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ABSTRACT
Motivation: Univariate testing procedures remain the most common
way to identify differentially expressed genes (DEGs). Univariate
techniques suffer from the multiple comparison problem and reduced
power, because they fail to account for gene interaction. Motivated
by these issues, we adopt a multivariate procedure. Namely, we
utilize the sup-norm test, which was specifically developed for high
dimensional, low sample size problems. We propose an algorithm
which repeatedly applies the sup-norm test to screen for DEGs.
Results: We evaluate our methodology with both simulated and
experimental data. Our simulation studies establish the validity of
the sup-norm statistic in terms of Type I error and power. With
simulated data sets, the screening algorithm retains the majority of
DEGs under a variety of experimental conditions. We also used our
methodology to analyze the publicly available ApoAI knockout data
set. Our algorithm identified the biologically significant genes, as
discussed by other authors (Callow et al., 2000; Smyth, 2004).
Availability: A set of Matlab functions used to implement the
proposed methodology is available at Bioinformatics online.
Contact: bmh35@cornell.edu

1 INTRODUCTION
Multiple hypothesis testing is an important statistical problem that
is an object of intense study in contemporary science. This is
primarily due to the collection of high dimensional data from
scientific experiments. A prototypical case of this phenomenon
is microarray data, although similar issues are present in other
genomic data. Analysis of gene expression microarray data poses
significant challenges since they are not only characterized by high
dimensions but also by small sample sizes (Leung and Cavalieri,
2003). Because the standard notation for the number of arrays
(available samples) is n and the number of genes (dimension of the
data) is p, this problem is frequently referred to as the large p, small
n problem.

In the context of microarrays, a variety of procedures have been
proposed for identifying differentially expressed genes (DEGs).
These include methods based on modified t-statistics, fold change
methods, linear models, and Bayesian analysis. Dudoit et al.
(2002b) provides a survey of these commonly used statistical
methods; Dudoit and van der Laan (2008) is also a useful resource
for this material.

∗To whom correspondence should be addressed.

A major drawback of the methods listed above is that they are
all essentially univariate. Lu et al. (2005) describe several of the
disadvantages of using univariate methods for identifying DEGs;
we summarize the key points here. Univariate methods for high
dimensional data suffer from the problem of multiple comparisons
(Dudoit and van der Laan, 2008). Furthermore, the power of a
univariate hypothesis test is reduced because it does not account for
correlations between the genes. To account for gene interactions it
is natural to adopt multivariate techniques, because test statistics
in multivariate procedures are functions of the covariance matrix.
Szabo et al. (2003), Lu et al. (2005), and Kim et al. (2005) have all
utilized this idea and developed multivariate procedures based on
Hotelling’s T 2 statistic to identify DEGs in two-sample problems.
Tsai and Chen (2009) extended these ideas to the k sample problem
(k ≥ 2) by proposing a modified multivariate analysis of variance
solution to the problem. Their work also addresses the important
question of identifying associations in gene pathways.

A difficulty in adopting multivariate techniques in gene
expression problems is accurate estimation of the sample covariance
matrix. In fact, in the large p, small n setting, the sample covariance
matrix is often singular. Therefore, new techniques are needed to
define appropriate multivariate test statistics. Recently, Kuelbs and
Vidyashankar (2009) introduced an alternative multivariate method
for testing multiple hypotheses and justified their methods using
both large sample theory and simulations. We adopt their ideas and
develop a novel multivariate procedure for identifying DEGs in both
one and two sample problems. Our method is easy to implement
and we show via simulations that it possesses nominal statistical
properties.

This article proposes a multivariate screening procedure for
identifying DEGs in one and two sample problems. The procedure
is based on a multivariate test statistic recently developed by
Kuelbs and Vidyashankar (2009). We illustrate the usefulness of
our screening algorithm with extensive simulation experiments.
Additionally, we use our procedure to identify DEGs in the ApoAI
knockout experiment described by Callow et al. (2000).

2 METHODS
In this section we describe the multivariate procedure, which is based on the
absolute maximum of the observed mean vector. We first present the one-
sample formulation of the problem, and then extend it to the two-sample
problem. Finally, we describe our screening algorithm which repeatedly
performs the multivariate test with the goal of identifying DEGs.
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2.1 One-Sample Formulation
To explain the test developed in Kuelbs and Vidyashankar (2009), we first
recall some definitions from multivariate analysis. Let x be a vector in Rp.
For 1 ≤ ρ ≤ ∞, the `ρ norms are defined by

‖x‖ρ =





(∑
j≥1 |xj |ρ

) 1
ρ if 1 ≤ ρ < ∞,

max1≤j≤p |xj | if ρ = ∞

(see for example Friedman (1982)). We will refer to ||x||∞ as the sup-norm.
We introduce notation to describe our test statistic. We assume that

there are n arrays and p genes. Let Xi,j represent the expression level
of gene j from array i. Then, Xi = (Xi,1, ..., Xi,p)t represents the
expression data for array i. We assume that X1, ...,Xn are independent and
identically distributed (i.i.d.) random vectors with mean µ. Furthermore, let
X̄ denote the p dimensional vector of averaged expression levels; that is,
X̄ =

(
X̄1, ..., X̄p

)t, where X̄j = 1
n

∑n
i=1 Xi,j , j = 1, ..., p.

Let µ0 ∈ Rp be a p-dimensional mean vector. To test the null
hypothesis, H0 : µ = µ0, consider the test statistic of the form, Tρ ≡
‖√n

(
X̄− µ0

) ‖ρ. Under regularity conditions, Kuelbs and Vidyashankar
(2009) prove the asymptotic normality (in large p, small n framework) of√

n
(
X̄− µ0

)
. Now, let Σ denote the covariance matrix of the data, that

is cov (X1) = Σ. Then, informally, the asymptotic normality result gives√
n

(
X̄− µ0

) ≈ Np (0,Σ). Using the continuous mapping theorem gives
the asymptotic normality of Tρ,

Tρ ≈ ‖Np (0,Σ) ‖ρ. (1)

Of course, if the Xi are random samples from a multivariate normal
distribution, then these statements are no longer approximate; the
distributions are exactly equal to the specified norm of the corresponding
normal distribution. We focus on T∞, which we refer to as the sup-norm
(SN) statistic. One of the strengths of this procedure is that the results
continue to hold (in an asymptotic sense) even if the underlying distribution
is non-normal.

The statistic is based on the following intuitive idea. For each gene,
compute the average expression level across the replicates; assuming there
are p genes the resulting mean vector will be an element of Rp. When
concerned with finding differentially expressed genes it is natural to compute
the maximum of suitable “averages” of gene expressions. This argument
suggests using the sup-norm. In fact, simulation results presented in Kuelbs
and Vidyashankar (2009) suggest the superiority of the sup-norm over other
`ρ norms.

We comment on the relevance of the one-sample problem for microarray
data. As explained by Smyth (2004), microarray experiments where wild-
type and mutant labeled cDNA samples are competitively hybridized to
a single array result in a one-sample location problem. In the context of
identifying DEGs, we are then interested in testing the null hypothesis,
H0 : µ = 0. This hypothesis corresponds to testing for the equality of
expression levels between the mutant and wild type samples.

Clearly, for (1) to be useful in testing for DEGs we need to estimate Σ
accurately. Several authors have discussed the difficulty in estimating Σ in
large p, small n settings (Tsai and Chen, 2009). We use the shrinkage based
estimator of Ledoit and Wolf (2004) as developed by Strimmer and his co-
authors (Schafer and Strimmer, 2005; Opgen-Rhein and Strimmer, 2007).
The choice of our estimator of covariance matrix is dictated by good finite
sample properties as described in Ledoit and Wolf (2004). In particular, the
estimator is guaranteed to be positive definite. The algorithm is implemented
in both R language (corpcor) and Matlab language (covshrink), which are
freely available at http://strimmerlab.org/software.html.

Using (1) and the shrinkage estimator for the covariance matrix, we now
provide an algorithm for testing the null hypothesis that the mean of X1 is
zero, that is that the genes are not differentially expressed. This is a Monte-
Carlo algorithm used to approximate the distribution of ‖Np (0,Σ) ‖ρ. The
user would first decide on a value of ρ and level of significance α to use.

Again, for testing for DEGs, µ0 = 0. When ρ = ∞, we refer to this
procedure as the sup-norm (SN) test.

1. Compute the observed test statistic, Tρ.

2. Estimate the covariance matrix S, using shrinkage.

3. Generate B random vectors Y1,...,Yn ∼ Np(0, S); compute the
norm of these vectors, T ?

i ≡ ‖Yi‖ρ; finally compute the (α/2)
sample quantile q̂α/2 and the (1−α/2) sample quantile q̂1−α/2 from
T ?
1 , ..., T ?

B .

4. Reject if Tρ < q̂α/2 or if Tρ > q̂1−α/2.

Missing data, where the expression values for some genes in some
replicates are unavailable, is a common feature of microarray experiments.
One of the advantages of our methodology is that it is easily extended
to handle this situation. In this case, there are nj ≤ n observations for
each gene. And we define the averaged expression level for gene j as
X̄j = 1

nj

∑nj

i=1 Xi,j , j = 1, ..., p. Before, each component was scaled

by
√

n, and now each component is scaled by √nj . That is, we define
the vector of gene-wise averaged, centered and scaled expression levels
Xs =

(
Xs,1, ..., Xs,p

)t, where Xs,j =
√

nj

(
X̄j − µ0,j

)
, j = 1, ..., p.

Now, to test the null hypothesis, H0 : µ = µ0, we now use the statistic
Tρ ≡ ‖Xs‖ρ. We then approximate the null distribution as described above.
As discussed in Kuelbs and Vidyashankar (2009), the procedure continues
to work as long as the missing structure is modeled as missing completely at
random (Little and Rubin, 2002).

2.2 Two-Sample Formulation
The two-sample problem is a straight forward generalization of the one-
sample problem given above. In this case we have two independent
samples {Xi1 : 1 ≤ i ≤ n1} and {Xi2 : 1 ≤ i ≤ n2}; for fixed k,
{Xi1 : 1 ≤ i ≤ nk} are i.i.d. random vectors with mean µk and covariance
matrix Σk . Here Xijk represents the expression level of gene j from array i

in sample k and X̄k =
(
X̄1k, ..., X̄pk

)t, where X̄jk = 1
nk

∑nk
i=1 Xijk ,

j = 1, ..., p. To test the null hypothesis of equal sample means, H0 : µ1 =
µ2, which corresponds to testing for the equality of expression levels under
two conditions, we consider statistics of the form, Tρ,2 ≡ ‖X̄1 − X̄2‖ρ.
Again, using results from Kuelbs and Vidyashankar (2009), we have that
Tρ,2 ≈ ‖Np

(
0, 1

n1
Σ1 + 1

n2
Σ2

)
‖ρ.

To the test the null hypothesis we carry out the same basic steps as
described in the subsection above. First we use the shrinkage algorithm
described in Opgen-Rhein and Strimmer (2007) to estimate the covariance
matrices and then approximate the null distribution of the test statistic using
the Monte-Carlo algorithm given above.

2.3 Screening Algorithm
The strategy of our screening algorithm is to repeatedly apply the SN test,
‘throwing out’ genes that result in tests of accepting the null hypothesis and
keeping genes that result in rejecting the null hypothesis. In the algorithm
we use the notation Ii to denote the indicator for test i, indicating whether
the test detected a DEG among all of the genes in group i. Specifically,
Ii = 1 means the SN test rejected the null hypothesis for group i (Ii =
0 otherwise). There are certain parameters one needs to set to run the
algorithm: the (expected) initial dimension size (d0), the reduction factor
(r), and the final cutoff (pf ).

We now describe an example which explains the role of these parameters.
Assume the data consists of p = 2000 genes; set d0 = 100, r = 2, and
pf = 30. The value d0 = 100 means that in the first round of tests we will
divide the genes into 2000/d0 = 20 groups with an expected group size of
d0 = 100; the value of r = 2 means in each subsequent stage the expected
group size will be reduced by a factor of 2; finally, the value pf = 30 means
that the algorithm will run until the total number of remaining genes is less
than or equal to 30. In the first stage, randomly subset the genes into 20
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groups (with an average of 100 genes a group) and perform 20 SN tests on
these groups. Keep all of the genes in groups with Ii = 1, and throw out
the others. To start stage 2 take these remaining genes and divide them into
groups with expected size d0/r = 50; now repeat the process.

In practice one would set the parameters of the algorithm based on the
characteristics of the observed data; for instance, the number of samples, the
number of genes, and the variance of the data.

The structure of our algorithm is outlined below. The algorithm outputs
a reduced set of genes that ideally will contain all of the differentially
expressed genes. Notice in the update step, there is a check for the case
pu = pa. This case comes about if in the current stage the SN test for each
group rejects the null hypothesis, and no genes can be removed. If the true
number of DEGs is greater than the chosen cutoff, i.e. pd > pf , then it is
desirable for the algorithm to halt before the number of genes is reduced to
below pf . But it is also possible that this case arises because of the particular
assignment of genes. For example, suppose that there are ten groups and
10 DEGs. If the assignment is such that one DEG is placed in each of the
10 groups, then all 10 tests may (correctly) reject the null hypothesis. To
account for this situation, when pu = pa, we do a second allocation of the
genes and test if any genes can be removed after this second allocation. In
principle, a user could re-allocate any number of times before deciding the
set of genes cannot be reduced further.
Screening Algorithm

Input. Set pa = p, da = d0, count = 0. Continue to Step 1.

Step 1. (Random Allocation) Randomly allocate the pa genes to K ≡
dpa/dae groups. Continue to Step 2.

Step 2. (Test). Perform the SN procedure on each of the K groups. Continue
to Step 3.

Step 3. (Update) Remove all genes in groups with Ii = 0. Let pu denote the
updated number of genes (after removal).
if pu = 0

Stop. Output ∅ (declare that none of the genes are differentially
expressed).

elseif pu ≤ pf .

Stop. Output the set Gf , which consists of the labels for the
remaining pu genes.

elseif pu = pa.

if count = 0.

Update count = 1. Return to Step 1.

elseif count = 1.

Stop. Output the set Gf , which consists of the labels for the
remaining pu genes.

else

Update du = da/r. Set pa = pu, da = du, count = 0. Return to
Step 1.

3 SIMULATION STUDY
We begin by outlining the specifications used in the simulation
experiments. We then present results for the one-sample problem,
followed by results for the two-sample problem.

3.1 Specifications for the Simulation Studies
All of the Monte-Carlo experiments presented below are based on
5000 simulated data sets. In all cases, the size of the test is fixed
at α = .05 and B = 2000 samples are used to approximate
the null distribution. We generate data from multivariate normal
distributions. For simulations concerning the one-sample problem
, data is simulated from Np (µ,Σ); for the two-sample problem,
sample k is simulated from Np (µk,Σk), for k = 1, 2. We now
describe our choices for the mean vector and covariance matrix.

In the one-sample problem the mean vector is chosen as follows.
Let pd be the number of DEGs in the data set, which we will assume
all have a common mean µd 6= 0. The mean vector contains pd

non-zero elements and p − pd zeros, Hence, the mean vector is
µ = (µd, ..., µd, 0, ..., 0)t. Note that pd = 0 corresponds to the case
of no DEGs; with the corresponding mean vector µ = 0. For the
two-sample problem, only sample one contains DEGs, while sample
two contains all null genes. Thus, µ1 = (µd, ..., µd, 0, ..., 0)t, while
µ2 = 0.

We use experimental data to set the covariance matrices for our
simulations. Specifically, we use the leukemia dataset described
by Golub et al. (1999), which studies the gene expression in two
types of leukemia, acute lymphoblastic leukemia (ALL) and acute
myeloid leukemia (AML). We use the same pre-processing step as
described in Dudoit et al. (2002a) Section 3.1; leaving 3571 genes
from 72 patients, 38 ALL and 25 AML. On the remaining 3571
genes, we apply the standardization technique described in Section
3.3 of the same paper. We then separately estimate a covariance
matrix from the ALL group and the AML group, denoted ΣL and
ΣM , respectively. Specifically, we randomly permuted the 3571
genes and then estimated the covariance matrix using the shrinkage
algorithm (for correlations) of Schafer and Strimmer (2005). This
method produces two 3571 × 3571 covariance matrices which
are fixed throughout the paper. For a simulation study based on
p ≤ 3571 genes, we first fix the covariance matrix of appropriate
dimensions by considering the p × p upper sub-matrix of ΣJ

denoted ΣJ,p, J = L, M . That is, (ΣJ,p)l,m = (ΣJ)l,m, for 1 ≤
l, m ≤ p. Finally, for each simulated data set, we simulate n random
vectors from the p−dimensional normal distribution Np (µ,ΣI,p),
where µ is a specified p × 1 vector which represents the mean
expression level of the genes.

Throughout, Σ is set to be a constant multiple of ΣL,p , Σ =
vΣG,p. By taking different values of v , we will examine the role
of variances on the screening algorithm. In particular, v > 1 gives
a simple way for examining the effect of increased variance in the
data. Similarly, for the two-sample simulations, Σ1 = v1ΣL,p and
Σ2 = v2ΣM,p.

3.2 One-Sample Simulation Results
We consider simulation experiments related to the one-sample
problem. First we present results concerning the size and power of
the SN test. We then present results for the screening algorithm.

First we evaluate the size of the SN test under different conditions.
For size experiments, all of the genes are null, and thus we set µ =
0. We consider data based on n = 20 replicates and examine the
size as the number of genes increases from p = 20 to 100. The
result of the simulations are displayed in Figure 1. We observe that
in all cases the Type I error rates are close the nominal values of
α = .05.
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Fig. 1. Simulated size versus the number of genes (p), for different
covariance matrices vΣL,p. In all cases, there are n = 20 replicates.

Next we consider the power of the SN test; for power
experiments, the set of genes includes at least one DEG. We
consider experiments that examine the power under increasing
variance and increasing number of genes. The result of the
simulations are displayed in Figure 2. They show that the SN test is
very powerful in detecting a single DEG. With p = 800 total genes
(and only one DEG) the test correctly rejects the null hypothesis in
all 5000 experiments; with p = 1000 genes the test rejects the null
in 4960 of the experiments (see the results in Figure 2(b)).

We now present numerical results obtained by performing the
screening algorithm on simulated data sets. We recall that the
screening algorithm repeatedly applies the SN test, thereby reducing
the original set of genes to a set Gf . For a single data set, we
record two performance measures of the screening algorithm: the
number of retained DEGs (R) and the total number of genes after
the final run, |Gf |. For each experiment, we report the minimum,
maximum, and mean of R and |Gf | over the 5000 simulations.
We will clarify these ideas with a concrete example. Assume that
there are 2000 total genes, 10 DEGs, and that we set the cutoff
at pf = 30. Furthermore, assume that the algorithm continues to
run until |Gf | < pf . Ideally, after the algorithm has run, all 10
DEGs should remain in the final set Gf . We record the size of Gf

and the number of DEGs which remain in Gf . We reiterate that the
screening algorithm can end in three different ways: exit one occurs
when the algorithm runs until the cutoff is reached, 1 ≤ |Gf | ≤ pf ;
exit two occurs when the algorithm cannot reduce the number of
genes below pf , |Gf | > pf ; and exit three occurs when the
algorithm declares that all of the genes are null, Gf = ∅. We only
report R and |Gf | for those data sets which result in exit one or exit
two. In our simulation experiments all of the data sets contain 10
DEGs; additionally, the parameters of the screening algorithm are
fixed at (r, d0, pf ) = (2, 100, 30).

First we consider the impact of changing the mean for the DEGs.
In this experiment there are p = 2000 genes, 1990 of the genes have
mean zero while the remaining 10 DEGs have mean µd; we consider
µd = .5, 1, 1.5, and 2. With µd = .5, 71.82% of the simulated
data sets resulted in exit one, the remaining 28.18% resulted in exit
three; for the other values of µd all 5000 simulated data sets resulted
in exit one. The results of the simulations are displayed in Figure 3.
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(a) Simulated power versus the DE mean (µd), for different
covariance matrices vΣL,100.
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Fig. 2. Plots of simulated power. In all cases, there are n = 20 replicates
and one DEG among the total set of p genes. In Figure 2(a), the number of
genes is fixed at p = 100. In Figure 2(b), the covariance matrix is ΣL,p and
the DE mean is µd = 2

If µd = .5, the algorithm does not perform well; on average it only
retains one of the DEGs. However, with µd = 1.5, the algorithm, on
average, is retaining all 10 of the DEGs. With µd = 2, in all 5000
simulations, the algorithm retains all 10 of the DEGs.

Next we consider the impact of the total number of genes
present. In this case, µd = 2 is fixed and we considered p =
1000, 1500, 2000, 2500, and 3000 genes. In this experiment, the
algorithm ended in exit one and retained all 10 DEGs for every
simulated data set. Evidently, with µd = 2, the algorithm can handle
very high dimensions.

3.3 Two-Sample Simulation Results
In this section we consider simulation experiments related to the
two-sample problem. First we present results which study the size
and power of the SN test. We then present results for the screening
algorithm.

All of the experiments presented in this section use Σ1 = ΣL,p

and Σ2 = ΣM,p. First we evaluate the size of the SN test under
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Fig. 3. Performance of the screening algorithm as the DE mean (µd)
changes. In all cases there are n = 20 replicates, 10 DEGs, p = 2000
total genes, and Σ = ΣL,2000.

different conditions. In the first experiment, we consider data based
on n1 = 10 and n2 = 15 replicates and examine the size as the
number of genes increases from p = 100 to 500. In the second
experiment, we have n1 = 22 and n2 = 25 replicates and examine
the size as the number of genes increases from p = 30 to 100. The
result of the simulations are displayed in Figure 4. In all cases the
Type I error rate is close to the nominal value of .05.

Next we consider the power of the SN test; in these experiments
the sample sizes are fixed at n1 = 10 and n2 = 15. We consider
experiments that examine the impact of the total number genes, the
mean of the DEGs, and the total number of DEGs. The result of the
simulations are displayed in Figure 5. It is clear that the SN test is
very powerful in detecting even a single DEG.

We now consider the performance of the screening algorithm in
the two-sample setting. All of the experiments presented in this
section use Σ1 = ΣL,p and Σ2 = ΣM,p, and n1 = 10, n2 = 15.
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(b) n1 = 22, n2 = 25

Fig. 4. Simulated size versus the number of genes (p). In both cases, Σ1 =
ΣL,p and Σ2 = ΣM,p.

First we consider the impact of changing the mean for the DEGs.
In this experiment there are p = 2000 genes, 1990 of the genes have
mean zero while the remaining 10 DEGs have mean µd; we consider
µd = .5, 1, 1.5, and 2. With µd = .5, 65.42% of the simulated
data sets resulted in exit one, the remaining 34.58% resulted in exit
three; for the other values of µd all 5000 simulated data sets resulted
in exit one. The results of the simulations are displayed in Figure 6.
The results of this experiment are almost identical to the one-sample
analog. Specifically, with µd = .5 the algorithm does not perform
well; however, with µd = 2, in all 5000 simulations, the algorithm
retains all 10 of the DEGs.

Next we consider the impact of the total number of genes
present. In this case, µd = 2 is fixed and we considered p =
1000, 1500, 2000, 2500, and 3000 genes. Just as in the one-sample
analog, in this experiment, the algorithm ended in exit one and
retained all 10 DEGs in every simulated data set.
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4 DATA ANALYSIS
In this section we analyze data from a study of the apolipoprotein
AI (ApoAI) gene described in Callow et al. (2000). This data has
been previously analyzed by Smyth (2004); a tutorial for analyzing
the data set is available online as part of the LIMMA user’s manual
(Smyth et al., 2003). We normalize the data using the LIMMA
package as described in Smyth et al. (2003).

The ApoAI gene plays a central role in high density lipoprotein
(HDL) metabolism; see Williamson et al. (1992) and Plump et al.
(1996) for more detailed discussions of the ApoAI knockout model.
The Callow et al. (2000) experiment was designed to study the effect
of ApoAI deficiency on other genes in the liver. To this end, data
was collected on 8 ApoAI knockout mice and 8 control mice. For
each of these 16 mice, mRNA measurements were collected from
liver tissue. The RNA from each mouse was hybridized to a separate
array. The data set consists of 16 arrays with measurements on 5548
expressed sequence tags (ESTs).

Callow et al. (2000) identified eight ESTs (representing four
different genes) which are differentially expressed in the knockout
group versus the control group. Smyth (2004) lists the top fifteen
differentially expressed ESTs based on his LIMMA approach. Of
these fifteen, the top eight coincide with the ones identified in
Callow et al. (2000). In fact, Smyth writes “the top eight genes stand
out clearly from the other genes and all methods clearly separate
these genes from the others” (note that Smyth uses “gene” instead
of “EST”). Our screening algorithm identified eleven ESTs, which
included the eight ESTs identified in Callow et al. (2000).

5 DISCUSSION
Multivariate statistical procedures are useful for identifying DEGs
because they account for gene interactions. Incorporating gene
interactions enables multivariate tests to identify differentially
expressed genes, which marginally are not detectable using
univariate tests. In statistical terms, multivariate tests have improved
power compared to univariate tests. It is important to make the
distinction between classical multivariate analysis, where n > p,
and modern multivariate analysis, where n < p. In classical
multivariate analysis, Hotelling’s T 2 statistic is used for two sample
comparisons. For the two sample problem, Hotelling’s T 2 statistic
is defined as

T 2 ≡ n1n2

n1 + n2

(
X̄1 − X̄2

)t
S−1 (

X̄1 − X̄2

)
,

where S is the the pooled covariance estimator (Anderson, 2003).
The test is performed by comparing n1+n2−p−1

(n1+n2−2)p
T 2 to the F

distribution with numerator p degrees of freedom for the numerator
and n1 + n2 − p − 1 for the denominator. From the denominator
degrees of freedom, we see that this procedure breaks down when
p > n1 + n2. Several authors have adopted modifications to handle
this issue. For instance, Lu et al. (2005) combines Hotelling’s T 2

with a forward search algorithm, which restricts the total number
of identified genes to be less than n1 + n2 − 2. We suggest to
instead use a genuinely modern multivariate statistical test which
handles the case p > n1 + n2. Namely, we use the sup-norm
test recently proposed by Kuelbs and Vidyashankar (2009), which
was specifically developed for the large p, small n setting and is
asymptotically justified in this context.

In this paper we presented a novel multivariate approach to
identifying DEGs. We propose an algorithm which repeatedly
applies the sup-norm test to screen for DEGs. Our simulation studies
establish the validity of the sup-norm statistic in terms of Type I
error and power. With simulated data sets, the screening algorithm
retains the majority of DEGs under a variety of experimental
conditions. We also used our methodology to analyze the ApoAI
knockout experiment (Callow et al., 2000). Our algorithm identified
the biologically significant genes, as discussed by other authors
(Callow et al., 2000; Smyth, 2004). Additionally, our methodology
is easily adapted to handle missing data.
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(a) Simulated power versus the number of genes (p). Here pd = 1
with µd = 2.
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(b) Simulated power versus the DE mean (µd). Here p = 100 and
pd = 1.
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(c) Simulated power versus the number of DEGs (pd). Here p =
100 and µd = 2.

Fig. 5. Plots of simulated power. In all cases, n1 = 10, n2 = 15, and
Σ1 = ΣL,p and Σ2 = ΣM,p.
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(a) Number of retained DEGs (R) versus the DE mean (µd). The
minimum, maximum, and average (over the 5000 simulated data
sets) are all given.
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(b) Final number of genes (|Gf |) versus the DE mean (µd). The
minimum, maximum, and average (over the 5000 simulated data
sets) are all given.

Fig. 6. Performance of the screening algorithm as the DE mean (µd)
changes. In these simulations there are 10 DEGs and p = 2000 total genes.
Additionally, In all cases there are n1 = 10, n2 = 15, and Σ1 = ΣL,2000

and Σ2 = ΣM,2000
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