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Abstract

The quantitative polymerase chain reaction (qPCR) is a widely used tool for gene quanti-

tation and has been applied extensively in several scientific areas. The current methods used

for analyzing qPCR data fail to account for multiple sources of variability present in the PCR

dynamics, leading to biased estimates and incorrect inference. In this paper, we introduce a

branching process model with random effects to account for within reaction and between reac-

tion variability in PCR experiments. We describe, in terms of the observed fluorescence data,

new statistical methodology for gene quantitation. Using simulations, PCR experiments, and

asymptotic theory we demonstrate the improvements achieved by our methodology compared

to existing methods. This article has supplemental materials online.
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1. INTRODUCTION

The polymerase chain reaction (PCR) is a biochemical tool used to amplify the number of

copies of a specific DNA sequence. Quantitative PCR (qPCR) is an enhancement of PCR which

allows gene quantitation. A gene expression experiment begins with extraction of mRNA from a

tissue sample. The amount of mRNA is typically too small to be detected by standard instruments.

Reverse transcription is then used to convert the mRNA to cDNA. Finally, qPCR is used to amplify

the cDNA to a detectable level (Speed, 2004). To assess gene expression, the initial number of cDNA

molecules, or copy number, must then be estimated using the data from the amplified product. This

process is called quantitation, with the quantitation parameters denoting the mean number of DNA

molecules in the initial product and the efficiency of the process (defined formally in Section 3.2

below). Quantitation via qPCR is one of the most commonly used methods for gene expression

analysis with applications in diverse areas such as forensic science, virology, and parasitology (Ferré,

1998). The use of qPCR as an accurate tool for gene expression depends on the statistical validity

of the estimator of the copy number.

In this article we focus on the statistical analysis of data from a qPCR experiment used as

a gene expression tool. We propose a new design and a novel inferential methodology for quan-

titation, using branching processes with random effects. We establish the asymptotic validity of

our methodology via simulation and demonstrate its superiority using data from PCR experiments

from two distinct scientific disciplines. Compared to the currently used procedures, our method

yields point estimates with smaller relative bias and confidence intervals with accurate coverage.

The article is organized as follows. Section 2 provides background for PCR and qPCR. In

Section 3 we describe the data structures encountered in a typical PCR experiment and the sources

of variability associated with them. Additionally, we develop a hierarchical, non-homogenous binary

branching process model for describing the dynamics of PCR experiments. Section 4 contains the

main results of the paper, namely, generalized method of moments estimators for quantitation

parameters and their limit distributions. We emphasize that the asymptotic framework used in

this paper is not intended to understand the behavior of the reactions when infinitely many cycles

are run; rather, we seek to explain features that arise in a typical PCR from the behavior of the

limits of statistical quantities encountered in the data analyses. Thus, the asymptotic framework
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serves to set up standards, that are biologically meaningful, for comparing various estimators and

confidence intervals. In Sections 5 and 6, we use simulation studies data analysis to demonstrate

our procedure’s robustness to model assumptions and it’s superiority compared to other existing

methodologies. Section 7 contains concluding remarks. Proofs of technical results are in the

supplemental material.

2. SCIENTIFIC BACKGROUND FOR PCR AND QUANTITATION

In this section, we summarize the critical details of PCR, qPCR, and the related question of

quantitation. More detailed explanations of these concepts can be found in the literature (Mullis

et al., 1994; Ferré, 1998; Speed, 2004). PCR is a biochemical experiment used to amplify the number

of DNA molecules in a genetic material until data from 30-50 cycles are available. Theoretically, the

number of molecules doubles in every cycle (until saturation); however, in practice only a fraction

of the molecules within a given cycle duplicates. Hence, a supercritical Galton-Watson branching

process with a Bernoulli offspring distribution provides a natural model to describe the dynamics

of PCR (Kimmel and Axelrod, 2002; Lalam, 2009; Follestad et al., 2010). The probability of a

molecule duplicating is known as the efficiency of the reaction; one plus this probability gives the

amplification rate.

The amount of genetic material from a qPCR is measured via the intensity of the fluorescence

signal computed for every cycle of the reaction. The cycles of a PCR can be classified into three

phases: the initial phase, the exponential phase, and the plateau phase. Fluorescence data from

the initial phase is noisy and hence it is customary in the PCR literature to ignore data from these

initial cycles and only use data from the exponential phase. Figure 1, which plots fluorescence data

on the log scale from 32 reactions, illustrates these three phases. The relationship between the

number of DNA molecules (N) and the fluorescence intensity (F) is given by the formula

N =

(
c? × 9.1× 1011

AS

)
F (1)

where AS is the amplicon size, defined to be the size (measured in base-pairs) of the target DNA

sequence, and c? is the calibration factor, which represents the number of nanograms of double-

stranded DNA per fluorescence unit (Rutledge, 2004).
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We discuss two types of quantitation: absolute quantitation and relative quantitation. Absolute

quantitation refers to estimation of the copy number of a target gene, which requires accurate

knowledge of the parameter c?. Frequently, scientists are concerned with relative quantitation,

where the interest is understanding how much of a target gene is expressed relative to a so-called

house keeping gene (Skern et al., 2005). More generally, relative quantitation is concerned with

the estimation of the ratio of the copy numbers of a target gene to that of a reference gene, which

we call a calibrator. Under the assumption that c? is the same for both the amplifications, the

estimate of the ratio does not explicitly involve this parameter. Statistical questions addressed in

this paper concern inference for this ratio.

Existing techniques for quantitation involve a linear or non-linear regression model for the

fluorescence data. These methods are based on a statistic called CT , which essentially gives the

cycle at which the fluorescence crosses a user-specified threshold. In fact, the value of CT is

not an integer, but is computed by linear interpolation on the log-scale (Livak and Schmittgen,

2001). These techniques, used in the PCR literature, are empirical and ad hoc as opposed to the

mechanistic approach adopted in this paper. Furthermore, these methods do not use all of the

available data in the exponential phase for statistical analyses. The estimates of the standard error

provided by these techniques are usually incorrect because they do not account for all sources of

variation.

The branching process model proposed in this paper is a mechanistic model and is based on

the observed fluorescence intensity only and takes into account some of the shortcomings of the

existing methodologies.

3. DATA STRUCTURES AND STATISTICAL MODELS

A typical qPCR experiment can produce data from either 96 or 384 separate reactions, each

reaction occurring in a separate well. Repetition of the same PCR experiment in multiple wells,

under identical conditions, yields data that can be represented as {Fk,j : k ≥ 1, j ≥ 1}; that is, Fk,j

represents the fluorescence intensity from the jth cycle of the kth replicate. We will use the words

replicate and reaction interchangeably throughout the paper. Let Nk,j denote the number of DNA

molecules at cycle j of replicate k associated with the fluorescence intensity Fk,j and {Nk,j , j ≥ 0}
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denote the associated branching process. Let ma,k = E(Nk,0) and me,k = E(Nk,1|Nk,0 = 1).

3.1 Sources of variability and non-homogeneous models

Accuracy of inference (concerning the quantitation parameters) depends on identifying the

sources of variability and accounting for them in the methodology. In a PCR experiment, variability

is introduced at several stages of the experiment. First, we never know exactly the number of DNA

molecules for a given genetic material. Second, the variability in the accumulated product at each

cycle between replicates causes variability in the estimates of efficiency. Third, there are differences

in efficacy between various cycles within a replicate (Saha et al., 2007).

While there are several causes for between replication variability, one of the dominant factors

is the pipetting error (Curry et al., 2002; Super-Array, 2010). Pipetting error is caused due to

the changes in the volume of PCR supplies that is pipetted from the master mix into the wells.

The changes in efficiency within a reaction, observed at every cycle, are due to various biochem-

ical reasons. Not much information concerning this variability can be obtained from fluorescence

intensities alone. Hence while non-homogeneous models can be proposed, it is difficult to ascertain

the practical effect of such modeling. For alternate approaches when more information is available

see (Saha et al., 2007) and the references therein.

To address these issues, we represent the initial number of molecules as a random variable

whose variance determines the precision of the estimator of ma,k. Since Nk,0’s are unobservable,

and estimators are based on the accumulated product, variability in the efficiency of the reaction

affects inference. Information concerning between reaction variability in efficiency can be extracted

by using either replicated or dilution data (see 3.2 below for more details on these terms). In this

paper, we account for between reaction variability, by modeling the efficiency of the exponential

phase of the kth reaction as a random variable pk with some distribution G on (0,1). During the

exponential phase, experimental evidence suggests that the support of G lies in the interval (1−ε, 1)

for some “small” ε (Livak and Schmittgen, 2001). Thus, the model proposed for describing PCR
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dynamics is,

pk
i.i.d.∼ G(.), 1 ≤ k ≤ r(n), (2)

Nk,0
independent∼ Hk(.), 1 ≤ k ≤ r(n), (3)

where given Nk,0 and pk, we have that {Nk,j : j ≥ 1} is a binary branching process initiated by

Nk,0 ancestors with splitting probability (i.e. efficiency) pk. That is,

Nk,j+1|Nk,j , pk ∼ Nk,j + Bin(Nk,j , pk), for all j ≥ 0, (4)

where Bin(Nk,j , pk) is a binomial random variable with parameters Nk,j and pk. The sequence

{pk : k ≥ 1} representing the splitting probability is assumed to be independent of the sequence

{Nk,0 : k ≥ 1} of initial number of molecules. We call this model a branching process incorporating

random effects. Let pe = E(pk) and me = pe + 1. We call pe the marginal efficiency of PCR.

3.2 Designs and Data Structures

Assumptions on Nk,0 depend on the data set. In a replicated design, where the concentration

of the genetic material is fixed across replicates, {Nk,j , 1 ≤ j ≤ r(n)} are i.i.d. random variables

and ma,k = ma for all k ≥ 1. In the case of dilution data, the initial concentration is diluted in a

systematic way by certain amounts denoted by the constants dk. In this case, Nk,j are conditionally

independent branching processes initiated by independent initial random variables, not i.i.d. initial

random variables.

We will use the notation V ar(Nk,0) = σ2
ad

2
k, E(N t

k,0) = mt,0d
t
k, t = 3, 4, for all k ≥ 1. The

constants dk appear in our analysis through Dt(n) = (r(n))−1
∑r(n)

k=1 dt
k for t = 1, 2, 3, 4. The

following condition concerns the stability of the sequence Dt(n) as n increases.

Condition 1 (Regularity of dilution constants). Assume that Dt(n) → Dt > 0 as n → ∞ for all

t = 1, 2, 3, 4. Furthermore, assume that
∑

k≥1 k−2d2t
k < ∞ for t=1, 2.

We will assume that condition 1 holds throughout the paper. The condition on D4(n) and the

convergence of
∑

k≥1 k−2d4
k are needed for studying the consistency of the variance estimate. For

replicated data, Dt(n) = 1 for all t=1,2, 3, 4.
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3.3 Inferential Problem

Our primary objective is inference concerning the quantitation parameters, (ma, pe). We also

consider estimation of σ2
a since it is needed for standard error calculations. As discussed previously,

it is assumed, and experimentally verified (Goll et al., 2006), that the amount of fluorescence is

proportional to the number of DNA molecules; that is Nj = cFj , where, using (1), c = c?×9.1×1011

AS
.

The methodology described in this paper uses the observed fluorescence Fj .

4. INFERENCE FOR COPY NUMBER

In this section we describe our inferential results for the quantitation parameters. Section 4.1

describes the moment calculations and the role of martingales in our analysis. Sections 4.2 and

4.3 discuss absolute and relative quantitation, respectively. Section 4.4 is concerned with bias

correction while Section 4.5 contains inferential results concerning efficiency. Finally, Section 4.6

deals with estimation of variances.

As explained before, asymptotic theory helps to identify features that occur in PCR when the

number of cycles and the number of replicates increase. We emphasize that if efficiency is known,

then one can allow only the number of replicates to increase to infinity, as is standard in statistical

large sample theory. However, since PCR efficiency is unknown and is critical for inference, we

can extract its behavior assuming we have a large number of DNA molecules. This is satisfied in

the PCR problem since even after ten cycles, the sample size for inference about PCR efficiency is

substantial. This phenomenon is studied in the branching process literature for estimation of the

offspring mean via large deviations (Ney and Vidyashankar, 2003).

4.1 Moments and Martingales

It is instructive to express the model using the standard branching process recursion (Athreya

and Ney, 1972)

Nk,j+1 =
Nk,j∑

l=1

ξk,j,l, (5)

where the binary random variable ξk,j,l represents whether the lth molecule in the jth cycle of the

kth reaction duplicates or not. In terms of the random variables ξk,j,l, our assumption states that

for every fixed k and pk, the random variables are i.i.d. with distribution P (ξk,j,l = 2|pk) = pk, and
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P (ξk,j,l = 1|pk) = 1 − pk. Thus, E(ξk,j,l|pk) = 1 + pk ≡ mk and V ar(ξk,j,l|pk) = pk(1 − pk) ≡ σ2
k.

We will use the notation Ek(.) to denote the conditional expectation E(.|pk) and V ark(.) to denote

the conditional variance V ar(.|pk). Hence, it follows that Ek(Nk,j+1) = Ek(Ek(Nk,j+1|Nk,j)) =

mkEk(Nk,j). Iterating the identity, we have Ek(Nk,j+1) = mj+1
k madk. In the case of fluorescence

data, using (1) it follows that Ek(Fk,j+1) = c−1mj+1
k madk. Thus, conditioned on the random effect

pk, Vk,j ≡ m−j
k Nk,j is a positive martingale sequence with respect to the sigma field containing

information up to (j − 1) cycles and the value of the random effect. Hence, as j → ∞, Vk,j

converges to V ?
k , where V ?

k > 0 (see Athreya and Ney (1972)). Furthermore, since Vk,j has uniformly

bounded marginal and conditional moments of at least order four (see the supplemental material),

the sequence {V 2
k,n : n ≥ 1} is uniformly integrable and hence Vk,n converges in L2 to V ?

k .

The moments of the random variable V ?
k are needed for deriving the generalized method of

moments estimator and for comparing the estimators in terms of their variances. It is easy to see

that the marginal and the conditional means of V ?
k coincide and are given by madk. However, the

marginal and conditional variances are different. The conditional variance of V ?
k is V ark(V ?

k ) =

madk
σ2

k
mk(mk−1) + σ2

ad
2
k while the marginal variance is given by ω2

k = madkE(1−p1

1+p1
) + σ2

ad
2
k. The

marginal variance of the limiting random variable V ?
k depends on the reaction only via the dilution

factor used in that reaction.

4.2 Absolute Quantitation

Information about ma is contained both in Nk,0 and in V ?
k . Let us assume, for the moment

that dk = 1. If one can obtain a random sample of size r from Nk,0, then the resulting sample

mean is an unbiased estimator of ma. The variance of this estimator is then r−1σ2
a and the problem

would be completely resolved. However, since it is not possible to obtain observable samples from

Nk,0, one could use instead the sample mean of a random sample from V ?
k to estimate ma. The

variance of this estimator would be r−1(σ2
a + maE(1−p1

1+p1
)). Since V ?

k are unobservable, once again

this recipe is not feasible. The discussion however suggests that if one were to average observable

data over replicates then consistent estimators of ma may exist. Since one can obtain fluorescence

data at every cycle, it is natural to use data from the cycles in the exponential phase to obtain

estimators of ma. Thus, the first step is to identify cycles belonging to the exponential phase i.e.,
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cycles beyond CT .

Let τk and nk denote the first and last cycles of the exponential phase, respectively, in the kth re-

action. Then, the cycles in the exponential phase of that reaction can be denoted by τk, τk+1, · · ·nk.

To make the conditions more transparent when studying asymptotics, we will take nk = n and

τk = τ . This does not entail any loss of generality and also minimizes cumbersome notation. In

our data analysis, we do not make this assumption.

Since more than one cycle is involved during the exponential phase, we consider the total

accumulated fluorescence during the exponential phase, namely

Yk,n =
n∑

j=τ

Fk,j . (6)

Our formulation of the inference problem in terms of the generalized method of moments technique

will involve the behavior of Yk,n and not Fk,n . The proposition below describes the asymptotic

behavior of Yk,n for every reaction k.

Proposition 1. Under the assumptions of our model, conditioned on the random effect pk, with

probability one

lim
n→∞

Yk,n

mn
k

= c−1(
mk

mk − 1
)V ?

k . (7)

Motivated by the above proposition, we consider the following generalized method of moments

estimator of ma, given by

m̃a,n =
c

r(n)D1(n)

r(n)∑

k=1

p̃k,n

m̃n+1
k,n

Yk,n, (8)

where p̃k,n is an estimator of the efficiency of the reaction for the kth reaction and m̃k,n = 1 + p̃k,n.

The estimator takes into account the variability in amplification rates between cycles and scales

the product from the kth replicate by the amplification rate of that reaction. The factor c is

needed to convert the fluorescence information into number of molecules. As one would expect, the

asymptotic properties of m̃a,n depend on the properties of the estimator of efficiency. While several

estimators for efficiency are available, we use the weighted conditional least squares estimator of

the reaction efficiency since it is based on the total accumulated fluorescence during the exponential

phase; in fact, it is the non-parametric maximum likelihood estimator (MLE) (Guttorp, 1991). The
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estimator is given by,

p̃k,n =

∑n−1
j=τ (Fk,j+1 − Fk,j)∑n

j=τ Fk,j
=

Yk,n − Fk,τ − Yk,n−1

Yk,n−1
. (9)

Theorem 1. Assume that the dilution constants satisfy condition 1. Let the number of replicates

r(n) be such that r(n)n−1 → 0 as n → ∞. Then, m̃a,n is a strongly consistent estimator of ma.

Furthermore,
√

r(n)D1(n)(m̃a,n −ma)
d→ H, (10)

where H ∼ N(0, σ2
L), with σ2

L = maE(1−p1

1+p1
) + DLσ2

a and DL = D1D
−1
2 .

Thus, it follows from the theorem that

m̃a,n
¦∼ N(ma,n,

σ2
L

r(n)D1(n)
). (11)

When p1 ≡ 1, then the number of molecules exactly doubles in each cycle, and the only variation

in the estimation comes from the variability in the initial amount of genetic material. If σ2
a = 0,

then one can quantitate exactly and the results reduce to classical results from the PCR literature.

Of course, neither of these are feasible and the above theorem shows the precise nature of the

variability in the quantitation process, providing a decomposition along the lines of classical analysis

of variance. Finally, for the replicated data structure we have D1(n) = 1 and DL = 1; and hence

the limiting variance does not involve the dilution parameters.

4.3 Relative Quantitation

In relative quantitation, we have two sets of genetic material, the calibrator and the target. We

will add a subscript C and T to our notation to distinguish between data collected from calibrator

and target materials. Hence Fk,j,C and Fk,j,T will represent the fluorescence from the jth cycle of

the kth reaction from the calibrator and target materials, respectively. The unobservable branching

process associated with these fluorescence data are denoted by Nk,j,C and Nk,j,T respectively. Let

E(Nk,0,C) = ma,Cdk and E(Nk,0,T ) = ma,T dk. Let σ2
a,Cd2

k and σ2
a,T d2

k denote the variance of N0,C

and N0,T , respectively. To complete the description of the model, we assume that, for I = C, T ,
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{pk,I : k ≥ 1} is a collection of independent random variables with distribution GI(.) and support

(1− εI , 1).

In relative quantitation, the object of interest is R, where R = ma,T

ma,C
. Analogous to the absolute

quantitation case (see (9)), we define the non-parametric MLE of the reaction efficiency as follows:

p̃k,n,C =
Yk,n,C − Fk,τ,C − Yk,n−1,C

Yk,n−1,C
, p̃k,n,T =

Yk,n,T − Fk,τ,T − Yk,n−1,T

Yk,n−1,T
. (12)

This yields, for I = C, T , m̃k,n,I = 1 + p̃k,n,I . Hence, one can now estimate the ratio R using

R̃n = m̃a,n,T

m̃a,n,C
, where

m̃a,n,T =
1

r(n)

r(n)∑

k=1

p̃k,n,T

m̃n+1
k,n,T

Yk,n,T , m̃a,n,C =
1

r(n)

r(n)∑

k=1

p̃k,n,C

m̃n+1
k,n,C

Yk,n,C . (13)

Theorem 2. (Relative Quantitation) Under the assumptions of Theorem 1, R̃n is a strongly con-

sistent estimator of R. Furthermore,

√
r(n)D1(n)(R̃n −R) d→ G2, (14)

where G2 ∼ N(0, σ2
R). The limiting variance σ2

R is given by σ2
R = R2(σ2

L,T +
σ2

L,C

m2
a,C

), where

σ2
L,I = ma,IE(

1− p1,I

1 + p1,I
) + DLσ2

a,I , I = C, T, (15)

and DL is as in Theorem 1.

4.4 Bias Correction

The estimator of ma proposed in Section 4.2 can be improved by accounting for the cycles

during the noisy initial phase. To address this issue, we observe that the mean fluorescence during

the exponential phase of the kth reaction is given by c−1mn+1
k (mk − 1)−1(1 − m

τ−(n+1)
k ). Since,

(1− m̃
τ−(n+1)
k,n ) converges to one exponentially fast, one can show that the bias corrected estimator

m̃(b)
a,n =

c

r(n)D(n)

r(n)∑

k=1

p̃k,n

m̃n+1
k,n

(1− m̃
τ−(n+1)
k,n )−1Yk,n, (16)
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inherits the asymptotic properties of m̃a,n. For this reason, we use and recommend this estimator

for data analysis.

4.5 Inference for PCR Efficiency

Sections 4.2 and 4.3 show that inference for quantitation depends critically on the estimator of

the experiment efficiency, both conditional and marginal. The conditional efficiency is useful for

quantitation purposes and is estimated as the conditional weighted least squares estimator given

in (9). The following proposition describes the asymptotic limit distribution of p̃k,n.

Proposition 2. Under the assumptions of our model, for every fixed k,

√
Yk,n−1(p̃k,n − pk)

d→ H2, (17)

where P (H2 ≤ x) =
∫ 1
1−ε Φ( x

t(1−t))dG(t).

The marginal efficiency, which is helpful in determining the efficiency of the PCR equipment

and the related question of design of experiments, is defined to be Ep1. The estimator of marginal

efficiency, is obtained by averaging the reaction efficiencies and is given by

p̃n,pool =
1

r(n)

r(n)∑

k=1

p̃k,n. (18)

Theorem 3. Under the assumptions of Theorem 1, p̃n,pool is a strongly consistent estimator of the

overall efficiency of the PCR, namely E(p1). Furthermore,

√
r(n)(p̃n,pool −E(p1))

d→ H1, (19)

where H1 ∼ N(0, σ2
G), where σ2

G is the variance of the random variable p1.

4.6 Estimation of Variances

We now focus on the estimation of limiting variances σ2
L and σ2

a. Set

σ̃2
L,n =

c2

r(n)D1(n)

r(n)∑

k=1

(
p̃k,n

m̃n+1
k,n

Yk,n − m̃a,ndk)2, (20)
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and

θ̃1,n =
1

r(n)

r(n)∑

k=1

1− p̃k,n

1 + p̃k,n
θ̃2,n =

1
r(n)

r(n)∑

k=1

p̃k,n

1 + p̃k,n
. (21)

Theorem 4. Under the assumptions of Theorem 1, σ̃2
L,n is a consistent estimator of σ2

L. Further-

more, θ̃1,n and θ̃2,n are consistent estimators of E(1−p1

1+p1
) and E( p1

1+p1
), respectively.

An immediate consequence of Theorem 4 is the following corollary concerning consistent esti-

mation of σ2
a.

Corollary 1. Define

σ̃2
a,n =

σ̃2
L,n − m̃a,nθ̃1,n

DL,n
, (22)

where DL,n = D2(n)D−1
1 (n). Then, σ̃2

a,n is a consistent estimator of σ2
a.

5. SIMULATION EXPERIMENT

In this section we describe simulation results to evaluate the performance of the proposed

methodology and compare it with other procedures studied in the literature. The results in this

section are based on 5000 simulations. Table 2, which summarizes these results, includes both the

mean value of the point estimate and the variance of the point estimate over the 5000 simulations;

the Monte Carlo error of the point estimate can either be evaluated as this variance value or its

square root. Similarly, the Monte Carlo error for the coverage probabilities is readily assessed. For

example, the estimated coverage probability of a true 95% confidence interval will have a simulation

accuracy of approximately 0.6% (1.96
√

.05(.95)/5000 = 0.006)

5.1 Data Generation

We generate data from three different models. We use the notation X ∼ Bern(p) to refer to

a binary random variable on {1, 2}, with P (X = 2) = 1 − P (X = 1) = p. The first model is an

example of the random effect model proposed in the paper; specifically we use a beta distribution

to describe the random effect.

Model 1. (Random effects). For I = C, T , let Fk,j,I = Nk,j,I , where Nk,j,I has offspring distribution

Bern(pk,I), with pk,I ∼iid Beta(90, 10).
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We also address the robustness of our procedure to model assumptions, namely the constancy

of efficiency across cycles and the constancy of c. The PCR literature argues that the efficiency

of reactions changes between cycles (Saha et al., 2007). We study the impact of varying efficiency

with the following model.

Model 2. (Random environments). For I = C, T . Fk,j,I = Nk,j,I , where Nk,j,I has offspring

distribution Bern(pk,j,I), with pk,j,I ∼iid Beta(90, 10).

It is difficult to quantify the magnitude of variability in c within and between reactions. To

identify how this variability can affect our results, we consider the following model.

Model 3. (Random fluorescence coefficient). For I = C, T . Fk,j,I = ck,j,INk,j,I , where Nk,j,I has

offspring distribution Bern(pk,I), with pk,I ∼iid Beta(90, 10). And ck,j,I ∼ gamma(1, 10−3), i.e.

Eck,j,I = 1 and var(ck,j,I) = 10−3.

In all three models, Nk,0,T ∼ Poiss(103) and Nk,0,C ∼ Poiss(102); hence the true value for

relative quantitation is 10. We use the Beta(90, 10) distribution for the reaction efficiencies; this

distribution has mean .9 and variance ≈ 8.9109 × 10−4. These values are similar to values for

means and variances of computed efficiencies across different experimental reactions. We considered

simulation experiments over a wide variety of parameters and the specific parameters of the beta

distribution do not seem to impact the overall conclusions (results not presented).

All of the results are based on n = 20 cycles and r(n) = 20 replicates. For the branching

process estimator, generations 15 to 20 are used. The standard curve method requires the use of

standards. In each simulation three replicates of a five fold dilution series were used to form the

standard curve. Here, the initial number for the dilution series is Poisson distributed with means

80, 400, 2000, 10, 000 and 50, 000.

5.2 Estimators and Discussion of Results

We compare four estimators: branching process estimator proposed in this paper, the standard

curve based estimator, the comparative CT estimator, and the adjusted comparative CT estimator.

Table 2 contains a summary of these experiments. Both the standard curve and comparative CT

estimators are described in the ABI User’s Manual (ABI, 2001). We briefly discuss the adjusted
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comparative CT estimator. The comparative CT method assumes perfect doubling for both the

target and calibrator and estimates R using the formula R̂ = 2CT,C−CT,T , where CT,C is the CT

value for the calibrator and CT,T is the CT value for the target. In the presence of replicates,

we use the averaged values of CT,C and CT,T in the above formula for R̂. Researchers (Guescini

et al., 2008) have criticized the assumption of perfect doubling and have suggested replacing 2

with estimated efficiency. Accordingly, we consider an adjusted comparative CT estimator, which

estimates the efficiency of the reaction from the observed fluorescence data. For details, regarding

these CT -based estimators, see the supplemental material.

Since the asymptotic behavior of the estimators is unknown for the CT -based methods, we use

the bootstrap method (by resampling replicates) to construct confidence intervals for relative quan-

titation. All confidence intervals presented are 95% confidence intervals; all bootstrap confidence

intervals are based on 2000 bootstrap samples. The bootstrap sample size was taken to be r(n).

The comparative CT method does not perform well under any of the three models. Interestingly,

this comparative CT method is still one of the most frequently used estimators for relative quan-

titation (Guescini et al., 2008). In contrast, the branching process, standard curve, and adjusted

comparative CT methods perform well under all three models in terms of bias. However, the mean

square error of the branching process method is smaller than all other methods. The increased

variability present in Model 2 and Model 3 is reflected in increased variance of the point estimate

and increased length of the confidence intervals.

In the presented simulations, the adjusted CT estimator performs nearly as well as the branching

process method. We note that this is the case because the parameters were chosen so that the bias in

the estimates are not magnified. We reiterate that raising the estimated efficacies to the respective

powers of CT,C and CT,T is too simplistic. While simulation experiments can be constructed to

emphasize this point, analysis of PCR data from parasitology, given in Section 6, actively illustrates

the issue.

Overall, the branching process method performs well, in terms of point estimates, mean squared

error, and confidence interval coverage, in all three models. These results are important because

they suggest that our methodology is robust to model assumptions. In particular it is robust to the

assumption of a constant splitting probability (in a given replicate, across cycles). The confidence
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intervals based on the t distribution have an accurate coverage (closest to the nominal 95%).

It is informative to notice that when pk = 1 for all k, then Beta(α, β) distribution with param-

eters (1, 0) or a “very small” βα−1 will all yield “ doubling of DNA” between cycles. Indeed, the

comparative CT method is based on this assumption. The adjusted comparative CT and our branch-

ing process estimators are based on the assumption that V ar(c) = 0. However, when V ar(c) > 0

the results show that the branching process estimator is better behaved (in terms of mean square

error) than the estimator based on adjusted comparative CT .

6. ANALYSIS OF EXPERIMENTAL DATA

In this section we consider the analysis of two experimental data sets, both generated from a

ABI Prism 7700 Sequence Detection System. In both experiments, we know the true value for

relative quantitation (up to experimental error). We devised the following simple and convenient

idea for comparing multiple estimators for relative quantitation: start with a target and dilute it

by a known factor R, and call the resulting product the calibrator. Then the ‘true’ answer for

relative quantitation is given by the factor R. As before, all bootstrap confidence intervals are

computed based on 2000 bootstrap samples (where the replicates are re-sampled). Below we give a

more detailed description of how the branching process estimator is computed for the experimental

data. We then describe the two experiments and discuss the results of the data analysis.

6.1 Branching Process Method

Our methodology requires identification of the exponential phase. As discussed above, we allow

the starting cycle (τk,I) and the ending cycle (nk,I) to differ for each replicate (for both the target

and calibrator). The strategy is to choose those cycles which yield a fluorescence of at least F ? and

per-cycle amplification of at least mc. The following algorithm identifies the cycles of data belonging

to the exponential phase, for each replicate k for target and calibrator. For the algorithm, we define

γk,I ≡ inf
{
j : FkjI > F ?

}
, for I = T, C. Then for each replicate, for both the target and calibrator,

we run the following algorithm. Initialization: 1) Add cycles γk,I , γk,I + 1, 2) Set i = γk,I + 1.

While loop: While Fk,i+1,I/Fk,i,I > mc 1) Add cycle i + 1, 2) Update i to i + 1. In our analysis, we

use mc = 1.5 and F ? = 0.2, which is the default for the ABI machine.

Let rT and rC denote the number of replicates for the target and the calibrator. After
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identifying the exponential phase, we compute the bias corrected estimator (see (16) ) R̃ =
(

1
rT

∑rT
k=1 V̂k,T

)(
1

rC

∑rC
k=1 V̂k,C

)−1
, where the quantities V̂k,I represent a scaled value of the to-

tal fluorescence in the exponential phase for each replicate, namely

V̂k,I =
p̃k,nkI ,I

m̃nkI+1
k,nkI ,I

(
1− m̃

τkI−(nkI+1)
k,nkI ,I

)−1




nkI∑

j=τkI

Fk,j,I


 .

6.2 Luteinizing hormone

We first consider a qPCR experiment where the target material is luteinizing hormone (LH)

taken from a mouse pituitary gland; the importance of LH in the study of the human menstrual

cycle is discussed in Tien et al. (2005). This data set consists of 16 replicates of two dilution sets,

denoted LH1 and LH2; the LH2 product was obtained by diluting the LH1 product by a factor of

2.9505. In this data analysis we proceed as if LH1 is the target group and LH2 is the calibrator

group. Thus, the desired answer for relative quantitation is 2.9505. To compute the estimator for

the standard curve, fluorescence data from another product is required. In this case, the standard

curve was computed using an eight point dilution series of the hormone prolactin (PRL) (this was

also obtained from a mouse pituitary gland).

Graphs of the fluorescence data, both for each individual reaction and for the mean over all

reactions, are displayed in Figure 1. We recall that the branching process method (as described

in the above subsection) involves obtaining a scaled value of the sum of the fluorescence from

each replicate, and then averaging these numbers. These scaled values V̂k are also plotted in the

figure. In our analysis we excluded data from one of the reactions for LH2, since it did not reach

a detectable level. Similarly, we excluded data from an LH1 replicate since its CT value was much

larger than those of other replicates. The results of this analysis, which are based on 15 replicates

from both LH1 and LH2, are summarized in Table 1.

6.3 Strongylus vulgaris

We consider a second experimental data set, where the target material is Strongylus vulgaris

(S.vulgaris) ribosomal DNA; the importance of designing PCR assays for S.vulgaris in the field of

equine parasitology is discussed in Nielsen et al. (2008). This data set consists of ten replicates of
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two dilution sets, denoted SV1 and SV2; the SV2 product was obtained by diluting the SV1 product

by a factor of ten. Thus, the desired answer for relative quantitation is 10. A figure analogous to

Figure 1 for this data set is in the supplemental material. For this data set we compare the analysis

using the branching process method and the comparative CT method (we do not have appropriate

data for computing the standard curve estimator). The results of this analysis are summarized in

Table 1.

6.4 Discussion of the Results

From the data analysis, it is clear that the proposed branching process method using replicate

data yields point estimates with smaller bias than other methods. Furthermore, even though the

confidence intervals are wider, the simulation results suggest that they provide nominal coverage.

To wit, the confidence intervals for the CT method have poor coverage properties in our simulation

studies; this is because the methodology under estimates the variability in the data. In the S.vulgaris

example, the confidence interval based on the CT method and the adjusted CT method does not

include the true value of the parameter. It should be noted that there is no asymptotic justification

for the use of bootstrap confidence intervals for the CT method or the adjusted CT method. The

S. vulgaris example is telling, because the efficiency of the target and the calibrator groups are

very different; namely, the average efficiency for the target group is ≈ 0.70 compared to an average

efficiency for the calibrator group of ≈ .94. Because of these differences in efficiency, the adjusted

comparative CT method performs poorly. The branching process estimator is unaffected by the

differences in efficiency between the two groups, because it scales each reaction by a separate

estimate of efficiency.

7. DISCUSSION

In this work we utilized the branching process approximation of PCR, which provides a natural

model for the dynamics of the reaction. We also used the availability of replicates, provided by a

multiple well plate, to propose a new replicated design for quantitation experiments. We incorpo-

rated a random effect model to account for the between replicate variability. Finally, combining

these components, we developed a novel generalized method of moments approach for inference con-

cerning the quantitation parameters. We established strong consistency and asymptotic normality
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of the resulting estimators. The simulation studies evaluated the behavior of our methodology

under scenarios that are considerably different from the assumed model and illustrated its robust

behavior. More importantly, in two controlled dilution experiments, our methodology outperforms

existing estimators.

qPCR is considered the “gold standard” for gene expression tools (Lefever et al., 2009) and, in

addition to its frequent stand-alone usage, it is used to validate the results from other expression

tools such as microarrays and next generation sequencing. In fact, it has been used successfully

for the important question of discovering up/down-regulated genes (Pridgeon et al., 2010). Thus,

proper data analysis for qPCR experiments is of great scientific importance. Quantitation methods

based on a branching process model with random effects offer great promise relative to CT based

methods, which fail to account for the variability in the dynamics of the process. For a given

reaction, assuming a branching process model with constant efficiency is admittedly somewhat

unrealistic. However, this assumption is made for theoretical developments only. Establishing that

the proposed methods work without such an assumption seems to be difficult.

We emphasize that assumption of constant efficiency is approximately true within the expo-

nential phase and, like most quantitation methods, our estimator uses data from only this phase.

Based on the accuracy of our estimator using experimental data and simulation results, it is clear

that the statistical methods presented here are useful.

SUPPLEMENTAL MATERIALS

Proofs and Numerical Results: This document includes a detailed discussion of the compar-

ative CT estimators, proofs for the asymptotic results, and additional figures for the data

analysis. (InfQuantSuppl.pdf).
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Figure 1: LH experiment. (a) plot of log fluorescence versus cycle number (log Fj vs. j) for all 16
replicates of LH1 (in blue) and all 16 replicates of LH2 (in red); (b) the mean and variance (taken
over the 15 replicates, which were retained for the data analysis, at each cycle) of log fluorescence
versus cycle number for LH1 (blue) and LH2 (red); (c) plot of V̂k (×105) versus replicate number
for LH1 (+) and LH2 (o).
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Luteinizing Hormone
BP CT method Std. Curve Adj CT

R̂ 2.8221 3.3108 3.5558 3.9567
GCI [1.8624, 3.7817] . . .
tCI [1.7719, 3.8722] . . .
BCI [1.6870, 3.6013] [2.7935, 3.7477] [2.8646, 4.1355] [2.9024, 5.4157]

S.vulgaris
BP CT method Adj CT

R̂ 10.1793 6.3622 303.1662
GCI [2.8686, 17.4900] . .
tCI [1.7414, 18.6172] . .
BCI [1.0446, 15.7493] [5.2733, 7.3176] [29.7583, 892.6178]

Table 1: Summary of data analysis for the luteinizing hormone (LH) and S.vulgaris (SV) experi-
ments. R̂ gives the point estimate for relative quantitation; the target value is 2.9505 for the LH
experiment and 10 for the SV experiment. All confidence intervals have nominal 95% coverage.
BCI refers to the bootstrap confidence interval; GCI refers to the confidence interval based on the
asymptotic Gaussian limit; and tCI refers to the confidence interval based on the t distribution.
Adj CT represents the adjusted comparative CT method.

22



Model 1
BP SC CT A-CT

Point mean 10.00 9.92 12.15 10.07
Point var 0.06 0.66 0.82 0.06
B Cov 0.93 0.85 0.37 0.91

B Mean 0.91 2.47 3.44 0.93
G Cov 0.94 . . .

G Mean 0.93 . . .
t Cov 0.95 . . .

t Mean 1.00 . . .
Model 2

BP SC CT A-CT
Point mean 10.03 9.98 12.09 10.06
Point var 0.38 0.14 0.15 0.43
B Cov 0.93 0.85 0 0.93

B Mean 2.28 1.13 1.48 2.50
G Cov 0.94 . . .

G Mean 2.34 . . .
t Cov 0.95 . . .

t Mean 2.49 . . .
Model 3

BP SC CT A-CT
Point mean 10.08 9.89 12.15 9.93
Point var 1.20 0.66 0.83 3.35
B Cov 0.93 0.84 0.38 0.92

B Mean 4.17 2.48 3.47 6.98
G Cov 0.94 . . .

G Mean 4.25 . . .
t Cov 0.96 . . .

t Mean 4.54 . . .

Table 2: Summary of the results for the simulation experiment, based on the four estimators:
branching process (BP), standard curve (SC), comparative CT (CT), and adjusted comparative
CT (A-CT). Point mean and Point var give the mean and variance of the point estimates, over the
5000 simulations. The target value for Point mean is 10. All confidence intervals have nominal
95% coverage. Here Cov gives the simulated coverage and mean gives the mean length of the
confidence interval over the 5000 simulations. B is for the bootstrap confidence interval; G is for
the confidence interval based on asymptotic normality; t is for the confidence interval based on
asymptotic normality, using the t distribution.
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Supplemental Material for: Inference for Quantitation Parameters

in Polymerase Chain Reactions via Branching Processes with

Random Effects

Bret Hanlon and Anand N. Vidyashankar

Supplemental material to follow consists of a detailed discussion of the comparative CT estima-

tors used in the paper, proofs for the asymptotic results stated in the paper, and additional figures

for the data analysis (which are shown on the last pages).

APPENDIX A. COMPARATIVE CT METHODS

In this section we describe the algorithms used in our paper for computing both the unadjusted

and adjusted comparative CT estimators. There are several resources which describe the use of

the comparative CT method for relative quantitation, including ABI (2001), Livak and Schmittgen

(2001), Skern et al. (2005), Pfaffl (2006), and Guescini et al. (2008). These works discuss the

computation of CT based on linear interpolation on the log scale. Here we focus on the calculation

of relative quantitation, denoted R, assuming CT has been computed. Our presentation follows the

material in Livak and Schmittgen (2001), which coincides with the material in ABI User’s Manual.

We begin by describing the (implied) model assumptions for a single reaction. The comparative

CT method assumes deterministic dynamics, with initial exponential growth. Specifically, if N0 is

the number of initial molecules and p is the amplification efficiency, then the number of molecules

present after j cycles is denoted Nj and given by Nj = N0(1 + p)j . It is assumed that the

observed fluorescence intensity is proportional to the number of molecules so that the model for

the fluorescence intensity at cycle j, denoted by Fj , is given by

Fj = cN0(1 + p)j , (A.1)
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where c is the fluorescence constant. Recall that CT essentially gives the cycle at which the

fluorescence crosses a user-specified threshold, F ?. In fact, the value of CT is not an integer,

but is computed by linear interpolation on the log-scale. The default setting on the ABI machines

is F ? = .2; but users can also set the value manually. At “cycle” CT , (A.1) becomes

F ? = FCT
= cN0(1 + p)CT . (A.2)

It is implicitly assumed that p is constant through the exponential phase, at least until the

calculation of CT . In fact, the comparative CT method assumes perfect doubling so that p = 1;

however, the efficiency can instead be estimated from the data. The data is typically noisy for

cycles j < CT ; thus the first available cycle of “clean” data is j = dCT e. Hence, a natural way to

estimate p from the observed fluorescence (remembering that the desired p approximately describes

the efficiency through cycle CT ) is via the following estimator

p̂ =
FdCT e+1

FdCT e
. (A.3)

Building on the above concepts for a single reaction, we now describe the comparative CT

method for computing an estimate of relative quantitation from multiple reactions of a target and

calibrator group. The notation is naturally extended by adding a second subscript, T or C, to

denote target or calibrator. These methods implicitly assume that all the reactions in the target

(or calibrator group) start with the same number of initial molecules, N0,T (or N0,C). Accordingly,

the method purports to estimate the ratio R ≡ N0,T

N0,C
. Following ABI (2001), we simply average the

CT values from each replicate to compute a single value for the target and calibrator; similarly we

average the efficiency values computed from (A.3). Denote the averaged CT values for the target

and calibrator as C̄T,T and C̄T,C , respectively. Similarly, denote the average estimator of efficiency

(using (A.3) for each replicate and then averaging across the replicates) as p̂T for the target group

and p̂C for the calibrator group.

Under the assumption that the fluorescence constant is equal for both the target and calibrator

groups, (A.2) suggests the following estimators for R,

R̂1 =
2C̄T,C

2C̄T,T
= 2C̄T,C−C̄T,T , R̂2 =

(1 + p̂C)C̄T,C

(1 + p̂T )C̄T,T
, (A.4)

where R̂1 is the (unadjusted) comparative CT estimator and R̂2 is the adjusted comparative CT

estimator.
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APPENDIX B. PROOFS

In this section we present the proofs of our main theorems. Without loss of generality we will

assume that c = 1 since otherwise all our estimates hold with a factor of c. Under this simpli-

fication, Yk,n represents total number of molecules in the reaction during the exponential phase,

namely Yk,n =
∑n

j=τ Nk,j . In the following C (or Cε) denotes a generic constant that could change

between successive lines and between successive inequalities.

Proof of Proposition 1. Conditioned on the random effect pk, Nk,n is a Galton Watson

process with finite conditional and marginal second moments. The proof then follows using the

Toeplitz lemma and Theorem 8.1 of Harris (2002).

The proof of Theorem 1 involves several steps and hence we proceed by proving several lemmas.

Our first lemma is concerned with the behavior of the inverse moment raised to the nth power.

Lemma 1. Under the assumptions of our model,

E(
1

N r
k,n

) ≤ (1− 1
2
E(p1))n. (A.5)

Proof: It is sufficient to consider the case Nk,0 = 1 and r = 1, since N r
k,n ≥ Nk,n for all r ≥ 1

and Nk,n =
∑Nk,0

l=1 Nk,n,l ≥ Nk,n,1, where Nk,n,j is the number of DNA templates in the nth cycle

initiated by the jth template in the 0th cycle of the kth reaction. Now,

E(
1

Nk,n
|Nk,0 = 1) = E(

1
Nk,n−1

E(
1

N−1
k,n−1Nk,n

|Nk,n−1)|Nk,0 = 1) (A.6)

≤ E(
1

Nk,n−1
|Nk,0 = 1)E(

1
Nk,1

|Nk,0 = 1), (A.7)

where the last step follows using the inequality concerning the arithmetic mean and harmonic mean.

Now iterating the above inequality, it follows that

E(
1

Nk,n
|Nk,0 = 1) ≤ (E(

1
Nk,1

|Nk,0 = 1))n. (A.8)

Now, observe that

E(
1

Nk,1
|Nk,0 = 1) = E(E(

1
Nk,1

|Nk,0 = 1, pk)) (A.9)

= E(1− pk +
1
2
pk)) = (1− 1

2
E(p1)) < 1, (A.10)
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where the last inequality follows from E(p1) > 0. This completes the proof of Lemma 1.

Our next lemma is concerned with the bound on the E(
√

Yk,n−1(m̃k,n −mk))2r.

Lemma 2. Under the assumptions of our model, there exists a universal constant C such that

E(
√

Yk,n−1(m̃k,n −mk))4 ≤ Cn4. (A.11)

Proof: We note that

√
Yk,n−1(m̃k,n −mk) =

√
Yk,n−1(

Yk,n − Fk,τ

Yk,n−1
−mk) (A.12)

=
n∑

j=τ

Nk,j+1 −mkNk,j√
Nk, j

wk,n,j , (A.13)

where

w2
k,n,j =

Nk,j

Yk,n−1
. (A.14)

Thus, setting Xk,j = Nk,j+1−mkNk,j√
Nk,j

, we have that

(
√

Yk,n−1(m̃k,n −mk))4 ≤ n4(
1

n− τ

n−1∑

j=τ

|Xk,j |)4 (A.15)

≤ n4


 1

n− τ

n−1∑

j=τ

X4
k,j


 , (A.16)

where the last inequality follows from Jensen’s inequality for convex functions. Now, conditioned on

the random effect pk and Nk,j−1, the numerator of Xk,j is Bin(Nk,j−1, pk)−Ek(Bin(Zk,j−1, pk)|Zk,j−1).

Now, using the formula for the fourth central moment of a binomial random variable, it follows

that

Ek(X4
k,j |Nk,j−1)4 = N−1

k,j−1pkqk(3Nj,k−1pkqk − 6pkqk + 1), (A.17)

where qk = 1− pk. Hence, since (1− ε) ≤ pk ≤ 1, it follows that

Ek(X4
k,j |Nk,j−1, pk) ≤ 3(pk(1− pk))2 + 1 (A.18)

≤ 3ε2 + 1. (A.19)

Now taking expectation with respect to Nk,j−1 and with respect to the distribution of the random

effect, it follows that

E(X4
k,j) ≤ 3ε2 + 1. (A.20)
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Finally, taking expectation in (A.16), and using (A.20) it follows that

E(
√

Yk,n−1(m̃k,n −mk))4 ≤ n4(1 + 3ε2). (A.21)

This completes the proof of the lemma.

Our next lemma is concerned with the almost sure behavior of ∨r(n)
k=1(

m̃k,n−1
mk−1−1 − 1).

Lemma 3. Under the conditions of Theorem 1, it happens with probability one that

lim
n→∞

√
r(n)D1(n) max

1≤k≤r(n)
|m̃k,n − 1

mk − 1
− 1| = 0. (A.22)

Proof: It is sufficient to show that for all η > 0

∑

n≥1

r(n)max1≤k≤r(n)P (|m̃k,n −mk

pk
| > η√

r(n)D1(n)
) < ∞. (A.23)

By Markov’s inequality,

P (|m̃k,n −mk

pk
| > η√

r(n)D1(n)
) ≤ (

√
r(n)D1(n)

η
)2E|m̃k,n −mk

pk
|2 (A.24)

≤ (

√
r(n)D1(n)
η(1− ε)

)2E|m̃k,n −mk|2 (A.25)

≤ (

√
r(n)D1(n)
η(1− ε)

)2dn(1)dn(2), (A.26)

where

dn(1) = (E(|√Yk,n−1(m̃k,n −mk))4|)1/2, and dn(2) = E(
1

Y 2
k,n−1

)1/2, (A.27)

and the last inequality follows by first multiplying and dividing by
√

Yk,n−1 inside the expectation

in (A.25) and then applying the Cauchy-Schwarz inequality. Now by Lemma 2, dn(1) ≤ Cn2, where

C is a deterministic constant. By Lemma 1, it follows that E(dn(2)) ≤ Cγn where 0 < γ < 1.

Thus,

P (|m̃k,n −mk

pk
| > η√

r(n)
) ≤ C(

√
r(n)D1(n)
η(1− ε)

)2n2γn. (A.28)

Thus, it follows from the regularity of the dilution constants and that r(n)n−1 → 0 that

∑

n≥1

r(n)max1≤k≤r(n)P (|m̃k,n −mk

pk
| > η√

r(n)
) ≤ C

∑

n≥1

r2(n)D1(n)n2γn (A.29)

≤ C
∑

n≥1

n4γn < ∞, (A.30)

where the finiteness is established using the ratio test.
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Lemma 4. Under the conditions of Theorem 1, with probability one

lim
n→∞

√
r(n)D1(n) max

1≤k≤r(n)
|(m

n
k

m̃n
k

− 1)| = 0. (A.31)

Proof: It is sufficient, using Borel-Cantelli, to show that for any η > 0,

∑

n≥1

r(n) max
1≤k≤r(n)

P (|(m̃k,n

mk
)n − 1)| > η√

r(n)D1(n)
) < ∞. (A.32)

We will now obtain estimates on P (|( m̃k,n

mk
)n − 1)| > η√

r(n)D1(n)
). To this end, it is easy to see that

P (|(m̃k,n

mk
)n − 1)| > η√

r(n)D1(n)
) = Jn(1) + Jn(2), (A.33)

where

Jn(1) = P (m̃k,n −mk > mka1(n)) (A.34)

Jn(2) = P (m̃k,n −mk < mka2(n)), (A.35)

a1(n) = (1 + η√
r(n)D1(n)

)
1
n − 1 and a2(n) = (1− η√

r(n)D1(n)
)

1
n − 1. We will deal with Jn(1) as the

proof of the other term is similar. By Markov’s inequality,

Jn(1) ≤ E(
Ek(|m̃k,n −mk|)

mka1(n)
) (A.36)

≤ 1
(2− ε)a1(n)

E|mk,n −mk| (A.37)

≤ (E(|√Yk,n−1|m̃k,n −mk|)2)
1
2

(2− ε)a1(n)
(E(Y −1

k,n−1))
1
2 (A.38)

≤ C

(2− ε)a1(n)
n2γn (A.39)

Using the mean value theorem and r(n) ≤ n, one can show that a−1
1 (n) ≤ Cn2. Using this estimate

and the ratio test it follows that
∑

n≥1 Jn(1) < ∞. A similar calculation for Jn(2) then yields the

lemma.

Lemma 5. Under the conditions of Theorem 1, for l=1, 2, with probability one,

lim
n→∞

1
r(n)D1(n)

r(n)∑

k=1

| Yk,n

(1 + pk)n
− Vk)(

pk

1 + pk
)|l = 0, (A.40)

where Vk = V ?
k ( mk

mk−1).
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Proof: Let θk = pk
1+pk

. We begin by developing an estimate of V ar[( Yk,n

(1+pk)n − Vk)θk]. Using

Vk = V ?
k

∑
j≥0 m−j

k and a change of variables, it follows that

Yk,n

(1 + pk)n
− Vk =

n−τ∑

j=0

(Vk,n−j − V ?
k )m−j

k − V ?
k

∑

j≥n+1−τ

m−j
k (A.41)

= Jn(1, k)− Jn(2, k) (A.42)

Thus,

V ar[(
Yk,n

mn
− Vk)θk] = V ar(Jn(1, k)θk) + V ar(Jn(2, k)θk)− 2Cov(Jn(1, k)θk, Jn(2, k)θk). (A.43)

Now, setting S(k, n, j) = θk
∑

j≥n+1−τ m−j
k

V ar(Jn(2, k)θk) = V ar(E(V ?
k S(k, n, j)|pk)) + E(V ar(V ?

k S(k, n, j)|pk)) (A.44)

≤ E(S2(k, n, j)(m2
ad

2
k + V ark(V ?

k ))). (A.45)

Now, using mk ≥ (2 − ε) and θk ≤ 1, it follows that S2(n, k, j) ≤ ((1 − ε)(2 − ε)n)−1. Using this

estimate in (A.45) it follows that

V ar(Jn(2, k)θk) ≤ ((1− ε)(2− ε)n)−1(m2
ad

2
k + ω2

k). (A.46)

We next study the behavior of V ar(Jn(1, k)θk). Now, using conditioning it follows that

V ar(Jn(1, k)θk) = E(V ar(
n−τ∑

j=0

(Vk,n−j − V ?
k )m−j

k θk)|pk)). (A.47)

Now,

V ar(
n−τ∑

j=0

(Vk,n−j − V ?
k )m−j

k θk|pk) = Jn(1, 1, k) + Jn(1, 2, k), (A.48)

where

Jn(1, 1, k) =
n−τ∑

j=0

V ar(Vk,n−j − V ?
k |pk)m

−2j
k θ2

k, (A.49)

and

Jn(1, 2, k) =
n−τ∑

j=0

n−τ∑

j 6=l=0

θ2
k

mj+l
k

Cov(Vk,n−j − V ?
k , Vk,n−l − V ?

k |pk). (A.50)

Using the branching property it follows that,

V ar(Vk,n−j − V ?
k |pk) ≤ Cεmadk(2− ε)n−j , (A.51)
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where Cε is a finite positive constant independent of k. Now, using this estimate and that θk ≤ 1

it follows that

Jn(1, 1, k) ≤ Cεmadk(2− ε)−n. (A.52)

Now, we deal with Jn(1, 2, k). Using the Cauchy-Schwarz inequality and (A.51) it follows that

|Cov(Vk,n−j − V ?
k , Vk,n−l − V ?

k |pk)| ≤ Cεmadk(2− ε)n−(j+l)/2. (A.53)

Using this estimate and θk ≤ 1 it follows that

Jn(1, 2, k) ≤ Cεmadk(2− ε)−n. (A.54)

Now, combining the estimates for Jn(1, 1, k) and Jn(1, 2, k) we get

V ar(Jn(1, k)θk) ≤ Cεdk(2− ε)−n. (A.55)

Again using the Cauchy-Schwarz inequality and θk ≤ 1, it follows that

Cov(Jn(1, k)θk, Jn(2, k)θk|pk) ≤ Cε(2− ε)−n(C1,εd
2
k + C2,εd

3
k)

1/2. (A.56)

Thus combining all the estimates, taking expectation with respect to the distribution of pk, summing

over k and using the Cauchy-Schwarz inequality, one can show, using the regularity of the dilution

constants, that
r(n)∑

k=1

V ar[(
Yk,n

mn
k

− Vk)θk] ≤ C3,εr(n)(2− ε)−n. (A.57)

Next, we obtain an estimate of |E[(Yk,n

mn
k
− Vk)θk]|. Again, using the decomposition (A.42) and

E(Jn(1, k)θk) = 0, it follows that

|E[(
Yk,n

mn
k

− Vk)θk]| ≤ |E(θkmadk

∑

j≥n+1

m−j
k )| ≤ C4,ε(2− ε)−ndk. (A.58)

Now, using (A.57), (A.58), and the regularity of the dilution constants it follows that

E(
r(n)∑

k=1

θk(
Yk,n

mn
k

− Vk))2 =
r(n)∑

k=1

V ar[(
Yk,n

mn
k

− Vk)θk] + (
r(n)∑

k=1

E[(
Yk,n

mn
k

− Vk)θk])2 (A.59)

≤ C5,εr(n)(2− ε)−n, (A.60)
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where 0 < C5,ε < ∞ is some constant depending on ε. Finally, using Markov’s inequality and

(A.60) it follows that for l = 1, 2,

P (
1

r(n)
|
r(n)∑

k=1

θk(
Yk,n

(1 + pk)n
− Vk)|l > η) ≤ 1

η2r(n)
E|

r(n)∑

k=1

θk(
Yk,n

mn
k

− Vk)|2 (A.61)

≤ C5,ε(2− ε)−n. (A.62)

Since the RHS of (A.62) is summable, (A.40) follows using the Borel-Cantelli lemma.

Our next lemma is concerned with the moment behavior of the limit random variable V ?
k when

the process is initiated by a single ancestor.

Lemma 6. Let Nk,0 = 1 for all k ≥ 1. Then there exists a finite positive constant C such that

E(V ?4
1 ) ≤ C.

Proof: First note that for all k and j E(Vk,j) = 1. Also using the representation Nk,j+1 =

Nk,j + Bin(Nk,j , pk), where Bin(Nk,j , pk) is a binomial random variable (given Nk,j and p), one

can show that

E(V 2
k,j) ≤ E(V 2

k,j−1) + E(
1

mj
k

). (A.63)

Now, iterating the above and using Tonelli’s theorem, it follows that

E(V 2
k,j) ≤

∑

l≥0

E(
1

ml
k

) = E(
1 + pk

pk
) ≡ C < ∞. (A.64)

We next show that E(V 3
k,j) is uniformly bounded. Using the representation of Vk,j alluded to above

and the uniform boundedness of the first and second moments it follows that

E(V 3
k,j) ≤ E(V 3

k,j−1) + E(
C

mj
k

). (A.65)

The uniform boundedness follows by iteration and summing as before. Now, using the uniform

boundedness of V 3
k,j and using the fourth moment of a binomial random variable one can show that

E(V 4
k,j) ≤ E(V 4

k,j−1) + E(
C

mj
k

). (A.66)

Iterating and summing, it follows that E(V 4
k,j) is uniformly bounded. Now it follows using Jensen’s

inequality, uniform boundedness of the fourth moment of Vk,n, and that V ?
k − Vk,n are identically

distributed in k that

E(V ?4
k ) ≤ 4(sup

n≥1
E(V 4

k,n) + E|V ?
1 − V1,n|4) ≤ C + E|V ?

1 − V1,n|4, (A.67)
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where C is some finite positive constant. Thus, to complete the proof of the lemma, it is sufficient

to show that the second term of the RHS of (A.67) is bounded in n. We will actually show that

E|V ?
1 − V1,n|4 → 0 as n → ∞. To this end, it is sufficient to show that {V1,n : n ≥ 1} is a

Cauchy sequence in L4 space. Now, using conditioning, the Marcinkiewicz-Zygmund inequality for

independent random variables (Chow and Teicher, 1997) and the branching property, it can be seen

that

E(|V1,k+n − V1,n|4|p1) ≤ (2
√

2)4E(N1/2
1,n )m−4n

1 E|V1,k − 1|4 (A.68)

≤ (2
√

2)4E|V1,k − 1|4(2− ε)−7n/2. (A.69)

Now, using the uniform boundedness of the fourth moments of V1,k and that 0 < ε < 1, it follows

first by taking expectations with respect to the distribution of p1 and then taking the supremum

over k that

sup
k≥1

E|V1,k+n − V1,n|4 ≤ C(2− ε)−7n/2, (A.70)

establishing the L4 convergence of Vk,n to V ?
k .

Lemma 7. Under the conditions of Theorem 1, with probability one,

lim
n→∞

1
r(n)D1(n)

r(n)∑

k=1

V ?
k = ma, (A.71)

and
1√

r(n)D1(n)

r(n)∑

k=1

(V ?
k −madk)

d→ G1, (A.72)

where G1 ∼ N(0, σ2
L) and σ2

L is defined in Theorem 1.

Proof. Note that the random variables V ?
k are independent with mean madk and variance ω2

k.

Thus, by regularity of the dilution constants, it follows that

∑

k≥1

E(Vk −madk)2

k2
=

∑

k≥1

ω2
k

k2
< ∞. (A.73)

Hence, by Loeve’s generalization of Kolmogorov’s laws of large numbers (Chow and Teicher, 1997),

it follows that 1
r(n)

∑r(n)
k=1 V ?

k converges almost surely to ma. To establish the asymptotic normality,

we will verify the Lyapunov condition for independent random variables. To this end, we consider
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E|V ?
k −madk|3. By the branching property and using E(Nk,0) = madk, it follows that

E|V ?
k −madk|3 = E|(

Nk,0∑

j=1

(V ?
k,j − 1) + (Nk,0 −E(Nk,0)|3 (A.74)

≤ 4(E|
Nk,0∑

j=1

(V ?
k,j − 1)|3 + E|(Nk,0 −E(Nk,0)|3), (A.75)

where V ?
k,j are independent random variables (and independent of Nk,0) with E(V ?

k,j) = 1. Now,

by first conditioning on Nk,0 and then using conditional Jensen’s inequality it follows that

E|
Nk,0∑

j=1

(V ?
k,j − 1)|3 ≤ E(N3

k,0E(| 1
Nk,0

|
Nk,0∑

j=1

(V ?
k,j − 1)|3|Nk,0)). (A.76)

Now, using the independence of V ?
k,j and Nk,0 and that for each fixed k, EV ?3

k,j = EV ?3
k,1, it follows

that

E|
Nk,0∑

j=1

(V ?
k,j − 1)|3 ≤ E(N3

k,0)E(V ?3
k,1) (A.77)

≤ CE(N3
k,0) = Cm3,0d

3
k, (A.78)

where the last inequality follows from Lemma 6 and the parametrization for the third moment.

Hence,

(
1

r(n)
)

3
2

r(n)∑

k=1

E|
Nk,0∑

j=1

(V ?
k,j − 1)|3 ≤ C(

1
r(n)

)
1
2 D3(n). (A.79)

Now, by the regularity of the dilution constants, {D3(n) : n ≥ 1} is a bounded sequence. This

implies that

lim
n→∞(

1
r(n)

)
3
2

r(n)∑

k=1

E|
Nk,0∑

j=1

(V ?
k,j − 1)|3 = 0. (A.80)

Now, using the fact that

lim
n→∞


 1

r(n)D1(n)

r(n)∑

k=1

ω2
k


 = σ2

L, (A.81)

the lemma follows.

Proof of Theorem 1. First we express m̃a,n as

m̃a,n −ma = Tn(1) + (Tn(2)−ma), (A.82)
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where

Tn(1) =
1

r(n)D1(n)

r(n)∑

k=1

Yk,n

(1 + pk)n
(

pk

1 + pk
)((

p̃k,n

pk
)(

(1 + pk)n+1

(1 + p̃k,n)n+1
)− 1), and

Tn(2) =
1

r(n)D1(n)

r(n)∑

k=1

Yk,n

(1 + pk)n
(

pk

1 + pk
).

We begin with a decomposition for Tn(2) to obtain an expression for Tn(2)−ma.

Tn(2)−ma = Tn(3) + Tn(4), (A.83)

where

Tn(3) =
1

r(n)D1(n)

r(n)∑

k=1

(
Yk,n

mn
k

− Vk)(
pk

mk
), and (A.84)

Tn(4) =
1

r(n)D1(n)

r(n)∑

k=1

(V ?
k −madk). (A.85)

Returning to Tn(1) we have

|Tn(1)| ≤ max
1≤k≤r(n)

|( p̃k,n

pk
)(

(1 + pk)n+1

(1 + p̃k,n)n+1
− 1)|Tn(2). (A.86)

Now by Lemma 5, Tn(3) converges to zero with probability one and by Lemma 7, Tn(4) converges

to 0 with probability one. Combining the results we get that |Tn(2) −ma| converges to zero with

probability one. Also, we obtain the convergence to zero of |Tn(1)| using Lemma 3 and Lemma 4.

This yields the strong consistency of m̃a,n. To establish the asymptotic normality, first note that

by Lemma 7,

(r(n)D1(n))1/2Tn(4) d→ N(0, σ2
L). (A.87)

Define θk ≡ pk
1+pk

. For any η > 0, using Chebyshev’s inequality

P (|(r(n)D1(n))1/2Tn(3)| > η) ≤ 1
η2r(n)D1(n)

(E
r(n)∑

k=1

θk(
Yk,n

mn
k

− Vk))2 (A.88)

→ 0, (A.89)

where the last convergence follows form (A.60). Finally, using Lemma 3 and Lemma 4, it fol-

lows that (r(n)D1(n))1/2Tn(1) converges to zero in probability. Combining the above, asymptotic

normality follows using Slutsky’s lemma.
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Proof of Theorem 2. Theorem 2 follows by an application of delta method to the function

f(x, y) = x
y .

Proof of Proposition 2. Conditioned on the random effect, the process {Nk,n : n ≥ 1} is

a branching process with offspring distribution 1 + X, where X ∼ Ber(pk) denotes a Bernoulli

random variable with P (X = 1|pk) = pk. Hence, it follows that

lim
n→∞P (

√
Yk,n−1(m̃k,n −mk) ≤ x|pk) = P (N(0, pk(1− pk)) ≤ x|pk). (A.90)

Thus by the bounded convergence theorem, it follows that

lim
n→∞E(P (

√
Yk,n−1(m̃k,n −mk) ≤ x|pk)) =

∫ 1

1−ε
Φ(

x

t(1− t)
)dG(t). (A.91)

The proposition follows since the random variables pk are identically distributed.

Proof of Theorem 3. First we rewrite

1
r(n)

r(n)∑

k=1

(p̃k,n − E(p1)) =
1

r(n)

r(n)∑

k=1

(p̃k,n − pk) +
1

r(n)

r(n)∑

k=1

(pk −E(p1)) (A.92)

= Tn(1) + Tn(2) (A.93)

and verify that Tn(1) → 0 with probability 1. Now by Chebyshev’s inequality and the independence

of (p̃k,n − pk) in k,

P (|Tn(1)| > η) ≤ η−2E(T 2
n(1)) = η−2(V ar(Tn(1)) + (E(Tn(1)))2) (A.94)

≤ C

r2(n)
(
r(n)∑

k=1

(E(p̃k,n − pk)2 + (E(p̃k,n − pk)2)1/2), (A.95)

where the last inequality follows by bounding the variance term by the second moment and using

the Cauchy-Schwarz inequality on the expectation term. Now,

E(p̃k,n − pk)2 = E(m̃k,n −mk)2 (A.96)

= E((m̃k,n −mk)2Yk,nY −1
k,n ) (A.97)

≤ (E(m̃k,n −mk)4Y 2
k,n))1/2(E(Y −2

k,n ))1/2, (A.98)

where the last inequality follows from the Cauchy-Schwarz inequality. Now applying Lemma 1 and

Lemma 2 it follows that for some 0 < C < ∞ and 0 < γ < 1

E(p̃k,n − pk)2 ≤ Cn2γn/2. (A.99)
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Now using this estimate in (A.95) it follows that P (|Tn(1)| > η) is bounded above by Cn2γn/4. By

ratio test, the above probability sums there by yielding the almost sure convergence to 0 of Tn(1).

Since Tn(2) is a sum of i.i.d. random variables with finite second moments, the theorem follows via

the law of large numbers and central limit theorem for i.i.d. random variables.

Proof of Theorem 4. The estimator of variance can be expressed as

σ̃2
L,n =

1
r(n)D1(n)

r(n)∑

k=1

(Tn(1, k) + Tn(2, k) + Tn(3, k))2, (A.100)

where

Tn(1, k) = (
Yk,np̃k,n

m̃n+1
k,n

− V ?
k ), (A.101)

Tn(2, k) = V ?
k −madk and Tn(3, k) = (ma − m̃a,ndk). (A.102)

One can show using the Cauchy-Schwarz inequality and Lemma 5 that the cross-product terms in

the expansion of (A.100) converge to zero with probability one. Furthermore, normalized sums of

squares of Tn(3, k) converges to zero with probability one by regularity of the dilution constants

and strong consistency of m̃a,n. Also the normalized sums of squares of Tn(1, k) converges to zero

by Lemma 5. Finally, by using the arguments in Lemma 7 and the regularity of the dilution

constants it follows that normalized sums of squares Tn(2, k) converges to σ2
L. This yields the

strong consistency of σ̃2
L,n. Strong consistency of θ̃1,n and θ̃2,n follow from Lemma 5 and the strong

law of large numbers for i.i.d. random variables (1− pk)−1(1 + pk).

Proof of Corollary 1. The proof follows from the strong consistency of σ2
L,n m̃a,n, θ̃1,n, the

regularity of the dilution constants , and the definition of σ2
L.
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Figure 1: S. Vulgaris experiment. (L) plot of log fluorescence versus cycle number (log Fj vs. j) for

all 10 replicates of SV1 (in blue) and all 10 replicates of SV2 (in red); (C) the mean and variance

(taken over the 10 replicates at each cycle) of log fluorescence versus cycle number for SV1 (blue)

and SV2 (red); (R) plot of V̂k (× factor) versus replicate number for SV1 (+, factor = 107) and SV2

(o, factor = 108).
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