(Vn)|Vn−1 = v] = Eξ

[
V −β1 1{V1>1}|V0 = v

]
+ Pξ (V1 ≤ 1|V0 = v) .

By assumption (H4), the second term on the right-hand side of the above
expression is o(v−ε). As for the first term, notice that it can be expressed
as vβEξ

[
(A1 max(v−1D1, 1) + v−1B1)−β1{V1>1}|V0 = v

]
. Using the bounded-

ness of
{

(A1 max(v−1D1, 1) + v−1B1)−β1{V1>1}|V0 = v
}

in v, it follows that

Eξ

[
(A1 max(v−1D1, 1) + v−1B1)−β1{V1>1}|V0 = v

]
converges as v → ∞ to

Eξ

[
A−β1

]
= λ(ξ − β) < 1 if 0 < β < ξ. Thus, choosing β = ε ∈ (0, ξ), where ε

is given as in (H4), we obtain that the lemma holds for any ρ =
(
Eξ

[
A−ε1

]
, 1
)

and M̄ <∞ sufficiently large. 2

Proof of Theorem 2.4 (i). Let M̄ be given as in Lemma 5.1. Without
loss of generality, we may assume that M̄ ≥ max(M, 1). Let L = sup

{
n ∈

Z+ : Vn ∈ (−∞, M̄ ]
}

. Then it follows directly from the definitions that K ≤ L
on {K <∞}. Thus it is sufficient to verify that Eξ [L] <∞.

To this end, introduce two sequences of random times, as follows. Begin by
setting J0 = 0 and K0 = 0. Then for each i ∈ Z+, set

Ki = inf{n > Ji−1 : Vn > M̄} and Ji = inf{n > Ki : Vn ∈ (−∞, M̄ ]}.

Intuitively, {Ki} denotes the successive times that the process escapes from
the interval (−∞, M̄ ], while {Ji} denotes the successive times that the process
subsequently returns to (−∞, M̄ ], where 0 < K1 < J1 < . . . . For any integer
i, let κi := Ki − Ki−1 denote the ith inter-escape time from the interval
(−∞, M̄ ]. Finally, let N denote the total number of cycles that exit (−∞, M̄ ]
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and subsequently return to (−∞, M̄ ]. Then it follows from these definitions
that

L <

N+1∑
i=1

κi.

Observe that Eξ [N] < ∞. Indeed, when the process {Vn} escapes from
(−∞, M̄ ], the probability that it ever returns to this interval is bounded
above by this probability conditioned on the starting state V0 = M̄ . But by
the transience of {Vn} in Lemma 2.1 (ii), that probability is less than one.
Thus

sup
v>M̄

Pξ

(
Vn ∈ (−∞, M̄ ], some n ≥ 1

∣∣V0 = v
)
≤ p < 1,

and consequently Eξ [N] ≤
∑∞

n=1 p
n <∞.

It remains to show that Eξ [κi] < ∞, uniformly in the starting state
Vκi−1 ∈ (M̄,∞]. But note that the random variable κi can be divided into two
parts; first, the sojourn time that the process {Vn} spends in (M̄,∞) prior to
returning to (−∞, M̄ ] and, second, the sojourn time in the interval (−∞, M̄ ]
prior to exiting again. Now if K̄ denotes the first return time to (−∞, M̄ ],
then by Lemma 5.1,

Pξ

(
K̄ = n

∣∣V0 = v
)
≤ ρn h(v)

h(M̄)
≤ ρn.

Hence Eξ

[
K̄1{K̄<∞}

∣∣∣V0 = v
]
≤ Θ for some finite constant Θ, uniformly in

v > M̄ .
Thus, to establish the lemma, it is sufficient to show that Eξ

[
N̄
∣∣V0 = v

]
<

∞, uniformly in v ∈ (−∞, M̄ ], where N̄ denotes the total number of visits
of {Vn} to (−∞, M̄ ]. To this end, observe that [−M̄, M̄ ] is petite (Collamore
and Vidyashankar (2011), Lemma 5.1). Moreover, it is easy to verify that
(−∞,−M̄) is also petite for sufficiently large M̄ . Indeed, under Letac’s Model
E, we have that infv∈(−∞,−M̄) Pξ (max(D1, V0) = D1|V0 = v) > 0, and in
that case V1 = A1D1 + B1. Thus, the transition kernel of {Vn} satisfies a
minorization with small set (−∞,−M̄). Consequently (−∞, M̄ ] is petite and
hence uniformly transient (Meyn and Tweedie (1993), Theorem 8.3.5, and the
transience of {Vn}). We conclude that Eξ

[
N̄
]
< ∞, uniformly in the initial

state V0 ∈ (−∞, M̄ ], completing the proof. 2

We now turn to the proof of Theorem 2.4 (ii). We begin with a slight
variant of Lemma 4.1 in Collamore and Vidyashankar (2011).

Lemma 5.2. Assume Letac’s Model E, and suppose that (H1), (H2), and
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(H3) are satisfied. Then

(5.2) lim
u→∞

Pξ

(
VTu
u

> y

∣∣∣∣Tu < K

)
= Pξ

(
V̂ > y

)
for some random variable V̂ . The distribution of this random variable V̂ is
independent of the initial distribution of V0 and is described as follows. If
Al is a typical ladder height of the process Sn =

∑n
i=1 logAi in the ξ-shifted

measure, then

(5.3) Pξ

(
log V̂ > y

)
=

1

Eξ

[
Al
] ∫ ∞

y
Pξ

(
Al > z

)
dz, for all y ≥ 0.

Proof. Note by definition of Zn that

Vn = (A0 · · ·An)
(
Zn1{Zn>0} + Zn1{Zn≤0}

)
.

Now it is shown in Lemma 5.2 of Collamore and Vidyashankar (2011) that
Vn ↑ ∞ w.p. 1 as n→∞ under the measure µξ. Thus Tu <∞ a.s., and at this
exceedance time, we have that 1{Tu≤0} = 0. Consequently, setting Xn = Zn
on {Zn > 0} and Xn = 1 otherwise, we have that VTu = V ′Tu , where

V ′n = (A0 · · ·An)Xn, n = 0, 1, . . . .

Since Xn is positive for all n, we can introduce the perturbed random walk

(5.4) log V ′n = Sn + δn, n = 0, 1, . . . ,

where Sn :=
∑n

i=1 logAi and δn := logXn.
Note that Sn has a positive drift under µξ-measure and that {(logAi, δi) :

i = 1, . . . , n} is independent of logAj for all j > n. Thus classical nonlinear
renewal theory can be applied to the sequence {log V ′n}. To do so, we need to
verify that the sequence {δn} is slowly changing. But by Lemma 3.1, we have
that 1{Zn≤0} → 0 a.s. and that δn := logXn converges to a proper random
variable. Hence δn/n → 0 a.s., and consequently {δn} is slowly changing.
Hence it follows from Theorem 4.2 of Woodroofe (1982) that

(5.5)
V ′Tu
u
⇒ V̂ as u→∞.

Note that this result holds independent of the initial distribution of V0 ∈ C.
Next observe that for any y ≥ 1,

(5.6) Pξ

(
V ′Tu
u

> y

)
=Pξ

(
V ′Tu
u

> y ; Tu < K

)
+Pξ

(
V ′Tu
u

> y ; Tu ≥ K
)
.
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By the strong Markov property,

(5.7) Pξ

(
V ′Tu
u

> y
∣∣∣Tu ≥ K) = Pξ

(
V ′Tu
u

> y
∣∣∣V0 ∼ ν

)
,

where ν is the distribution of V ′K conditional on {Tu ≥ K}. Note by definition
of K that V ′K ∈ C. Hence it follows by (5.5) and (5.7) that

(5.8) lim
u→∞

Pξ

(
V ′Tu
u

> y
∣∣∣Tu ≥ K) = Pξ

(
V̂ > y

)
, y ≥ 1.

Consequently by (5.5) and (5.6),

(5.9) lim
u→∞

Pξ

(
V ′Tu
u

> y
∣∣∣Tu < K

)
= Pξ

(
V̂ > y

)
, y ≥ 1,

provided that lim infu→∞Pξ (Tu < K) > 0. Finally, to verify that this last
condition is fulfilled, observe that Pξ (Tu < K) increases to Pξ (K =∞) as
u→∞. Moreover, by Lemma 5.2 of Collamore and Vidyashankar (2011), we
have that Vn ↑ ∞ w.p. 1 as n → ∞ in the ξ-shifted measure. Thus, starting
from the stationary measure γ on C, Pξ (K =∞) is strictly positive over any
given cycle. Thus Pξ (Tu < K)→ Θ as u→∞, for some positive constant Θ.

2

Proof of Theorem 2.4 (ii). Let V ′n be defined as in the proof of Lemma
5.2, and observe from the proof of this lemma that log V ′n = Sn + δn, where
{δn} is slowly changing and Sn =

∑n
i=1 logAi.

Set T ′u = inf{n : V ′n > u}. Then it follows by Lemma 9.13 of Siegmund
(1985) that

(5.10)
T ′u

log u
→ 1

Λ′(ξ)
in probability

with respect to the measure µξ, since Λ′(ξ) = Eξ[logA]. Now if Tu < K, then
the process {Vn} never returns to the set (−∞, 0], and hence we have in that
case that Tu = T ′u. Moreover, since Vn ↑ ∞ w.p. 1 as n→∞ in the ξ-shifted
measure, Pξ (Tu < K) → Θ as u → ∞, for some positive constant Θ. Thus

it follows from (5.10) that, conditional on {Tu < K}, (Tu/ log u)→ (Λ′(ξ))−1

in probability.
To show that convergence in probability implies convergence in expec-

tation, it suffices to show that the sequence {Tu/ log u} is uniformly inte-
grable. Let M̄ be given as in Lemma 5.1, and first suppose that M̄ ≤M and
supp (Vn) ⊂ [−M,∞) for all n. Then in this case, conditional on {Tu < K},

Tu > n =⇒ Vi ∈ (M̄, u), i = 1, . . . , n.
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Now apply Lemma 5.1. Iterating (5.1)—as in the proof of Lemma 3.3—we
obtain that (3.29) holds with ρ in place of ρβ. Consequently, using the explicit
form of the function h in Lemma 5.1, we obtain that

(5.11) Pξ (Tu > n|Tu < K) ≤
(

1

Pξ (Tu < K)

)
ρnuβ, for all n,

where β is given as in Lemma 5.1. Now Pξ (Tu < K) ↓ Θ > 0 as u → ∞.

Hence, letting E
(u)
ξ [·] denote the expectation conditional on {Tu < K}, we

conclude that

(5.12) E
(u)
ξ

[
Tu

log u
;
Tu

log u
≥ η

]
≤ Θ̄ρη log uuβ,

for some finite constant Θ̄, and for sufficiently large η, the right-hand side
converges to zero as u→∞. Hence {Tu/ log u} is uniformly integrable.

If the assumptions at the beginning of the previous paragraph are not
satisfied, then write Tu = L+ (Tu−L), where L is the last exit time from the
interval (−∞, M̄ ], as defined in the proof of Theorem 2.4 (i). Then (Tu − L)
describes the length of the last excursion to level u after exiting (−∞, M̄ ]
forever. By a repetition of the argument just given, we obtain that (5.11)
holds with (Tu−L) in place of Tu, and hence (5.12) also holds with (Tu−L)
in place of Tu. This implies {(Tu − L)/ log u} is uniformly integrable. Next
observe by the proof of Theorem 2.4 (i) that Eξ [L/ log u] ↓ 0 as u→∞. The
result follows. 2

In Theorem 2.4 (ii), we showed that

(5.13) Eξ [Tu |Tu < K ] ∼ log u

Λ′(ξ)
as u→∞,

which can be expected due to the fact that Λ′(ξ) = Eξ [logA]. Specifically, if
we were to replace {Vn} with the multiplicative process {A1 · · ·An} and define
T̃u = inf{n : (A1 · · ·An) > u}, then by an elementary renewal argument
applied to Sn :=

∑n
i=1 logAi, we would obtain that (5.13) holds with the

left-hand side replaced with E
[
T̃u
]
.

Next we turn to the proof of Theorem 2.4 (iii), which provides a similar
asymptotic estimate for the return time to the set C, assuming that Tu < K
and starting our analysis from the state VTu > u. Now if Tu < K, then
starting at time Tu, we have VTu ≈ u and we would like to study its return
time to C = [−M,M ]. Again, if we replace {Vn} with the multiplicative
process {(A1 · · ·An)u} and define K̃ = inf{n : (A1 · · ·An)u ≤ M}, then an
elementary renewal argument yields

E
[
K̃
]
∼ log u

|Λ′(0)|
as u→∞,
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where we have used that E [logA] = Λ′(0) < 0. This heuristic argument serves
as motivation for Theorem 2.4 (iii).

We will first establish Theorem 2.4 (iii) conditional on the event that
(V0/u) = v > 1, and later remove this assumption. Thus, we assume for
the moment that the process starts at a level vu where v > 1, so the dual
measure for the process agrees with its initial measure. For this process, define

L(z) = inf{n : |Vn| ≤ z}, for any z ≥ 0.

Lemma 5.3. Let (V0/u) = v > 1 and t ∈ (0, 1). Then under the conditions
of Theorem 2.4,

(5.14) lim
u→∞

1

log u
E
[
L
(
ut
) ∣∣∣V0

u
= v
]

=
1− t
|Λ′(0)|

.

Proof. For notational simplicity, we will suppress the conditioning on
(V0/u) = v in the proof of the lemma. We begin by establishing an upper
bound. First observe that, as in (3.27),

(5.15)
|Vn|
|Vn−1|

≤ An +
(An|Dn|+ |Bn|)

|Vn−1|
.

Hence

(5.16) log

(
|Vn|
|Vn−1|

)
≤ log

(
An + u−t (An|Dn|+ |Bn|)

)
, n < L(ut).

This shows that we may bound the process {|Vn| : n < L(ut)} by a classical
random walk. More precisely, define

S(u)
n :=

n∑
i=1

X
(u)
i where X

(u)
i := log

(
Ai + u−t (Ai|Di|+ |Bi|)

)
.

Then iterating (5.16) and using that (V0/u) = v, we obtain

(5.17) log |Vn| − log(vu) ≤ S(u)
n , for all n < L(ut).

Now let L̃u(ut) = inf
{
n : S

(u)
n ≤ −(1− t) log u− log v

}
. Then L(ut) ≤ L̃u(ut)

for all u.
Since

{
S

(u)
n

}
is a classical random walk and L̃u(ut) is a stopping time, it

follows by Wald’s identity that E
[
SL̃u(ut)

]
= E

[
X

(u)
1

]
E
[
L̃u(ut)

]
. Thus letting

Ou := |SL̃u(ut) − (1− t) log u− log v|



IMPORTANCE SAMPLING FOR SFPE 41

denote the overjump of the random walk
{
S

(u)
n

}
over its boundary (which in

this case is taken to be the level (1− t) log u+ log v), we obtain

(5.18) L(ut) ≤ (1− t) log u+ log v + E [Ou]∣∣E[X(u)
1

]∣∣ .

Since E
[
X

(u)
1

]
→ Λ′(0) as u → ∞, the required upper bound will be estab-

lished once we show that

(5.19) lim
u→∞

1

log u
E [Ou] = 0.

To establish (5.19) note, as in the proof of Lorden’s inequality (Asmussen
(2003), Proposition V.6.1), that E [Ou] ≤ E

[
Y 2
u

]
/E [Yu], where Yu has the

negative ladder height distribution of the process {S(u)
n }. Next observe by

Corollary VIII.4.4 of Asmussen (2003) that

(5.20) E [Yu] = m(1)
u eSu → E [Y ] as u→∞,

where Y has the negative ladder height distribution of the process {Sn},

m(j)
u :=

∣∣E[X(u)
]∣∣, j = 1, 2, . . . , and Su :=

∞∑
n=1

1

n
P
(
S(u)
n > 0

)
.

We observe that Su is the so-called Spitzer series. Similarly, an easy calcula-
tion (cf. Siegmund (1985), p. 176) yields

(5.21) E
[
Y 2
u

]
= m(2)

u eSu−2m(1)
u eSu

∞∑
n=1

1

n
E

[(
S(u)
n

)+
]
→ E

[
Y 2
]
, u→∞.

Since E
[
(logA)3

]
<∞ =⇒ E

[
Y j
]
<∞ for j = 1, 2, it follows that E [Ou]→

E
[
Y 2
]
/E [Y ], i.e. to a finite constant, which implies (5.19). Thus (5.14) holds

as an upper bound.
To establish a corresponding lower bound, fix s ∈ (t, 1) and define

L̃(us) = inf
{
n : Sn ≤ −(1− s) log u− log v

}
.

(Essentially, L̃(z) is defined in the same way as L̃u(z), except that we now

substitute the sequence {Sn} in place of {S(u)
n }.) Next observe that Vn ≥

AnVn−1 − |Bn| provided that Vn−1 ≥ 0, and iterating this equation yields

(5.22) Vn ≥ (A1 · · ·An)V0 −W, where W := lim
n→∞

n∑
i=1

n∏
j=i+1

Aj |Bi|.
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Now from the very definition of L̃ and the assumption that (V0/u) = v, we
obtain that

L̃(us) ≥ n⇐⇒ (A1 · · ·Ak)V0 > us, for all k < n.

But by (5.22), (A1 · · ·Ak)V0 > us =⇒ Vk > ut on {W ≤ (us − ut)}. Thus for
all n, L̃(us) ≥ n =⇒ L(ut) ≥ n on {W ≤ (us − ut)}, and consequently

(5.23) E
[
L(ut)

]
≥ E

[
L̃(us);W ≤ (us − ut)

]
.

To study the expectation on the right-hand side, recall that W satisfies

the SFPE W
D
= AW + |B|, and hence by Theorem 2.1 of Collamore and

Vidyashankar (2011),

(5.24) P
(
W > us − ut

)
∼ C̄u−sξ as u→∞.

Next observe that L̃(ut) is, by definition, the time required for the negative-
drift random walk {Sn+log v} to reach the level −(1−s) log u. But by Heyde’s
(1966) a.s. convergence theorem for renewal processes,

(5.25)
L̃(us)

log u
→ (1− s)
|Λ′(0)|

a.s. as u→∞,

where in the denominator of this last expression, we have observed that
E [logA] = Λ′(0) < 0. It follows from (5.25) that for any ε > 0,

(5.26) lim
u→∞

P

(
L̃(ut)

log u
/∈ (r − ε, r + ε)

)
= 0, where r :=

1− s
|Λ′(0)|

.

Substituting (5.24) and (5.26) into (5.24) and letting ε→ 0, we obtain that

(5.27) lim inf
u→∞

1

log u
E
[
L
(
ut
)]
≥ 1− s
|Λ′(0)|

,

and the required lower bound is obtained by letting s ↓ t. 2

Lemma 5.4. Under the conditions of Theorem 2.4,

(5.28) lim
t↓0

{
lim sup
u→∞

1

log u
E
[
L(M)− L

(
ut
) ]}

= 0.
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Proof. Applying Lemma 3.3 with β = 0, we obtain that the drift condi-
tion (D) holds, and hence for some α > 0,

E
[
|Vn|α

∣∣Vn−1 = w
]
≤ ρ|w|α, for all w /∈ C,

where ρ ∈ (0, 1), and C = [−M,M ] (where M ≥ M0 and M0 is given as in
Lemma 3.3). Iterating this equation yields

(5.29) E
[
1{L(M)>n}

∣∣ V0 = w
]
≤ ρn

(
|w|
M

)α
, for all n.

We now apply this result to obtain an estimate for L(M) − L(ut). Recall
that L(M) − L(ut) measures the length of time required for the process,
beginning at level VL(ut), to enter the set C = [−M,M ]. Thus by definition,∣∣VL(ut)

∣∣ ≤ ut. Hence we are in the setting of (5.29) with w ≤ ut, and with
L(M) replaced by L(M) − L(ut). Using the strong Markov property and
(5.29), we then obtain that

(5.30) P
(
L(M)− L(ut) > n

)
≤ ρn

(
ut

M

)α
, for all n.

Set Jt(u) = L(M)−L(ut) and t′ = tα/(− log ρ). It follows from the previous
equation (upon summing over all n ≥ t′ log u) that

(5.31) E
[
Jt(u)1{Jt(u)≥t′ log u}

]
≤ ρt

′ log u

1− ρ

(
ut

M

)α
=

1

(1− ρ)Mα
.

Then

(5.32) lim sup
u→∞

1

log u
E
[
L(M)− L

(
ut
) ]
≤ t′.

Since t′ ↓ 0 as t ↓ 0, we conclude (5.28). 2

Proof of Theorem 2.4 (iii). Set

Hu(v) =
1

log u
E

[
L(M)

∣∣∣∣V0

u
= v

]
.

Then it follows from Lemmas 5.3 and 5.4 that

(5.33) lim
u→∞

Hu(v) =
1

|Λ′(0)|
.

Let µ̂u, µ̂ denote the probability laws of the random variables VTu/u, V̂ ,
respectively, as given in Lemma 5.2. Then using the strong Markov property,
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it follows that L(M), conditional on V0/u ∼ µ̂u, is equal in distribution to
K − Tu, conditional on {Tu < K}. Thus it is sufficient to verify that

(5.34) lim
u→∞

1

log u
E

[
L(M)

∣∣∣∣V0

u
∼ µ̂u

]
:= lim

u→∞

∫
v≥0

Hu(v)dµ̂u(v) =
1

|Λ′(0)|
.

This result will follow from (5.33), provided that we can show that the limit
can be taken inside the integral in the above equation.

To do so, express the inner quantity in (5.34) as

(5.35)

∫
v≥0

Hu(v)d (µ̂u − µ̂) (v) +

∫
v≥0

Hu(v)dµ̂(v).

To deal with the first term, we begin by obtaining an upper bound for Hu(v).
First note by a slight modification of (5.31) (with t = 1, θ = − log ρ, J1(u)
replaced with L(M), and t′ replaced with an arbitrary constant r) that

(5.36) E
[
L(M)1{L(M)>r log u}

∣∣∣ |V0| ≤ u
]
≤ u−rθ

1− ρ

(
u

M

)α
,

for all r > 0 and some α > 0. Now choose r > α/θ. Then by the previous
inequality,

(5.37) E
[
L(M)1{L(M)>r log u}

∣∣∣ |V0| ≤ u
]
≤ Θ1,

for some finite constant Θ1 which is independent of u. Consequently

(5.38)
1

log u
E
[
L(M)

∣∣∣ |V0| ≤ u
]
≤ r +

Θ1

log u
.

Next, we extend this estimate to the case where the starting state satisfies
(V0/u) = v > 1. To this end, we write E [L(M)|(V0/u) = v] as a sum of two
terms; first, the expected time for the process {Vn} to reach C = [−M,M ]
starting from an initial state in [−u, u]; and second, the expected time to
reach [−u, u] starting from the initial state (V0/u) = v. Using the strong
Markov property, this yields

(5.39) E

[
L(M)

∣∣∣∣V0

u
= v

]
≤ sup
w∈(M,u]

E
[
L(M)

∣∣∣ |V0| = w
]
+E

[
L(u)

∣∣∣∣V0

u
= v

]
.

For the second term, we bound L(u) by the sojourn time for a classical random
walk, as follows. Begin by observing that

|Vn−1| > u =⇒ |Vn| ≤ |Vn−1|

(
An +

B̃n
u

)
.
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Now taking logarithms, we see that E [L(u) |(V0/u) = v ] is bounded above by
the length of time needed for the random walk

S(u)
n := S

(u)
n−1 + log

(
An +

B̃n
u

)
, n = 1, 2, . . . ,

starting from S
(u)
0 = log(vu), to reach the level log u. Denote this sojourn

time by L∗(u). Applying Lorden’s inequality (Asmussen (2003), Proposition

V.6.1) to
{
S

(u)
n

}
, we obtain

E [L∗(u)] ≤ Θ2(u) log v + Θ3(u)

for constants Θ2(u)→ m−1
1 and Θ3(u)→ m2/m

2
1, where m1 and m2 are the

first and second moments of the ladder height distribution for the sequence
{logAi}; cf. the discussion following (5.19) above. (The required moment
condition needed for this convergence to hold are satisfied due to the dif-
ferentiability assumption in (H1).) Finally, substituting this last bound and
(5.38) into (5.39), we obtain that for some constant Θ̄, uniformly in u ≥ u0,

(5.40) Hu(v) :=
1

log u
E

[
L(M)

∣∣∣∣V0

u
= v

]
≤ Θ̄ +

log v

m1
.

Returning to (5.35), using the above upper bound, we now show that

(5.41)

∣∣∣∣∫
v≥0

(
Θ̄ +

log v

m1

)
d (µ̂u − µ̂) (v)

∣∣∣∣→ 0 as u→∞.

Since µ̂u ⇒ µ̂, by Lemma 5.2, it is sufficient to show that
∫
v≥0 log v dµ̂u(v) is

uniformly bounded in u, which would follow from the uniform integrability of
{| log VTu − log u|}. To this end, we apply the Corollary to Theorem 2 of Lai
and Siegmund (1979). First, write the process {Vn} as a nonlinear renewal
process as in (5.4). Then apply Lemma 3.1 to obtain (in the same notation
as in (5.4)) that

(5.42) δn ≤ log

( ∞∑
i=0

B̃i
A0 · · ·Ai

1{K>i}

)
, n < K.

(This is the first equation in (3.1).) Next apply Jensen’s inequality and Lemma
3.1 (ii) to obtain that

(5.43)
ξ

2
Eξ

[
|δTu − δTu−1|1{Tu<K}

]
≤ Eξ

[
log
(
Z̄(p)

)ξ]
<∞.
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Notice also that conditions (6)-(8) of Lai and Siegmund (1979) are satisfied
(with α = 1). By (H1), we have that Eξ

[
(logA)2

]
< ∞. By a slight modifi-

cation of (5.43) followed by an application of Chebyshev’s inequality, Eq. (7)
of their article follows. Moreover, we observe that Theorem 2 of their article
is actually valid if their Eq. (8) is replaced by uniform continuity in proba-
bility of {δn}, as given in Eq. (4.2) of Woodroofe (1982). The latter property
holds, since δn converges w.p. 1 to a proper random variable. We conclude
that all the conditions in Lai and Siegmund (1979) are satisfied, and hence
{| log VTu − log u|} is uniformly integrable. Consequently (5.41) follows from
the weak convergence µ̂u ⇒ µ̂.

Finally, applying the dominated convergence theorem to the second term
in (5.35) and using (5.33), we conclude that (log u)−1E [L(M) |(V0/u) ∼ µ̂ ]→
1/|Λ′(0)|, as required. 2

6. Proof of optimality. Next we turn to the proof of the optimality the-
orem. We remark that a similar result was obtained in a different setting in
Collamore (2002), although the current proof incorporates new aspects, most
notably, the possibility that the alternative algorithm be state-dependent.

Proof of Theorem 2.4. We divide the proof into two parts, “asymptotic
equivalence” and “uniqueness.”

Part I: Asymptotic equivalence. We begin by showing that if
{
ν(E;w, q) :

E ∈ B(R3), w ∈ R, q ∈ {0, 1}
}

is any family of measures within the class M,
where M is given as in (2.15), then

(6.1) lim inf
u→∞

1

log u
Eν

[(
E(ν)
u

)2] ≥ lim
u→∞

1

log u
ED

[
E2
u

]
= −2ξ;

in other words, simulation under the dual measure used in our main algorithm
is either asymptotically equivalent or preferable to any alternative in M.

To establish (6.1), set

µD(E;w, q) =

{
µξ(E), E ∈ B(R3), w ∈ R, and q = 0;

µ(E), E ∈ B(R3), w ∈ R, and q = 1.

(In this definition, recall that intuitively, w corresponds to the level of the
process {log Vn−1/ log u}, while q = 1 corresponds to the event that {Vn} has
exceeded level u by the previous time.)

First assume that ν � µD. Then by applying Lemma 4.2 twice, first to
express the given expectation in terms of the original measure and then in
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terms of the dual measure, we obtain

Eν

[(
E(ν)
u

)2]
:= Eν

[
N2
u1{Tu<K}

K∏
i=1

(
dµ

dν
(Yi;Wi, Qi)

)2
]

= ED

[
N2
u1{Tu<K}

K∏
i=1

(
dµ

dν
(Yi;Wi, Qi)

)2 dν

dµD
(Yi;Wi, Qi)

]
,

where Yi := (logAi, Bi, Di) is the driving sequence of the SFPE, Wi :=
Vi−1/u, and Qi is the indicator function on {Vj > u, for some j < i}. Using
the Radon-Nykodym theorem to simplify the last quantity in the previous
display, we deduce that

Eν

[(
E(ν)
u

)2]
= ED

[
N2
u1{Tu<K}

K∏
i=1

(
dµ

dµD
(Yi;Wi, Qi)

)2 dµD
dν

(Yi;Wi, Qi)

]
.

Observe that by the definition of the dual measure, dµ
dµD

= dµ
dµξ

when Qi =

0, because in this case, the process {Vn} has not attained the level u by
time i, and consequently the dual measure agrees with the ξ-shifted measure.
Similarly, dµ

dµD
= 1 when Qi = 1, because in that case, the process {Vn} has

attained the level u by time i, in which case the dual measure agrees with the
original measure. Thus, from the previous equation we obtain that

(6.2) Eν

[(
E(ν)
u

)2]
=ED

N2
u1{Tu<K}

Tu∏
i=1

(
dµ

dµξ
(Yi)

)2 K∏
j=1

dµD
dν

(Yj ;Wj , Qj)

 .
Now set

Ui = log

(
dν

dµD
(Yi;Wi, Qi)

)
and Rn =

n∑
i=1

Ui.

Substituting these definitions into (6.2) and noting that dµ
dµξ

(Yi) = e−ξ logAi ,

we obtain that

(6.3) Eν

[(
E(ν)
u

)2]
= ED

[
N2
u1{Tu<K} e

−2ξSTu−RK
]
.

By Jensen’s inequality and the observation that Nu ≥ 1 on {Tu < K}, it
follows that

(6.4) Eν

[(
E(ν)
u

)2] ≥ pu exp
{

ED [−2ξSTu −RK |Tu < K]
}
,
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where
pu := Pξ (Tu < K)→ Θ as u→∞.

where Θ := Pξ (K =∞). Note that Θ is positive due to the transience of
{Vn} in its ξ-shifted measure, as stated in Lemma 2.1 (ii). Consequently (6.4)
yields

lim inf
u→∞

1

log u
log Eν

[(
E(ν)
u

)2] ≥ − lim sup
u→∞

1

log u
Eξ [2ξSTu |Tu < K ](6.5)

− lim sup
u→∞

1

log u
ED [RK |Tu < K ] .

To identify the first term on the right-hand side of (6.5), note by Wald’s
identity that

Eξ [logA] Eξ [Tu ∧K] = Eξ

[
STu1{Tu<K}

]
+ Eξ

[
SK1{Tu≥K}

]
,

which yields

(6.6) Eξ [STu |Tu < K ] = Eξ [logA]
Eξ [Tu ∧K]

Pξ (Tu < K)
−

Eξ

[
SK1{Tu≥K}

]
Pξ (Tu < K)

.

Now consider the first term on the right-hand side. Since Eξ [Tu ∧K] =
Eξ

[
Tu1{Tu<K}

]
+ Eξ

[
K1{Tu≥K}

]
, we obtain that

(6.7)
Eξ [Tu ∧K]

Pξ (Tu < K)
= Eξ [Tu |Tu < K ] +

Eξ

[
K1{Tu≥K}

]
Pξ (Tu < K)

.

By Theorem 2.4 (ii),

(6.8) lim
u→∞

1

log u
Eξ [Tu |Tu < K ] =

1

Λ′(ξ)
.

Moreover, as u→∞,

(6.9) Eξ

[
K1{Tu≥K}

]
→ Eξ

[
K1{K<∞}

]
<∞,

where finiteness on the right-hand side is obtained by Theorem 2.4 (i). Since
Pξ (Tu < K) → Pξ (K =∞) = Θ > 0, by Lemma 2.1 (ii), it follows from
(6.7) and the previous two equations that

(6.10) lim
u→∞

1

log u

(
Eξ [Tu ∧K]

Pξ (Tu < K)

)
=

1

Λ′(ξ)
.



IMPORTANCE SAMPLING FOR SFPE 49

Next consider the second term on the right-hand side of (6.6). By Corollary
3.1,

Eξ

[
e−ξSK1{Tu≥K}

]
= E

[
1{Tu≥K}

]
→ P (K <∞) as u→∞.

Moreover, by the recurrence of the Markov chain {Vn} in its original measure,
P (K <∞) = 1. Thus

1 = lim
u→∞

Eξ

[
e−ξSK1{Tu≥K}

]
≥ lim sup

u→∞
Eξ

[
eξ|SK |1{SK≤0}1{Tu≥K}

]
.

Applying the inequality eξx ≥ 1 + ξx, x ≥ 0, to the expectation appearing on
the right-hand side of the previous equation, we obtain

(6.11) lim sup
u→∞

1

log u

(
−Eξ

[
SK1{Tu≥K}

] )
≤ 0.

Finally, substituting (6.10) and (6.11) into (6.6), using that Pξ (Tu < K) →
Θ > 0, and recalling that Eξ [logA] = Λ′(ξ), we conclude

(6.12) lim sup
u→∞

1

log u
Eξ [STu |Tu < K ] ≤ 1.

We now turn to the second limit on the right-hand side of (6.5). Our
objective is to show that

(6.13) lim sup
u→∞

1

log u
ED [RK |Tu < K ] ≤ 0.

To establish (6.13), first introduce the assumption that

(A) log

(
dν

dµD

)
is bounded from below by a finite constant.

This assumption will later be removed.

Claim: Under (A), Mn := RnED

[
1{Tu<K}

∣∣Fn] is a supermartingale.

Proof of the Claim: Recall

Rn =
n∑
i=1

Ui, where Ui := log

(
dν

dµD
(Yi;Wi, Qi)

)
.

Thus

ED [Mn|Fn−1] =Mn−1 + ED

[
UnED

[
1{Tu<K}

∣∣Fn]∣∣Fn−1

]
.
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In the last term on the right-hand side, the inner conditional expectation
is bounded above by one, and hence this entire term is bounded above by
ED [Un |(Wn, Qn) ], where we have used the strong Markov property to replace
Fn−1 with (Vn−1,1{Tu≤n−1}), or equivalently (Wn, Qn). Now condition on the
event that (Wn, Qn) = (w, q) and apply Jensen’s inequality to deduce that

ED [Un |(Wn, Qn) = (w, q) ] =

∫
R3

log

(
dν

dµD
(y;w, q)

)
dµD(y;w, q)

≤ log

∫
R3

dν(y;w, q) = 0,

where, for notational simplicity, we have suppressed the dependence on (w, q)
in the above integrals. Since this inequality holds for any (w, q), we conclude
that

(6.14) ED [Mn|Fn−1] ≤Mn−1.

Next, after using the inequality log x ≤ x, observe that

ED

[
U+
n |(Wn, Qn) = (w, q)

]
≤
∫
G+(v,q)

dν(y;w, q) ≤ 1,

where G+(v, q) :=
{
y : log

(
dν
dµD

(y;w, q)
)
≥ 0

}
and U+

n = max(Un, 0).

Moreover, since we are assuming that log
(
dν
dµD

)
is bounded from below by

a constant, it follows that Un is also bounded from below by a constant,
uniformly in n (where this constant is independent of Fn−1). Thus, setting
U−n = −min(Un, 0), we obtain that

ED

[
U−n |(Wn, Qn) = (w, q)

]
≤ Θ0,

where Θ0 is a finite constant independent of (w, q). Thus

(6.15) E
[
|Mn −Mn−1|

∣∣∣Fn−1

]
≤ Θ0 + 1.

It follows that {Mn}n∈Z+ lies in L1. By (6.14), we conclude that {Mn}n∈Z+

is a supermartingale. 2

Returning to the proof of the theorem, observe that since {Mn} is a su-
permartingale, it follows from the optional sampling theorem that

(6.16) ED

[
RK1{Tu<K}

]
= ED [MK ] ≤ 0,

implying that

(6.17) lim sup
u→∞

1

log u
ED

[
RK1{Tu<K}

]
≤ 0.
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Substituting (6.12) and (6.17) into (6.5), we conclude that

(6.18) lim inf
u→∞

1

log u
Eν

[(
E(ν)
u

)2] ≥ −2ξ.

This is the required result, since it is known by Theorem 2.3 that

lim sup
u→∞

1

log u
ED

[
E2
u

]
≤ −2ξ.

Thus we see that simulation under the dual measure is either asymptotically
equivalent or optimal when compared with any other member in M.

If log
(
dν
dµD

)
is not bounded from below by a constant, then in (6.2) we can

replace ν with a larger measure, namely ν(ε) := ν + εµD, where ε > 0. Then
(6.2) yields

(6.19) Eν

[(
E(ν)
u

)2]≥ED

N2
u1{Tu<K}

Tu∏
i=1

(
dµ

dµξ
(Yi)

)2 K∏
j=1

dµD
dν(ε)

(Yj ;Wj , Qj)

 .
Since log

(
dν(ε)

dµD

)
≥ log ε, the entire proof can be repeated without change,

except that when applying Jensen’s inequality we now obtain

ED [Un |(Wn, Qn) = (w, q) ] ≤ log

∫
R3

dνε(y;w, q) = log(1 + ε) ≤ ε,

and hence in this case the optional sampling theorem yields

(6.20) ED

[
RK1{Tu<K}

]
≤ εED [K] .

This last expectation can be decomposed into three terms,

Eξ

[
K1{K≤Tu}

]
+ Eξ

[
Tu1{Tu<K}

]
+ ED

[
(K − Tu) 1{Tu<K}

]
.

Hence, by applying Theorem 2.4 (i)-(iii), we obtain

(6.21) lim sup
u→∞

1

log u
ED

[
RK1{Tu<K}

]
≤ ε

(
1

Λ′(ξ)
+

1

|Λ′(0)|

)
.

But ε > 0 was arbitrary. Thus we conclude that (6.18) holds in general.

Part II: Uniqueness. It remains to show that strict inequality holds in
(6.18) when the family {ν(·)} differs from the dual measure µD. First observe
by Jensen’s inequality that

ED [Un |(Wn, Qn) = (w, q) ] =

∫
R3

log

(
dν

dµD
(y;w, q)

)
dµD(y;w, q)

≤ log

∫
R3

dν(y;w, q) = 0,
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where, as before, we have suppressed the dependence on (w, q) in the above
integrals. Moreover, for any given (w, q), equality holds in this inequality if
and only if dν

dµD
is equal to a constant a.s. Thus, if ν 6= µD, then there exists

a point (w, q) where

(6.22) ED [Un |(Wn, Qn) = (w, q) ] = −∆, for some ∆ > 0.

Our next objective is to use the continuity condition (C0) to extend (6.22)
from a point w ∈ [0, 1] to an interval. The continuity assumption (C0) states
that

ED

[
log

(
dµ

dν
(Yn;Wn, Qn)

) ∣∣∣Wn = w

]
is piecewise continuous as a function of w, for any fixed Qn ∈ {0, 1}. We claim
that, as a consequence,

(6.23) ED

[
Un

∣∣∣Wn = w
]

:= ED

[
log

(
dν

dµD
(Yn;Wn, Qn)

) ∣∣∣Wn = w

]
is also piecewise continuous as a function of w. To establish (6.23), recall that
we are assuming µ � ν and ν � µD. (The latter condition will later be
dropped.) Then by the Radon-Nikodym theorem,

log

(
dµ

dν

)
= − log

(
dν

dµD

)
+ log

(
dµ

dµD

)
.

Since the expectation of the second quantity on the right-hand side is clearly
piecewise continuous as a function of w, (6.23) follows immediately from the
piecewise continuity in (C0). Using the piecewise continuity in (6.23), observe
that (6.22) implies that this equation holds for all (w, q) ∈ G×{r}, where G is
a neighborhood containing the original point w in (6.22) and where r ∈ {0, 1}.

We now show that by sharpening the estimate in Jensen’s inequality on the
set G×{r}, we obtain a strict inequality in (6.18). First assume that log

(
dν
dµD

)
is bounded from below by a constant, i.e., that condition (A) holds. Then
by repeating our previous arguments, but using the sharper estimate (6.22)
(when (w, q) ∈ G × {r}) together with Jensen’s inequality (when (w, q) /∈
G× {r}), we obtain

M∗n := (U∗1 + · · ·+ U∗n) ED

[
1{Tu<K}

∣∣Fn]
is a supermartingale, where U∗i := Ui + ∆1{Wn∈G}1{Qn=r}. Applying the
optional sampling theorem to this process {M∗n}, we deduce that

(6.24) ED

[
RK1{Tu<K}

]
≤ −∆

{
1{r=0}ED

[
O(0)
u

]
+ 1{r=1}ED

[
O(1)
u

]}
,
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where

O(0)
u :=

Tu∑
n=0

1{Wn∈G} and O(1)
u :=

K∑
n=Tu+1

1{Wn∈G};

that is, O(0)
u denotes the occupation time the scaled process {log Vn/ log u}

spends in the interval G during a trajectory starting at time 0 and ending at

time Tu, while O(1)
u denotes the occupation time that {log Vn/ log u} spends

in the interval G during a trajectory starting at Tu and ending at time K.
First assume that r = 0, so we are in the first scenario, where we would

like to study the occupation measure O(0)
u of the process {log Vn/ log u} in the

set G prior to time Tu or, equivalently, the occupation measure of the process
{Vn} in the set G(u) := [us, ut] prior to time Tu. First introduce a subinterval
G′(u) := [us

′
, ut
′
] strictly contained in [us, ut]. Since {Vn} is transient in its

ξ-shifted measure, by Lemma 2.1 (ii), Pξ (Tu < K) → Pξ (K =∞) = Θ > 0
as u → ∞. Thus {Vn} enters the region [us

′
,∞) with a positive probability

which tends to Θ as u→∞. We claim that, in fact, {Vn} enters the smaller
region G′(u) with a positive probability tending to Θ as u→∞. To establish
this claim, observe by Lemma 5.2 that conditional on {Tu < K},

log VTv ⇒ log v + log V̂ as v →∞

for a proper random variable V̂ supported on (0,∞). Consequently, setting
v(u) = us

′
, we obtain that

Pξ

(
VTv(u) ∈ G

′(u) and Tv(u) < K
)

(6.25)

→ Pξ

(
log V̂ ≤ (t′ − s′) log u and Tv(u) < K

)
→ Θ as u→∞.

Now consider the process {Vn} after it enters the regionG′(u). In particular,
suppose that this process starts with an initial state V0 ∈ G′(u). Then our
objective is to show that the expected number of visits of {Vn} to G(u) prior
to termination at time Tu behaves, roughly speaking, like a constant multiple
of log u as u→∞.

Fix δ < min(s′−s, t−t′). Then observe by a law of large numbers argument
that given δ, there exists a positive constant η = η(δ) such that

(6.26) Pξ (|Sn| > δ log u, some n ≤ η log u)→ 0 as u→∞,

where Sn =
∑n

i=1 logAi. Next observe that if Vn−1 ≥ 0, then the equation
Vn = An max (Dn, Vn−1) +Bn yields the inequalities

AnVn−1 − B̃n ≤ Vn ≤ AnVn−1 + B̃n,
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where B̃n := (An|Dn|+ |Bn|). Iterating these equations yields

(6.27) V0 −W ≤
Vn

(A1 · · ·An)
≤ V0 +W, where W :=

∞∑
i=1

B̃i
A1 · · ·Ai

.

Hence, if V0 ∈ G′(u) := [us
′
, ut
′
] and Vn /∈ G(u) := [us, ut] for some n ≤

η log u, then we must either have

(6.28) (A1 · · ·An) /∈ [u−δ, uδ], for some n ≤ η log u,

or

(6.29) W ≥ min
(
us
′ − us+δ, ut−δ − ut′

)
.

But in the ξ-shifted measure, W is a perpetuity sequence which converges
to a proper random variable (cf. the proof of Lemma 5.2 in Collamore and
Vidyashankar (2011)). Hence for sufficiently small δ, the probability in (6.29)
tends to zero as u→∞. Similarly, the probability in (6.28) also tends to zero
as u→∞, by (6.26). Thus we conclude

(6.30) Pξ

(
Vn /∈ G(u), some n ≤ η log u|V0 ∈ G′(u)

)
→ 0 as u→∞,

uniformly in the initial state V0 ∈ G′(u). Combining this result with (6.25)
and invoking the strong Markov property, we obtain that

(6.31) lim inf
u→∞

1

log u
E
[
O(0)
u

]
≥ η > 0.

Substituting this estimate into (6.24) yields

(6.32) lim sup
u→∞

1

log u
ED

[
RK1{Tu<K}

]
≤ −∆η < 0.

Finally, substituting this last estimate and (6.12) into (6.5), we conclude that

(6.33) lim inf
u→∞

1

log u
Eν

[
E2
u,ν

]
≥ −2ξ + ∆η,

as required.
Next suppose that r = 1. Thus we are in the second scenario, where we

would like to study the occupation measure O(1)
u of {Vn} over an interval

G(u) = [us, ut] between the time Tu and K. By the Markov property, it is
then sufficient to study a process {Vn} which begins at a level V0 > u and
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terminates at time K. Suppose that V0/u = v, for some constant v > 1. Then
begin by writing (6.27) in a slightly different form, namely,

(6.34) sup
n

∣∣∣Vn − V0

n∏
i=1

Ai

∣∣∣ ≤W ′, where W ′ :=

∞∑
i=1

B̃i

∞∏
j=i+1

Aj ,

provided that {V0, . . . , Vn−1} is nonnegative. Now in the original measure, W ′

converges to a proper random variable and hence for any δ > 0, P
(
W ′ > uδ

)
→

0 as u → ∞ (cf. the proof of Lemma 5.2 in Collamore and Vidyashankar
(2011)). Thus it is sufficient to study the occupation measure of the mul-
tiplicative process V0

∏n
i=1Ai in a region G′(u) = [us

′
, ut
′
], where [s′, t′] is

strictly contained in [s, t].
Let Tu denote the first time that the multiplicative random walk enters the

set (−∞, us′ ]. Then by Heyde’s (1966) a.s. version of the renewal theorem,
we have for any ε > 0 that

(6.35) P

(
Tu ≥

(1− s′ − ε) log u

E [logA]

∣∣∣∣ V0

u
= v

)
→ 1 as u→∞,

uniformly in v > 1. Similarly, if Lu denotes the last exit time of the multi-
plicative random walk from the interval [ut

′
,∞), then by the strong law of

large numbers, it follows that

(6.36) P

(
Lu ≤

(1− t′ + ε) log u

E [logA]

∣∣∣∣ V0

u
= v

)
→ 0 as u→∞,

uniformly in v > 1. From the last two equations, we conclude that if η ≥
(t′ − s′ − 2ε)/E [logA], then P (N∗u ≥ η log u) → 1 as u → ∞, where N∗u
denotes the number of visits of the multiplicative random walk to the set
G′(u). Consequently,

(6.37) lim inf
u→∞

1

log u
E
[
O(1)
u

]
≥ η,

yielding (6.33), as required.
It remains to consider the case where (A) is violated. But mimicking the

argument in Part I, we may set ν(ε) = ν + εµD and repeat the previous
arguments to obtain that (6.33) holds, but with −2ξ+∆η+ εΘ1 on the right-
hand side, for some constant Θ1 (cf. (6.21)). Since ε was arbitrary, the desired
result follows.

Finally, to complete the proof of theorem, note that if we do not have
ν � µD, as we have assumed throughout this proof, then by an application
of the Radon-Nikodym theorem,

ν = νa + νs, where νa � µD and νs ⊥ µD.
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The proof can now be repeated, replacing everywhere ν with νa. The mutually
singular measure νs plays no role, since dµD

dν is zero on the support of this
measure and thus, for example, the expectation on the right of (6.2) can be
evaluated equally well with respect to νa as ν. Moreover, with respect to
the measure νa,

dµD
dν = dµD

dνa
. The proof carries through in exactly the same

manner as before, so we omit the details. 2

7. Concluding remarks. In this paper, we developed and analyzed a
dynamic importance sampling algorithm for rare event simulation of processes
generated via SFPEs, encompassing a class of financial time series models
and actuarial risk models. Extensions of these ideas to stratified importance
sampling and general nonlinear recursions are currently under study.
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