
Minimum Hellinger Distance Estimation for

Randomized Play the Winner Design

An-lin Cheng

Department of Biostatistics

Yale University

New Haven, CT 06520-8034

Anand N. Vidyashankar?

Department of Statistical Science

Cornell University

Ithaca, NY 14850-4201

Abstract

Response-adaptive designs in clinical trials incorporate information from prior pa-
tient responses in order to assign better performing treatments to the future patients
of a clinical study. An example of a response adaptive design that has received much
attention in recent years is the Randomized Play the Winner Design (RPWD). Beran
(1977) investigated the problem of minimum Hellinger distance procedure (MHDP) for
continuous data and showed that minimum Hellinger distance estimator (MHDE) of a
finite dimensional parameter is as efficient as the MLE (Maximum Likelihood Estima-
tor) under a true model assumption. This paper develops minimum Hellinger distance
methodology for data generated using randomized play the winner design (RPWD). A
new algorithm using the Monte Carlo approximation to the estimating eqaution is pro-
posed. Consistency and asymptotic normality of the estimators are established and the
robustness and small sample performance of the estimators are illustrated using simu-
lations. The methodology when applied to the clinical trial data conducted by Eli-Lilly
and Company, brings out the treatment effect in one of the strata using the frequentist
techniques compared to the Bayesian arguemnt of Tamura et al. .
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1 Introduction

In a typical clinical trial information on several variables are collected. The data includes

information on several primary and secondary varaiables, usually called the end-points of the

study. For example, consider a clinical trial investigating the efficacy of a drug in lowering the

cholesterol levels. In such a trial the primary variables would typically be cholesterol levels,

blood pressure, height, diet, life style, and body weight. There are certain secondary variables

on which the information is typically collected. These could include information on the genetic

components and other heriditary related information. Ofcourse as time evolves, the differences

between primary and secondary endpoints may disappear and may even juxtapose.

Response adaptive designs tend to skew patient allocation towards a treatment performing

”better” (with respect to one important clinical variable) during the course of a clinical trial.

This leads to imbalances in the number of subjects allocated to various treatment groups.

Analysis of data resulting from such designed experiments is complicated due to the fact that

the sample sizes are dependent random variables. It is customary in a pharmaceutical set-

ting to attempt a parametric modeling and analyze the data using the maximum likelihood

methodology (MLM). However, in situations described above, it is not feasible to perform a

good parametric analysis of the data, using the maximum likelihood procedure(MLP), owing

to the fact that there may not be enough power to verify hypothesis concerning the distri-

butions. Furthermore, since the MLP operates optimistically (by maximizing the likelihood),

the resulting inference could be misleading especially if the assumed parametric hypothesis

is invalid. To overcome these issues, it may be convenient to rather adopt a pessimistic ap-

proach and seek a methodology that would result in ”similar” inferences akin to MLP when

the assumptions concerning the model hold.

Minimum Hellinger distance Procedure (MHDP), first studied in detail by Beran (1977),

attains the dual goal of robustness and efficiency at the true model. In the analysis of a

data set from a clinical trial conducted by Eli-Lilly, we discovered a treatment effect in one of

the strata using the MHDP and the MLP. Furthermore, the confidence interval constructed

using the MHDP was ”tighter” and provided consistent inference while those produced by

the MLP did not indicate the presence of a ”treatment effect” in any starata. Motivated

by this inconsistency of the MLP, we sought to understand, from an asymptotic and small

sample perspective, if MHDP yields results that are consistent with MLP if the assumed

parametric hypotheses are valid. For these reasons, we formally develop the MHDP for analysis

of continuous variables obtained from a clinical experiment performed using randomized play

the winner design (RPWD). We now move on to describe the RPWD.
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1.1 Randomized Play the Winner Design

The RPWD is a method of assigning patients to intervention in clinical trials. This method

was inspired from the play the winner rule, originally formulated by Zelen (1969). The play

the winner rule can be described as follows: A success on a particular treatment generates a

future trial on the same treatment with a new patient. A failure on a treatment generates a

future trial on the alternate treatment with a new patient. If the response is unavailable, the

subject is allocated using equal probability amongst all treatments. When the patient accrual

is rapid and the response is delayed, play the winner rule leads to a complete randomization

there by making the adaptation irrelevant. To overcome these difficulties, Wei and Durham

(1978) introduced Randomized Play the Winner Design. This design can be described, using

an urn model, as follows: Suppose we want to assign patients to two different treatments

(treatments 1 and 2). We would start this procedure with an urn containing n1(0) balls of

type 1 and n2(0) balls of type 2, corresponding to treatments A and B respectively. Once a

patient arrives for treatment assignment, a ball is drawn randomly from the urn and returned

to the urn. The patient is assigned to a treatment according to the type of ball. When the

patient’s response is available the urn is updated as follows: if the response is a success on

treatment 1 or a failure on treatment 2, then α type 1 balls are added to the urn; however

if the response is failure on treatment 1 or a success on treatment 2, then α type 2 balls are

added to the urn. The process is repeated until all patients have been assigned to one of the

treatments.

Let n denote the total number of patients, N1 the total number of patients receiving

treatment 1 and n2(= n−N1) the total number of patients receiving treatment 2. Let p1 > 0

and p2 > 0 denote the probability of success when receiving treatments 1 and 2 respectively.

An important question concerns the composition of the urn after n updates to the urn. Athreya

and Karlin (1968) show that

Ni

n
a.s.→ πi as n→ ∞, (1.1)

where π1 = q2

(q1+q2)
and q1 = 1 − p1, q2 = 1 − p2. Since πi > 0, it also follows that

Ni

n
INi≥1

a.s.→ πi as n→ ∞. (1.2)

It turns out that the above results remains valid when one assumes a probability model

for the delay mechanism and the arrival process. This was established recently by Bai, Hu

and Rosenberger (2002). Some of the statistical questions concerning the RPWD involve

estimation and hypothesis testing concerning p1 and p2. Rosenberger, Flournoy and Durham

(1997) studied maximum likelihood estimation for the parameters of the RPWD. Wei (1988)

studied the permutation test for comparing the parameters of the RPWD.
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Our theoretical description of the properties of the MHDE involves studying the behavior

of E( n
Ni

: Ni ≥ 1) as n → ∞. Our original proof of the proposition contained a gap that

involved a dominated convergence argument. It turns of that, such a method was more subtle

than we anticipated and provide the following proof by synthesizing an idea of the anonymous

referee. The situation α = 1 and α ≥ 2 invove different arguments with The method of

proof involves a large deviation estimate and the imbedding of the urn scheme into a two-type

Galton Watson process. We now state our proposition:

Proposition 1.1 limn→∞ E( n
Ni
INi≥1)

k = π−k
i

Proof. Fix an ε > 0 and let A1 = {Ni ≤ n(πi − ε)}, A2 = {n(π − ε) ≤ Ni ≤ n(πi + ε)}
and A3 = {Ni > n(πi + ε)}. Then,

E(
n

Ni
INi≥1)

k =
3∑

r=1

E((
n

Ni
INi≥1)

k : Ar).

It is easy to see using (1.2) that the above expectation on A3 converges to 0 as n→ ∞. Also

using the upper and lower bounds on A2, one can show that the expectation on A2 converges

to the desired limit stated in the proposition. Thus to complete the proof, we only have to

establish that the expectation on A1 converges to 0 as n→ ∞. To this end, note that

E((
n

Ni

INi≥1)
k : A2) ≤

n−1∑

r=1

E((
n

Ni

INi≥1)
k : r(πi − ε) ≤ Ni ≤ (r + 1)(πi + ε))

≤ nk(
n−1∑

r=1

r−k)P (
Ni

n
≤ πi − ε) (1.3)

Note that, using the embedding technique and the generating function given on page 1805

equation (15) of Athreya and Karlin(1968) and large deviation techniques (which uses func-

tional iteration) developed in Vidyashankar(1994), and Athreya and Vidyashankar (1995), one

can show that there exist universal constants C1(πi, ε) > 0 and C2(πi, ε) > 0 such that

P (
Ni

n
≤ πi − ε) ≤ P (

Ziτn

Z1τn + Z2τn

≤ πi − ε)

≤ C1exp(−C22
log n) (1.4)

where (Z1τn, Z2τn) is the population sizes of number of type 1 and type 2 during the nth split

of a two-type branching process. The result follows using (1.4) in (1.3).

We now describe the minimum Hellinger distance estimation procedure for the i.i.d. data.

1.2 Minimum Hellinger Distance Estimators

In this section, we will briefly discuss minimum Hellinger distance estimation for continuous

i.i.d. data. Let f(x) and g(x) be any two densities; the Hellinger distance between f(x) and
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g(x) is defined as the L2-norm of the difference between square root of density functions , i.e.

HD2(f, g) = ||f(x)1/2 − h(x)1/2||22 =
∫

[(f(x))1/2 − (h(x))1/2]2dx. (1.5)

Let X1,X2, · · · ,Xn be i.i.d. real valued random variables with density belonging to a

specified parametric family {fθ : θ ∈ Θ}. To motivate the MHDP, replace f by fθ and h

by hn, a non-parametric estimator of the density. Therefore, the Hellinger distance in our

question becomes the distance between the true density (fθ) and the nonparametric density

estimator of the Xi’s, which can be expressed as follows:

HD2
n(fθ, hn) = ||fθ(x)

1/2 − hn(x)
1/2||22. (1.6)

The Minimum Hellinger distance estimator of θ is defined to be the value θ̂n (in the

parameter space Θ), if it exists, that minimizes (1.5). Using simple algebra, one can show

that

HD2
n(fθ, hn) = 2 − 2γn(θ)

where

γn(θ) =
∫

(fθ(x))
1/2(hn(x))

1/2dx.

Hence finding the minimum Hellinger distance estimator is therefore equivalent to finding the

θ̂n that maximizes γn(θ).

If one chooses

hn(x) =
1

ncn

n∑

j=1

K
{
x−Xj

cn

}

where K(·) is a kernel density, then it is well-known that (see Devroye (1987)) as cn →
0, hn(x)

L1→ fθ(x). This implies that HD2
n(fθ, hn) → 0. This argument suggests investigating

estimators that minimize the Hellinger distance between the nonparametric density estimator

and the proposed parametric density.

Beran (1977) has shown that the MHDE is more ”robust” than maximum likelihood es-

timator when data contaminations are present. Furthermore MHDE is known to be asymp-

totically efficient under a specified parametric family of densities and is minimax robust in a

small Hellinger metric neighborhood of the given family (Beran 1977).

RPWD methodology naturally leads to situations where fewer subjects are sometimes

allocated to one of the treatment arms. In these situations, it is usually difficult to identify

the true distribution of the data under consideration ( due to the lack of power) in order

to perform adequate parametric inference. Drawing on the results from the i.i.d. literature,

it is conceivable that methodology based on MHDE would be more robust than the MLE

and perhaps just as efficient as the MLE. For these reasons, in this paper we will under take

a systematic development of minimum Hellinger distance procedure for the analysis of data

from RPWD.
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The rest of the paper is structured as follows: Section 2 develops MHDP for data from

RPWD and studies the existence and uniqueness of the MHDE. Section 3 is devoted to a study

of the consistency of the minimum hellinger distance estimator(s). Section 4 discusses limit

distributions and while section 5 deals with robustness. Section 6 provides a new monte-carlo

based computational algorithm for obtaining the MHDE while section 7 describes various

simulation results. Section 8 contains some concluding remarks.

We end this section with a description of an analysis of Eli-Lilly data which motivated the

entire study.

1.3 A Motivating Data Analysis Example

We now describe the clinical trial conducted by Eli-Lilly and company which partly motivated

this paper. This is a multi-center clinical trial comparing fluoxetine to placebo in patients with

depressive disorder. It is believed (Kupfer (1976)) that shortened rapid eye movement latency

is a marker for endogenous depression. In this trial, patients were stratified into two groups:

Patients with normal rapid eye movement latency(REML) and patients with shortened REML.

The first six patients within each stratum were assigned by a randomized block design to either

fluoxetine or placebo. The trial used two independent urns (for two different strata) to assign

the patients. Both urns started with one ball for each type, representing the two treatments.

Independent randomized play the winner rules were initiated with the seventh patient within

each stratum. There are two primary outcomes: (1) the percentage of patients who exhibited

a 50 percent or greater reduction in Hamilton Depression Scale (HAMD17) between baseline

and final active visit after a minimum of three weeks of therapy, and (2) the reduction in

HAMD17 between baseline and the final visit. Patients receiving therapy for at least 3 weeks

who exhibited a 50 percent or greater reduction in HAMD17 were defined to be responders

(success in treatment). The time from baseline to final measurement was approximately 8

weeks. The time delay, along with a rapid patient arrival, did not allow an adaptive trial

based on the response from final visit. Thus adaptive allocation was based on a surrogate

marker to update the urn. The surrogate responder was defined as a patient exhibiting a

reduction greater than 50 percent in (HAMD17) in two consecutive visits after at least three

weeks of therapy. The trial was stopped after 61 patients had responded according to the

surrogate criterion. No further surrogate response was obtained for the remaining patients.

There were total 89 patients in this trial.

The data related to this trial is available in (23) where shortened REML patients belong to

strata 1, normal REML patients belongs to strata 0; treatment is denoted by 1 if the patients

were treated with Fluoxetine and 0 if they were treated with placebo. A total of 83 patients

have a final response recorded.

The following Table 1.1 presents MHDE and MLE of mean and standard deviations and
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their asymptotic confidence intervals for the primary outcome, the difference of HAMD17

between the baseline and the final visit for both the strata.

Table 1.1: Analysis results for the Fluoxetine trial data

Strata Strata=1 Strata=1 Strata=0 Strata=0

Treatment=1 Treatment=0 Treatment=1 Treatment=0

MHDE -10.88 (5.04) -3.92 (5.73) -10.14 (6.51) -9.59 (5.96)

Asy. CI by MHDE (-13.09, -8.67) (-6.37, -1.47) (-12.92, -7.36) (-12.14, -7.04)

Length (4.42) (4.9) (5.56) (5.1)

MLE -11.20 (5.97) -5.71 (7.68) -10.81 (7.13) -8.62 (6.88)

Asy. CI by MLE (-13.82, -8.58) (-8.99, -2.48) (-13.86, -7.76) (-11.56, -5.68)

Length (5.24) (6.51) (6.1) (5.88)

Our next table, Table 1.2 provides the Z- statistics and t-Statistics and the p-values using

the estimates from the MHDP and the MLP.

Table 1.2: P value results for the Fluoxetine trial data
Strata Strata=1 Strata=0

Statistic(p-value) Statistic(p-value)

MHDE (Z test) 4.1347 (0.00004) 0.3011(0.76332)

MHDE (t test) 13.1914(0) 0.9758(0.1675)

MLE (Z test) 2.5612(0.0104) 0.9885(0.327)

MLE (t test) 2.5441(0.0075) 1.0129(0.1586)

As can be seen the from the above tables, due to the robustness property, the MHDE of

the standard deviation are much ”smaller” than that of the MLE. Furthermore, the absolute

change in HAMD17 between the baseline and final visits seem to be substantially higher for

treatment 1 than treatment 0 and the change is more pronounced in strata 1 than in strata 0.

We observe that in strata 1, the confidence intervals obtained by the MHDP do not overlap,

showing that there could be a treatment effect in strata 1. This feature was not reflected by

the MLE. This is further confirmed using other procedures like deviance testing and small

sample methods which is subject matter of a different paper. We do reiterate that the results

from asymptotic theory could be suspect since the number of observations is less than 20 in

each treatment group.

An anonymous referee raised the question if the differences seen in the placebo group sug-

gest that the responses should be modeled as a mixture of normal distributions. The following

graphs provide the best fitting normal distributions for each of the strata and the smoothed

kernel density estimates. The graphs do not suggest a mixture of normal distributions for the

data but we once again reiterate that these are based on very small sample sizes.
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2 MHDE for RPWD

In this section we systematically develop the notations, assumptions, and the terminology that

will be in force throughout this paper. Let Xij denote the measurement on the jth patient

receiving ith treatment. The data from a RPWD experiment can be expressed as:

X1ν(11), X1ν(12), · · · , X1ν(1n1)

...

Xkν(k1), Xkν(k2), · · · , Xkν(knk )
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where ν(ij) = is index of the jth patient receiving treatment i amongst patients {1, 2, · · · , n}.
Let {Tj : j ≥ 1} denote the treatment indicators, i.e.

Tj = i if the jth subject receives the ith treatment.

Let us assume henceforth that we have only two treatments. We will make the following

assumption on our data:

(A0) For each i = 1, 2, conditioned on {ν(ij), j = 1, . . . ni}, the sequences of responses

{Xiν(ik), k ≥ 1} are i.i.d. with distributions FXi.

The above assumption implies that the methodology developed in this paper can be applied

to perform inference on variables that are not correlated with the randomization variable. In a

typical clinical trial, there are several such variables and frequently, the randomizing variable

is a surrogate response which turns out to be uncorrelated with other primary end points. In

all such situations, the methodology of this paper can be employed.

We begin by recalling a theorem of Melfi and Page(see (17)).

Theorem 2.1. Let {(X1n,X2n : n ≥ 1} be a collection of i.i.d. random vectors with

marginal distributions FX1 and FX2 respectively. Let Fndenote a filtration such that (X1n,X2n)

is Fn measurable but independent of Fn−1. For each i = 1, 2, let {ν(ij), j ≥ 1} be a collection

of positive, increasing, almost-surely finite random variables such that {ν(ik) = j} ∈ Fj−1.

Then

1. {X1ν(1k), k ≥ 1} are i.i.d. with distribution FX1.

2. {X2ν(2k), k ≥ 1} are i.i.d. with distribution FX2.

3. the two sequences {X1ν(1k), k ≥ 1} and {X2ν(2k), k ≥ 1} are independent.

Remark 2.2 The above theorem asserts that the allocated sequences inherit the indepen-

dence and the distributional structure of the original sequence.

Remark 2.3 An anonymous referee has pointed out to us that the proof of (iii) as available

in (17) is incorrect. Apparently a correction to (iii) is being made. We note that, we use only (i)

and (ii) of Theorem 2.1 in sections 3 and 4 and use the theorem in this section for motivational

purposes only.

We now use the above theorem to develop a Hellinger distance based criterion fucntion for

RPWD data. We assume that

(A1) X1ν(1i) ∼ f(·|θ), X2ν(2j) ∼ g(·|η), where θ ∈ <p, η ∈ <p and θ and η and are not

functionally dependent, i.e. there does not exist any h : <p → <p such that h(θ) = η.

Remark 2.4 The clinical significance of the above assumption is that there is no infor-

mation about treatment 1 from subjects receiving treatment 2 and vice-versa.
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Remark 2.5 The condition concerning the functional independence can be removed by

modelling the dependence between θ and η. This introduces complex notations and technical

issues and will be pursued in a different publication.

Before introducing the criterion function, we need few more notations. Let

F (·| Ξ) =


 f(·|θ)
g(·|η)


 and H =


 h1

h2


 (2.7)

where Ξ = (θ, η)
′
. Let Θ1 ∈ <p denote the parameter space corresponding to θ, Θ2 ∈ <p

denote the parameter space corresponding to η and Θ = Θ1 ×Θ2 denote the parameter space

corresponding Ξ. Let

vhd(F, H) =


 HD2(f(·|θ), h1)

HD2(g(·|η), h2)


 (2.8)

denote the vector of squares of Hellinger distances between the components of F and H. Since

we will deal with square root of densities, for the sake of compactness of various expressions,

we introduce the following notations:

s1(x|θ) = f
1
2 (x|θ) s2(x|η) = g

1
2 (x|η). (2.9)

Let G denote the class of densities metrized by the L1 distance. We define the MHDF to be

the functional (possibly multivalued) T : G × G → Θ such that

T (H) = arg min
Ξ∈Θ

{vhd(F (·| Ξ), H} (2.10)

= arg max
Ξ∈Θ

Γ(Ξ, H)} (2.11)

where

Γ(Ξ, H) = (γ1(θ), γ2(η))
′

=
(∫

<
s1(x|θ)h1/2

1 (x)dx,
∫

<
s2(x|η)h1/2

2 (x)dx
)′
.

In the above equation it should be noted that the argmin of a vector functional is defined

component-wise as follows:

arg min
Ξ∈Θ

(.) =


 arg minθ∈Θ1(.)

arg minη∈Θ2(.)


 .

Now, if Hn are the estimators of H based on the data (to be described below) then the MHDE

of Ξ is given by

T (Hn) = arg min
ξ∈Θ

{vhd(F (·| Ξ), Hn}. (2.12)
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We choose for Hn ≡ (h1n, h2n), the following Kernel density estimate, viz.:

hin(x) =
1

Ni

Ni∑

j=1

K

(
x−Xiν(ij)

cn

)
i = 1, 2 (2.13)

=
1

Ni

∑

j∈An(i)

K
(
x−Xij

cn

)
i = 1, 2

where

An(i) = {1 ≤ j ≤ n|Tj = i}. (2.14)

Now using (2.14) in the definition of vhd yields the sample version vhdn given by

vhdn(F, H) = (HD2
n(f(·|θ), h1n), HD

2
n(g(·|η), h2n))

′

= 2 · 1 − Γn(Ξ, H) (2.15)

where 1 = (1, 1)′.

2.1 Existence and Uniqueness

In this section, we will establish the existence and uniqueness of the MHDE, defined

through a minimization of (2.12).We will make the following assumptions through out this

paper.

(A2) The parameter spaces Θ1 and Θ2 are locally compact.

(A3) f(·|θ) and g(·|η) are upper semi-continuous.

Our first theorem shows that under a further weak regularity condition (2.12) exists.

Theorem 2.1. Assume (A0)-(A3). Let ΘK = K1 ×K2, where Ki ⊂ Θi is compact for all

i = 1, 2. Let Θc = Θc
1 × Θc

2, Θc
1 = Kc

1 ∩ Θ1, and Θc
2 = Kc

2 ∩ Θ2. Assume further that

sup
Ξ∈Θc

Γ(Ξ, H) < sup
Ξ∈ΘK

Γ(Ξ, H) (2.16)

and that

Ξ1 6= Ξ2 ⇒ H(·|Ξ1) 6= H(·|Ξ2) (2.17)

on a set of positive Lebesgue measure. Then (2.12) exists and is unique.

Proof. The proof of existence involves two steps.

(1) We will show that vhd(F, H) is lower semi-continuous.
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(2) We will then use (2.16) along with condition (2.17) of the theorem to establish the

existence of the minimizers of (2.12).

We begin with (1). Note that

vhd(F (·|Ξ), H) = 2 · 1 − 2Γ(Ξ, H). (2.18)

Under (A3), Γ(Ξ, H) is upper semi-continuous function. Hence vhd(F, H) is lower semi-

continuous. Now, since K1 and K2 are compact subsets of Θ1 and Θ2 respectively, ΘK =

K1 ×K2 is also a compact subset of Θ. Hence from the lower semi-continuity of vhd(.) there

exists a Ξ∗ ∈ ΘK such that

(m1,m2)
′ = vhd(F (·|Ξ∗), H) = inf

Ξ∈ΘK

vhd(F (·|Ξ), H). (2.19)

Hence using (2.18)

Γ(Ξ∗, H) =
1

2
(2 −m1, 2 −m2)

′.

Now, using condition (2.16), we have that for all Ξ /∈ ΘK, Γ(Ξ, H) < 1
2
(2 −m1, 2 −m2)

′.

Hence Ξ∗ minimizes vhd(·|Ξ) on Θ.

We next prove the uniqueness of T (F (·|Ξ)). Asumption (2.17) of the theorem implies

identifiabilty. Hence, by applying Beran’s (1977) Theorem 1 to the components of

vhd(F (Ξ), F (Ξ0)) =


 HD2(f(·|θ), f(·|θ0))

HD2(g(·|η), g(·|η0))




it follows that vhd(., .) is minimized at θ = θ0 and η = η0 uniquely .

3 Consistency of MHDE for RPWD

In this section we establish the consistency of the MHDE defined in (2.9). The main technical

tool involves (i) establishing the continuity of the VHDF and (ii) establishing the L1 consis-

tency of the Hn(.) defined in (2.14). If one assumes that the parameter space is compact,

then (i) and (ii) imply consistency follows from Beran’s arguments. We will show that under

the regularity conditions assumed in Theorem 3.3 below, one can get consistency without

assuming compactness. We begin by studing the L1 convergence of Kerenl density estimators

of RPWD.
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3.1 L1-convergence of Kernel Density Estimators of RPWD

We begin by considering the L1 consistency of Hn(.). We recall that the kernel density

estimators of h1 and h2 (the densities of responses for treatment 1 and treatment 2 respectively)

are given by

hin(x) = (Nicn)
−1

∑

j∈An(i)

K
(
x−Xij

cn

)
, i = 1, 2.

where An(i) is defined in (2.14). Our first theorem establishes the strong pointwise consis-

tency and strong L1 consistency of hi,n(·) and E(hi,n(·)).

Proposition 3.1. Assume that cn → 0 and ncn → ∞ as n→ ∞. Then for almost all x (with

respect to the Lebesgue Measure)

lim
n→∞

hin(x) = hi(x) a.s., (3.20)

and

lim
n→∞

E(hin(x)) = hi(x). (3.21)

Furthermore,

lim
n→∞

∫

<
|hin(x) − hi(x)| = 0 a.s., (3.22)

(3.23)

and

lim
n→∞

∫

<
|E(hin(x)) − hi(x)| = 0. (3.24)

Proof. By Melfi’s Theorem, {Xi,ν(ij), j ∈ A(i)} are i.i.d. random variables. Since Ni

n
converges

to πi > 0, it follows that Ni(n)cn → ∞ as n → ∞. Hence, by Theorem 1 of Devroye (1987),

(3.20) follows. (3.21) is a consequence of Glick’s Theorem. We next calculate

E

(
K

(
x−Xiν(ij)

cn

))
=

∫
K
(
x− y

cn

)
hi(y)dy

= cn

∫
K(t)hi(x+ tcn)dt (3.25)

Now, conditioning on the treatment assignment, and using (3.25) and assumption (A0)

E(hin(x)) =
∫
K(t)hi(x+ tcn)dt. (3.26)
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Thus, to complete the proof of (3.22) we need to show that (3.26) converges to hi(x). Now

|E(hin(x))− hi(x)| ≤
∫
K(t)|hi(x+ tcn) − hi(x)|dt. (3.27)

By the bounded convergence theorem, right hand side of (3.27) converges to 0 as n → ∞
yielding (2.17). Finally, by integrating (3.27) and interchanging the order of integration (using

Tonelli’s theorem), it follows again by the bounded convergence theorem that

lim
n→∞

∫
|E(hin(x)) − hi(x)| = 0

yielding (3.24).

Remark 3.2. Since convergence in L1 implies convergence in the Hellinger metric, it

follows that

lim
n→∞

HD(hin, hi) = 0 a.s. for all i = 1, 2. (3.28)

3.2 Continuity and Consistency of the MHDF

In this section, we study the consistency of the MHDE via the continuity of the MHDF

defined in (2.12) Recall that G is the class of densities metrized by the L1 distance and

T : G × G → Θ is defined as

T (H) = arg max
Ξ∈Θ

Γ(Ξ|H).

Our first result establishes the continuity of T . Assume that (A1)-(A3) and conditions of

Theorem 2.1.1. hold.

Proposition 3.2. Assume further (A0)-(A3) that T (H) is unique. Then T is continuous,

i.e. if h1n
L1−→ h, h2n

L1−→ h2, then

lim
n→∞

T (Hn) = T (H). (3.29)

Proof. Let h1n
L1→ h1 and h2n

L1→ h2. By Theorem 2.1, there exists Ξn ∈ Θ such that

T (Hn) = Ξn. Furthermore, since the minimizers exist inside a compact set, {Ξn : n ≥ 1} is

bounded sequence. By another application of Theorem 2.1, there exist Ξ ∈ ΘK ⊂ Θ such that

T (H) = Ξ.

Thus, to prove (3.29) it is enough to show that

Ξn → Ξ0. (3.30)

We now show that is sufficient to prove that

lim
n→∞

dn = 0 (3.31)
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where

dn ≡ sup
Ξ∈Θ

|vhd(F (·|Ξ), Hn) − vhd(F (·|Ξ), H)|. (3.32)

To this end, suppose (3.31) holds and (3.30) does not hold. By the boundedness of {Ξn : n ≥ 1}
and the compactness of ΘK, there exists Ξ∗( 6= Ξ0) ∈ ΘK and a subsequence nk such that

Ξnk
→ Ξ∗. (3.33)

Hence by (3.31)

vhd(F (·|Ξnk
), Hnk

) → vhd(F (·|Ξ∗), H). (3.34)

This implies that

vhd(F (·|Ξ∗), H) = vhd(F (·|Ξ), H)

contradicting the uniqueness of T (H). Now we show that (3.31) holds. By the Cauchy-

Schwarz inequality, the components of dn are bounded above byHD(h1n, h1) and HD(h2n, h2)

respectively. Now (3.31) follows from Remark 3.2 using (3.28)

Now, using the compactness of K1 and K2 and using Theorem 2.1, Proposition 3.1 and

Proposition 3.2 we get the strong consistency of the MHDE for RPWD. We state this as a

Theorem.

Theorem 3.3. Assume (A1)-(A3) holds and that T (H) is unique. Then, the sequence of

MHDE defined in (2.12) converges a.s. to T (H).

In the next section, we establish the joint asymptotic normality of the MHDE of Ξn.

The properties of the kernel density estimateK(.) will play an important role in the proof of

asymptotic normality of the MHDE. We will state these conditions and they will be in force

throughout the next section.

(K1) K(.) is symmetric about 0 with compact support. We will denote the support of

K(.) by Supp(K).

(K2) The window-width cn satisfies the following: cn → 0, nc2n → 0, and n
1
2 cn → ∞.

4 Joint Asymptotic Normality of MHDE of Ξ0

In this section, we deal with the joint asymptotic normality Ξn. We will assume throughout

this section that the conditions (A1)-(A2) holds. We need the following further differentia-

bility conditions on the families of densities, {f(·|θ) : θ ∈ Θ1} and {g(·|η) : η ∈ Θ2}.

(D1) f(·|θ) and g(·|η) are twice continuously differentiable functions of θ and η.

(D2) Assume further that ||∇s1(·|θ)||2 and ||∇s2(·|η)||2 are continuous and bounded.
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To state our conditions for asymptotic normality precisely, we introduce the vector score

functions, viz.

u1(·|θ) ≡ ∇f(·|θ)f−1(·|θ) and u2(·|θ) ≡ ∇g(·|η)f−1(·|η). (4.35)

Hence,
.
s1 (·|θ) =

1

2
u1(·|θ) s1(·|θ), and

.
s2 (·|η) =

1

2
u2(·|η) s1(·|η). (4.36)

Furthermore, the klth element of the matrix of second partials of s1(·|θ) and s2(·|η) are given

by
..
s1kl (·|θ) =

1

2

.
u1kl (·|θ)s1(·|θ) +

1

4
(u1(·|θ)u′1(·|θ))kls1(·|θ) (4.37)

and
..
s2kl (·|η) =

1

2

.
u2kl (·|η)s2(·|θ) +

1

4
(u2(·|η)u′2(·|η))kls2(·|η) (4.38)

respectively. Note that
.
u1kl (·|θ) represents the klth element of the matrix

.
u1 (·|θ) and

.
u2kl (·|η)

the klth element of the matrix
.
u2 (·|η). We will have occasion to use the Fisher information

matrices I1(θ0) and I2η0, defined to be

I1(θ0) =
∫

R
u1(x|θ0)u

′
1(x|θ0)f(x|θ0)dx (4.39)

and

I2(η0) =
∫

R
u2(x|η0)u

′
2(x|η0)g(x|η0)dx. (4.40)

Using the (D1) and (D2) and partially differentiating (2.15) with respect to Ξ we get

∇vhdn(Ξ) = 0 (4.41)

Let Ξn be the solution to (4.41). Now applying one term Taylor expansion of (4.41) we get

∇vhdn(Ξ0) = ∇vhdn(Ξn) +Dn(Ξ∗
n)(Ξn − Ξ0) (4.42)

where (using (A1)) Dn(.) is given by

Dn(Ξ∗
n) = Diag(D1n(θ

∗
n), D2n(η∗n)). (4.43)

and Ξ∗
n = (θ∗n, η

∗
n)

′ ∈ Un(θ0) × Vn(η0) where,

Un(θ0) = {θ|θ = tθ0 + (1 − t)θn}, (4.44)

Vn(η0) = {η|η = tη0 + (1 − t)ηn}, (4.45)

D1n(θ) =
1

2

∫

R

.
u1 (·|θ)s1(θ)h

1
2
1n(x)dx+

1

4

∫

R
u1(·|θ)u′1(·|θ)

.
s1 (θ)h

1
2
1n(x)dx, (4.46)
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and

D2n(θ) =
1

2

∫

R

.
u2 (·|η)s2(η)h

1
2
2n(x)dx+

1

4

∫

R
u2(·|η)u′2(·|η)

.
s1 (η)h

1
2
1n(x)dx. (4.47)

Thus,

(Ξn − Ξ0)
′ = D−1

n (Ξ∗
n)∇vhdn(Ξ0). (4.48)

Now using the definition of vhd(.), the above simplifies to

(Ξn − Ξ0)
′ = (D−1

1n (θ∗n) ∇vhd1n(θ0), D−1
2n (η∗n) ∇vhd2n(η0))

′. (4.49)

Writing down the expressions and simplifying (after using the identity

b
1
2 − a

1
2 = (2a

1
2 )−1((b− a) − (b

1
2 − a

1
2 )2))

one gets,

∇vhd1n(θ0) = T1n +R1n

where

T1n ≡ 1

4

∫

R
u1(x|θ0)(f(x|θ0) − h1n(x))dx, (4.50)

and

R1n ≡ 1

4

∫

R
u1(x|θ0)(f

1
2 (x|θ0) − h

1
2
1n(x))

2dx. (4.51)

Similar expressions hold for vhd2n(η0) with T1n being replaced by T2n and R1n being replaced

by R2n.

Hence,

n
1
2 (Ξn − Ξ0)

′ = A1n +A2n (4.52)

where

A1n = n
1
2 (D−1

1n (θ∗
n)T1n, D−1

2n (η∗
n)T2n) (4.53)

and A2n = n
1
2 (D−1

1n (θ∗
n)R1n, D−1

2n (η∗
n)R2n). (4.54)

We will show that as n → ∞, under further model assumptions, that (1) A2n
P→ 0 and

(2)A1n
d→ N2(0,Σ). We begin with the model assumptions:

(M1) The functions u1(θ)s1(θ) and u2(η)s2(η) are continuous and bounded in L2(.) at θ0

and η0 respectively.

(M2) The functions
.
u1 (θ)s1(θ) and

.
u2 (η)s2(η) are continuous and bounded in L2(.) at

θ0 and η0 respectively.

(M3) The functions u1(θ)u
′
1(θ)s1(θ) and u2(η)s2(η) are continuous and bounded in L2(.)

at θ0 and η0 respectively.
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(M4)Let {αn, n ≥ 1} be a sequence diverging to infinity. Assume that

lim
n→∞

n sup
t∈supp(K)

Pθ0(|X − cnt| > αn) = 0

lim
n→∞

n sup
t∈supp(K)

Pη0(|X − cnt| > αn) = 0

where supp(K) is the support of the kernel density K(·) and X is a generic random variable

with density f(.|θ0) or g(.|η0) depending on where it is referenced.

(M5) Let

Mn(1) = sup
|x|≤αn

sup
t∈supp(K)

∣∣∣f−1(x|θ0)f(x+ tcn|θ0)
∣∣∣

Mn(2) = sup
|x|≤αn

sup
t∈supp(K)

∣∣∣g−1(x|η0)g(x+ tcn|η0)
∣∣∣ .

Assume

sup
n≥1

Mn(i) <∞ for i = 1, 2.

(M6)The score functions have a regular central behavior relative to the smoothing con-

stants:i.e.

lim
n→∞

(n
1
2 cn)−1

∫ αn

−αn

u1(x|θ0)dx = 0 and lim
n→∞

(n
1
2 cn)−1

∫ αn

−αn

u2(x|η0)dx = 0. (4.55)

Furthermore,

lim
n→∞

(n
1
2 c4n)

∫ αn

−αn

u1(x|θ0)dx = 0 and lim
n→∞

(n
1
2 c4n)

∫ αn

−αn

u2(x|η0)dx = 0. (4.56)

(M7)The density functions are smooth in an L2 sense; i.e.

lim
n→∞

sup
t∈Supp(K)

∫

R
(u1(x+ cnt|θ0) − u1(x|θ0))

2f(x|θ0)dx = 0

and

lim
n→∞

sup
t∈Supp(K)

∫

R
(u2(x+ cnt|θ0) − u2(x|θ0))

2g(x|η0)dx = 0.

Theorem 4.1 Assume that conditions (A0)-(A2),(K1)-(K2), (M1)-(M7) hold. Then,

as n→ ∞ √
n(Ξn − Ξ0)

d−→ N2(0,Σ)

where

Σ =


 π−1

1 I−1
1 (θ0) 0

0 π−1
2 I−1

2 (η0)


 . (4.57)

where

I−1
1 (θ0) = [

∫
(

.
u1 (x|θ0))(

.
u1 (x|θ0))

′dx], (4.58)
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I−1
2 (η0) = [

∫
(

.
u2 (x|η0))(

.
u2 (x|η0))

′dx] (4.59)

where π1 is as in (1.1) and I1(θ) and I2(η) are the Fisher’s information for the families

{f(.|θ)|θ ∈ Θ1}and {g(.|η)|η ∈ Θ2}.
Proof: The proof of the Theorem will be sub-divided into various lemmas. Our first

lemma studies the behavior of D1n(θ∗n) as n→ ∞.

Lemma 4.2 Under (A2)-(A3) and (M1)-(M3) the following hold:

1. limn→∞D1n(θ∗
n) = 4−1I1(θ0);

2. limn→∞D2n(η∗
n) = 4−1I2(η0).

Proof: We will only prove (i). The main idea of the proof is to show that the first

term on the RHS of (4.46) converges to 0 and the second term converges to the appropriate

limit. Note that the convergence of the integrands follows from the asuumed continuity of the

densities and convergence of the estimates of the densities. We will show that our regularity

assumptions yield convergence of the integrals themselves. Note that the first term on the

RHS of (4.46) can be expressed as

1

2

∫

R
(

.
u1 (x|θ∗n)s1(x|θ∗n)−

.
u1 (x|θ0)s1(θ0))(h

1
2
1n(x)− s1(x|θ0)dx.

The above term converges to 0 by Cauchy Schwarz inequality, Theorem 3.3, assumption (M2)

and Remark 3.2. The convergence of the second term follows along the same lines now using

using assumption (M3) instead of (M2) and using the definition of the Fisher information

matrix.

Our next lemma shows that A2n
p→ 0 as n→ ∞ under further regularity conditions.

Lemma 4.3 Under the conditions of the theorem, limn→∞A2n
p→ 0.

Proof: Using Lemma 4.2, it follows that it is enough to show that R1n and R2n converges

to 0 in probability. We will only show that R1n converges to 0 in probability. We will suppress

the constant and making use of an abuse of notation denote by R1n the terms involving the

integrals. Let us set

dn1(x) = (s1(x)− h
1
2
1n(x)). (4.60)

Then recall that,

n
−1
2 |R1n| ≤ 1

2

∫

R
|u1(x|θ0)|d2

n1dx (4.61)

≤ 1

2

∫ αn

−αn

|u1(x|θ0)|d2
n1(x)dx+

1

2

∫

|x|≥αn

|u1(x|θ0)|d2
n1(x)dx (4.62)

= T1n + T2n (4.63)
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We will now show that each of the terms are op(n
−1
2 ) as n → ∞. We begin with T1n. The

following estimate is needed for our analysis.

d2
n1(x) ≤ 2{(f(x|θ0) − E(h1n(x))

2 + (E(h1n(x))
2 − h1n(x))

2}f−1(x|θ0) (4.64)

Using this estimate, we can write

T1n ≤ Tr1n(1) + Tr1n(2) (4.65)

where

Tr1n(1) =
∫ αn

−αn

|u1(x|θ0)|(E(h1n(x)) − h1n(x))2f−1(x|θ0)dx (4.66)

and

Tr1n(2) =
∫ αn

−αn

|u1(x|θ0)|(f(x|θ0) −E(h1n(x))2f−1(x|θ0)dx. (4.67)

We begin with Tr1n(1). Let ε > 0 be arbitray but fixed. Then,

P (n
1
2Tr1n(1) > ε) ≤ ε−1n

1
2E(Tr1n(1)) (4.68)

≤ ε−1n
1
2

∫ αn

−αn

|u1(x|θ0)|(V ar(h1n(x))f−1(x|θ0)dx (4.69)

Now, using (A0)

V ar(h1n(x)) = E(V ar(hn1(x)|Fn)) (4.70)

≤ 1

ncn
E(

n

N1(n)
)
∫

R
K2(t)f(x− tcn|θ0)dt. (4.71)

Now plugging in (4.71) in (4.66) and interchanging the order of integration (using Tonelli’s

Theorem)

P (n
1
2Tr1n(1) > ε) ≤ C(n

1
2 cn)−1Mn(1)

∫ αn

−αn

|u1(x|θ0)|dx (4.72)

where C is a universal constant. The result now follws from the conditions (M6)- (M7).

We now deal with Tr1n(2). To this end, we need to evaluate (E(h1n(x)) − f(x|θ0)
2. Using a

change of variables,two-step Taylor approximation, and (K1) we get

(E(h1n(x)) − f(x|θ0)) =
∫

R
K(t)(f(x− tcn|θ0) − f(x|θ0))dt (4.73)

=
∫

R
K(t)

(tcn)
2

2
f ′′(x∗n(t)|θ0)dt. (4.74)

Now plugging in (4.74) into (4.67) and using conditions (M3), and (M7) one gets

n
1
2Tr1n(2) ≤ Cn

1
2 c4n

∫ αn

−αn

|u1(x|θ0)|dx (4.75)
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where C is a universal constant. Convergence of (4.75) to 0 now follows from condition (M6).

We next deal with T2n. To this end, observe that

n
1
2T2n =

∫

|x|≥αn

|u1(x|θ0)|(f(x|θ0) + h1n(x) + s1(x|θ0)h
1
2
1n(x))dx. (4.76)

We will show that the RHS of the above equation converges to 0 as n → ∞. We begin with

the first term. Note that, by Caucy-Schwarz inequality

n(
∫

|x|≥αn

|u1(x|θ0)f(x|θ0)dx)
2 ≤ (

∫

|x|≥αn

u2
1(x|θ0)f(x|θ0)dx){nPθ0 (|X| ≥ αn)} (4.77)

which converges to 0 by (M4). As for the second term, note that, a.s.

(
∫

|x|≥αn

|u1(x|θ0)|h1n(x)dx)
2 ≤

∫

|x|≥αn

u2
1(x|θ0)|h1n(x)dx.

Now taking the expectation and using Cauchy-Schwarz inequality, one can show that

nE(
∫

|x|≥αn

|u1(x|θ0)h1n(x)dx)
2 ≤ (

∫

R
K(t)

∫

R
u2

1(x− cnt)f(x|θ0)dxdt)mn (4.78)

where mn ≡ n supz∈Supp(K) Pθ0(|X − cnz| ≥ αn). The convergence to 0 of (4.78) now follows

from conditions (M4). Finally, by yet another application of the Cauchy-Schwarz inequality,

nE(
∫

|x|≥αn

|u1(x|θ0)|h
1
2
1n(x)s1(x|θ0)dx) ≤ (

∫

R
u2

1(x|θ0)f(x|θ0)dx)mn. (4.79)

Convergence of (4.79) to 0 follows from (M4). This completes the proof that R1n → 0 as

n→ ∞.

Our next lemma studies the asymptotic limit behavior of n
1
2 (T1n, T2n) defined in (4.50).

The idea of proof is to first show that the limit distribution of (n
1
2T1n, n

1
2T2n) does not depend

on cn and then use the Cramer-Wold device to obtain the limiting joint distribution. The main

difficulty is of course, the terms T1n and T2n are dependent due to the fact that the sample

sizes are dependent random variables. We address this difficulty using Kolmogrov’s maximal

inequality. We begin with a lemma that shows that ”in a second order limiting sense” we can

approximate the distribution of n
1
2 (T1n, T2n) with terms involving the empirical distribution.

More precisely,

Lemma 4.4 Under (M7) the following holds:

lim
n→∞

E(4n
1
2T1n −

n
1
2

N1(n)

∑

j∈An(1)

u1(X1,ν(1,j)|θ0))
2 = 0. (4.80)

lim
n→∞

E(4n
1
2T2n − n

1
2

N2(n)

∑

j∈An(2)

u2(X2,ν(1,j)|η0))
2 = 0. (4.81)
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Proof: One can show that,

n
1
2 (4T1n − 1

N1(n)

∑

j∈An(1)

u1(X1,ν(1,j)|θ0)) = n
1
2 (

∑

j∈An(1)

∫

R
u1n(X1ν(1j), t)K(t)dt) (4.82)

where

u1n(x, t) = (((u1(x+ tcn|θ0) − u1(x|θ0))). (4.83)

The result is proved using Cauchy-Schwarz inequality, Minkowski’s inequlaity (along the lines

of Proof of Lemma 4.3), and the bounded convergence theorem using (M7).

Our next lemma studies the asymptotic limit distribution of
√
n(S1

N1
, S2

N2
) where

S1
N1

=
1

N1(n)

∑

j∈An(1)

u1(X1ν(ij)|θ0). (4.84)

and S2
N2

is defined similarly.

Lemma 4.5 The normalized scores converge in distribution to a bivariate normal distri-

bution, i.e.

lim
n→∞

√
n(S1

N1
, S2

N2
)

d⇒ N2(0,Σ) (4.85)

where

Σ =


 π1I

−1
1 (θ0) 0

0 π2I
−1
2 (η0)


 . (4.86)

Proof: We will use the Cramer-Wold device. Let l1 and l2 be 1× p vectors of constants. The

linear combination of S1
N1

and S2
N2

is then

√
n(

2∑

i=1

1

Ni

Ni∑

j=1

liui(Xiν(ij))) (4.87)

Thus to complete the proof we need to show that the term

√
n

2∑

i=1

1

Ni

∑

j∈An(i)

liui(Xiν(ij))

converges a normal distribution. Now

√
n

2∑

i=1

1

Ni

∑

j∈An(i)

liui(Xiν(ij)) = Gn,1 +Gn,2 +Gn,3 +Gn,4 (4.88)

where

Gn,1 =
1

N1

∑

j∈An(1)

l′1u1(X1ν(ij)) =
1

N1

[n·π1 ]∑

j=1

l′1u1(X1ν(ij))
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Gn,2 =
1

N2

[nπ2 ]∑

j=1

l′2u2(X1ν(2j))

Gn,3 =
1

N1

∑

[π1n]∧N1≤j≤N1∨[π1n]

l′iu1(X1ν(1j))

Gn,4 =
1

N2

∑

[π2n]∧N2≤j≤N2∨[π2n]

l′2u2(X2ν(2j))

By Melfi’s results and central limit theorem for i.i.d. random variables Gn,1 +Gn,2 converges

to a linear combination of Gaussian random vectors. We will now show that Gn,3 + Gn,4

converges to 0 in probability. Now, for any δ > 0,

P (|Gn,3| > ε) = P (|Gn,3| > ε : |N1

n
− π1| < δ) + P (|Gn,3| > ε : |N1

n
− π1| > δ)

= (i) + (ii)

Let E(n, δ) = {ω : |N1(w)
n

− π1| < δ}.
Note that

(i) = P






 1

N1

N1∨[nπ1]∑

j=N1∧[nπ1]

ψ1(X1ν(1j)


 > ε : E(n, δ)





≤ P


 1

n(π1 + δ)

n(π1+δ)∑

j=[n(π1−δ)]

ψ1(X1ν(1j)) > ε




≤ P


 max

1≤k≤n(π1+δ)

k∑

j=[n(π1−δ)]

ψ1(X1ν(1j)) ≥ n(π1 + δ)ε




≤ C

n2
→ 0 as n→ ∞. (4.89)

where (4.89) follows from Kolmogorov’s maximal inequality (Chung (1974) P. 116.) Similar

argument shows that Gn,4
P−→ 0. As for (ii)

(ii) ≤ P (|N1

n
− π1| > δ) → 0 as n→ ∞.

Proof of the Theorem. From (4.52) , (4.53), and (4.50), it is enough to establish the

asymptotic normality of A1n. To this end, note that

A1n = Diag(D−1
1n (θ∗n),D−1

2n (η∗n))(T1n, T2n)
′. (4.90)

Hence, using Lemma 4.2, Lemma 4.4 and Lemma 4.5 and a straight forward calculation, the

Theorem follows.

We next move on to discuss robustness.
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5 Robustness of MHDE

In this section we deal with the robustness of the MHDE. We describe the robustness

properties through a study of the α-influence function and the breakdown point. We begin

with the α-influence function. We will denote by F (·|Ξ, α, z) the contaminated model, i.e.

F (·|Ξ, α, z) = (1 − α)F (·|ξ) + αUz (5.91)

where

Uz =


 UZ1

UZ2


 , α =


 α1

α2


 .

UZi are uniform densities on the interval (Zi−ε, Zi +ε) where ε > 0. Note that f(·|θ , α1, Z1)

represents a (1 − α1)% contamination with distant “outliers”. Similarly, g(·|η , α2, Z2)

represents a (1 − α2)% contamination with distant “outliers”. Our first main result of this

section is contained in the following theorem.

Theorem 5.1. Assume that the conditions of Theorem 4.1. hold. If T (F (·|Ξ, α, z) is unique

for all z, then

(i) T (F (·|Ξ, α, z) is a bounded continuous function of z such that

lim
z→∞

T (F (·|Ξ, α, z) = Ξ. (5.92)

Furthermore,

(ii)

lim
α→0

(T (F (·|Ξ, α, z) − Ξ)α−1 = RFT (z)

where

RFT (z) =


 (I1(θ))

−1[
∫
< UZ1(x)ψ1(x|θ)dx]

(I2(η))−1[
∫
< UZ2(x)ψ2(x|η)dx]


 .

Proof. The proof is a straight forward modification of Beran’s proof applied component-wise

with adjustments to non-compact parameter spaces and hence is omitted.

Remark 3.8.2. The functional T viewed as a function of z is called the α-influence curve.
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Graph 5.1: The following graph represents the α-influence curve with 20% contamination.
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Remark 5.2. Note that F (·|Ξ, α, z) models an experiment where the observations are

mixed with approximately α% gross errors located near z. The above theorem compares

T (F (·|Ξ, α, z)) with T (F (·|Ξ)) = Ξ.

Remark 5.3. The Graph 5.1 on the last page described the influence of z for the Hellinger

distance estimator. Note also that the graphs for various α’s change dramatically, implying

that the convergence of the α-influence curve need not be uniform in z. To contrast our results

with the MLE, we note that the α-influence curve of the MLE is unbounded since

|θ̂MLE,z| → ∞

as z → ∞. This can be alsobe seen from the Graph 5.2.

We now move on to describe the breakdown point of MHDE. One can show, in a manner

analogous to Simpson(1987) that the asymptotic breakdown point of the MHDE is 1/2. Since

the ideas involve no new novelties, we refer the reader to Simpson’s article for deatils. We

satisfy by presenting the following graph that shows a relative change in the estimator due to

the change in the contamination proportion.

 

0.0 0.1 0.2 0.3 0.4 0.5

-1
0

-5
0

5
1

0

MHDE
MLE
MLE-MHDE

α

Graph 5.2: The above graph represents the relative change in the estimator due to the

change in the contamination proportion. α is the percentage of contamination.
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6 Computational Algorithm

In this section we introduce a numerical method to solve equations (4.41) for θ and η. Assum-

ing f(x|θ) to be the Normal distribution with mean µ and variance σ2,Beran (1977) applied the

Newton-Raphson method for solving MHDE. Unlike the Newton-Raphson method algorithm,

which requires calculation of the second-order derivatives, one step Monte Carlo approxima-

tion method is easier to implement. The method is motivated as follows: Recall that finding

the MHDE of θ is equivalent to finding the θ that maximizes the following:

∫
(f(x|θ)1/2(hini(x))

1/2dx =
∫
{ (f(x|θ)1/2

(hini(x))
1/2

}(hini(x))dx.

By strong law of large numbers the above integral can be approximated by

1

M

M∑

j=1

(
fθ(yij)

hini(yij)
)1/2, (6.93)

where M is the number of the Monte Carlo samples and yij ∼ hini . We need to find the

value of θ that maximizes (6.93). When the underlying distribution of fθ is N(µ, σ2), (6.93)

becomes the following :

1

M

M∑

j=1

wij

4
√

2πσ2
exp(− 1

4σ2
(yij − µ)2), wij =

1√
hini(yij)

. (6.94)

Taking the partial derivative of (6.94) with respect to µ and σ2 and setting them to 0, we

obtain the following recursive equations for µ and σ2, viz.,

µ̂(m+1) =

∑M
j=1wij exp(− 1

4σ̂2
(m)

(yij − µ̂(m))
2)yij

∑M
j=1wij exp(− 1

4σ̂2
(m)

(yij − µ̂(m))2)
(6.95)

and

σ̂2
(m+1) =

∑M
j=1 wij exp(− 1

4σ̂2
(m)

(yij − µ̂(m))
2)(yij − µ̂(m))

2

∑M
j=1 wj exp(− 1

4σ̂2
(m)

(yij − µ̂(m))2)
. (6.96)

If the kernel K is a standard normal density, we have

hini(x) =
1

nicn

ni∑

z=1

K

{
x−Xiν(iz)

cn

}

=
1

nicn

ni∑

z=1

1√
2π

exp(−1

2
(
x−Xiν(iz)

cn
)2)

=
1

ni

ni∑

z=1

1√
2πc2n

exp(−1

2
(
x−Xiν(iz)

cn
)2)

=
1

ni

ni∑

z=1

φ(Xiν(iz), c
2
n),
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where φ is the normal density with mean equal to Xi,ν(iz) and variance equal to c2n. Thus,

hini(x) is a mixture of normal densities with mixing proportion 1
ni

. Therefore, in the first step

of the algorithm, we generate a random variable yij which has the distribution hini(x).

Note that in the update formulas (19) and (20), wij = 1√
hi,ni

(yij)
which depends on the

choice of the kernel density K. When K is chosen to be standard normal density, we have

wij =

[
1

nicn

ni∑

z=1

1√
2π

exp(−1

2
(
yij −Xiν(iz)

cn
)2)

]−1/2

.

If K(·) were Epanechnikov kernel the weight reduces to

wij =

[
1

nicn

ni∑

z=1

0.75(1 − (
yij −Xiν(iz)

cn
)2)

]−1/2

,

∣∣∣∣∣
yij −Xiν(iz)

cn

∣∣∣∣∣ < 1.

Let us describe how to generate the Epanechnikov random variable. From Devroye (1986

P.72), we know that if U1, U2, U3 and U4 are i.i.d. uniform[0, 1] random variables, then for

a > 1, U
1
a
1 U2 has density

a

a− 1
(1 − xa−1)I[0<x<1];

also, (−U
1
a
3 )U4 has density

a

a− 1
(1 − xa−1)I[−1<x<0]

In our case, letting a = 3, and randomizing between U
1
a
1 U2 or (−U

1
a
3 )U4 with equal probability

we obtain the Epanechnikov random variable with mean 0 and variance 1, denoted as Epa(0,1).

Therefore, Epanechnikov random variable with mean Xi,ν(i,z) and variance c2n can be obtained

by Epa(0,1)*cn+Xi,ν(i,z). The one step Monte-Carlo approximation algorithm can be described

as follows:

1. Generate random variables for each data point from the kernel density with mean Xiν(iz)

and variance c2n. Choose one of then with equal probability ( 1
ni

) and retain it. Repeat

M times. Using the initial values for µ and σ, viz., µ̂(0) =median{Xiν(iz)} and σ̂(0) =

(0.674−1)median{|Xiν(iz) − µ̂(0)|}.

2. Obtain the updates using (19) and (20).

3. When |µ̂(m+1) − µ̂(m)| < ε and |σ̂(m+1) − σ̂(m)| < ε for small ε, say 10−6 then stop; else go

to step2.

7 Simulation Results

In this section, we will present simulation results which were carried out using SAS soft-

ware.The simulations compares the efficiency between MHDE and MLE with outlier, and
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incorporating the randomized play the winner design with two treatments. We start with an

urn containing 5 ball of each type and assume treatment A has success probability p1 and

treatment B has success probability p2. Let N0
1 denote the number of type A balls in the urn

at the beginning of the trial and N0
2 denotes the number of type B balls in the urn at the

beginning of the trial. Let N i
1 and N i

2 denote the number of type A and B ball, after the ith

patient’s response is observed and the urn has been updated. The simulation procedure works

as follows:

1. Generate a uniform(0,1) random variable, say u1.

2. If u1 >
N i

1

(N i
1+N i

2)
, assign patient i + 1th to treatment B and generate a N(5,3) random

variable, representing the secondary variable. Otherwise, assign patient to treatment A

and generate a N(0,1) random variable, representing the secondary variable.

3. Generate a uniform(0,1) random variable, say u2. If the treatment assignment in step

2 is A and u2 < P1, then call this treatment a success, and add one type A ball to the

urn. Otherwise, add a type B ball. If the treatment assignment in step 2 is B, we will

update the urn similarly.

4. Repeat steps 1, 2 and 3 for 30 times to represent a sample of size 30.

5. Calculate MHDE and MLE for both treatments.

6. Repeat the above steps 1000 times.

In our simulation results we used Epanechnikov kernel to obtain the MHDE. The window

width cn was chosen by first fitting different values of cn for different sample sizes (around the

average smaple size). Note that the average sample size changes depending on the the sample

size n and the values of design parameters. After a best fitting cn was determined, it was held

fixed in the simulations for those choices of the design parameters.

Our simulations illustrate the probability that the MHDE and MLE will fall into the true

95% confidence interval for both the treatments A and B. Note that the true 95% confidence

interval for treatment A is given by (0 − 1.96 1√
N1
, 0 + 1.96 1√

N1
), where N1 is the number of

patients allocated to treatment A. To illustrate the robustness property of the MHDE, we will

change some of the treatment A’s responses to come from a normal distributions with means

ranging between 2 and 6. The design parameters p1 and p2, the probability of sucess on treat-

ments A and B play an important role through the behavior of the function Q = p1 + p2 − 3
2
.

The case when Q < 0 is a standard case, in the sense that there is a central limit behavior for

the functional N1
n

with normalization
√
n. The cases Q = 0 and Q > 0 lead to non-stanadard

results in that either the normalization is different or the limit is a non-normal distribution

([.]) and our simulations study if there is any impact of the design in the probability that
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the estimator belongs to the confidence interval. Note that even though the limit results do

not depend the design parameters, (due to the fact that the problem is reduced to a random

sample size problem and the fact that the random sample size diverges to infinity is all that

matters for the limit theory to hold) ”true conditional confidence intervals” depend on the

design through the random sample sizes. Table 7.1 and Table 7.2 below compare the behavior

of MHDE and MLE when Q < 0.

Table 7.1: Results for the RPWD. The probability that the MHDE and MLE fall in the

true confidence intervals with outlier from treatment A. The number of outliers equal 1, 2 and

3 with data from N(2,1) to N(6,1). Significant level=0.05, N1(0) = N2(0) = 5, α = 1, n = 30,

1000 simulations and p1 = 0.50, p2 = 0.50

outliers Estimator N(2,1) N(3,1) N(4,1) N(5,1) N(6,1) N(7,1)

A B A B A B A B A B A B

1 MHDE 0.89 0.93 0.89 0.95 0.90 0.93 0.91 0.94 0.92 0.94 0.94 0.94

MLE 0.92 0.94 0.88 0.95 0.82 0.94 0.73 0.94 0.66 0.94 0.54 0.95

2 MHDE 0.79 0.94 0.75 0.93 0.74 0.95 0.81 0.94 0.88 0.93 0.90 0.94

MLE 0.79 0.95 0.67 0.94 0.45 0.95 0.29 0.96 0.14 0.93 0.07 0.95

3 MHDE 0.67 0.92 0.48 0.94 0.39 0.94 0.52 0.95 0.62 0.94 0.77 0.94

MLE 0.64 0.93 0.37 0.94 0.13 0.94 0.04 0.96 0 0.95 0 0.96

The numbers in the bold font represent the cases that the proportion of times that MHDE

falls into true CI is higher than MLE. From Table 7.1, we see that as the values of the outliers

become larger, the probability of MLE falling into the true confidence interval is much smaller

than MHDE. Increasing the number of outliers makes the situation even worse.

Table 7.2: Results for the RPWD. The probability that the MHDE and MLE fall in the

true confidence intervals with outlier from treatment A. The number of outliers equal 1, 2 and

3 with data from N(2,1) to N(6,1). Significant level=0.05, N1(0) = N2(0) = 5, α = 1, n = 30,

1000 simulations and p1 = 0.80, p2 = 0.20
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outliers Estimator N(2,1) N(3,1) N(4,1) N(5,1) N(6,1) N(7,1)

A B A B A B A B A B A B

1 MHDE 0.94 0.94 0.91 0.95 0.89 0.93 0.92 0.93 0.93 0.93 0.94 0.93

MLE 0.95 0.93 0.91 0.95 0.85 0.95 0.79 0.95 0.74 0.94 0.63 0.94

2 MHDE 0.88 0.93 0.84 0.95 0.82 0.94 0.84 0.94 0.91 0.92 0.92 0.92

MLE 0.88 0.95 0.77 0.95 0.57 0.95 0.39 0.96 0.21 0.94 0.12 0.95

3 MHDE 0.75 0.92 0.56 0.93 0.59 0.94 0.92 0.93 0.93 0.93 0.90 0.93

MLE 0.73 0.93 0.42 0.95 0.23 0.95 0.79 0.95 0.70 0.94 0 0.95

Table 7.3: Results for the RPWD. The probability that the MHDE and MLE fall in the true

confidence intervals with outlier from treatment A. The number of outliers equal 1, 2 and 3

with data from N(2,1) to N(6,1). Significant level=0.05, N1(0) = N2(0) = 5, α = 1, n = 30,

1000 simulations and p1 = 0.75, p2 = 0.75

outlier N(2,1) N(3,1) N(4,1) N(5,1) N(6,1)

A B A B A B A B A B

1 MHDE 0.898 0.926 0.881 0.928 0.889 0.933 0.905 0.929 0.9220.928

MLE 0.906 0.951 0.857 0.948 0.796 0.951 0.703 0.952 0.608 0.950

2 MHDE 0.799 0.927 0.726 0.925 0.737 0.927 0.806 0.930 0.852 0.929

MLE 0.791 0.947 0.615 0.950 0.421 0.950 0.261 0.950 0.135 0.953

3 MHDE 0.631 0.927 0.460 0.931 0.487 0.927 0.628 0.928 0.937 0.927

MLE 0.605 0.950 0.328 0.949 0.137 0.949 0.043 0.951 0.011 0.950

Instead of assuming p1 = p2 = 0.5, the simulation results in Table 7.2 above assume that

p1 = 0.8 and p2 = 0.2, which means treatment A has a higher success probability than

treatment B. From Table 7.2, we notice that the effect of outliers is similar to Table 7.1.

However, due to more patients being assigned to treatment A, the results in Table 7.2 are not

as dramatic as in Table 7.1.

Our next tables compares the behavior of MHDE and MLE when Q > 0.

Table 7.4:. Results for the RPWD. The probability that the MHDE and MLE fall in the true

confidence intervals with outlier from treatment A. The number of outliers equal 1, 2 and 3

with data from N(2,1) to N(6,1)Significant level=0.05, N1(0) = N2(0) = 5, α = 1, n = 30,

1000 simulations and p1 = 0.75, p2 = 0.78
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outlier N(2,1) N(3,1) N(4,1) N(5,1) N(6,1)

A B A B A B A B A B

1 MHDE 0.895 0.925 0.878 0.929 0.886 0.927 0.908 0.925 0.9080.927

MLE 0.908 0.951 0.858 0.951 0.779 0.947 0.697 0.949 0.600 0.948

2 MHDE 0.785 0.926 0.899 0.928 0.717 0.925 0.787 0.924 0.843 0.925

MLE 0.777 0.948 0.560 0.952 0.407 0.950 0.278 0.949 0.126 0.949

3 MHDE 0.620 0.923 0.452 0.923 0.473 0.925 0.609 0.930 0.716 0.931

MLE 0.601 0.948 0.321 0.949 0.132 0.948 0.040 0.951 0.010 0.949

Table 7.5: Results for the RPWD. The probability that the MHDE and MLE fall in the true

confidence intervals with outlier from treatment A. The number of outliers equal 1, 2 and 3

with data from N(2,1) to N(6,1). Significant level=0.05, N1(0) = N2(0) = 5, α = 1, n = 30,

1000 simulations and p1 = 0.75, p2 = 0.79

outlier N(2,1) N(3,1) N(4,1) N(5,1) N(6,1)

A B A B A B A B A B

1 MHDE 0.896 0.931 0.875 0.933 0.882 0.920 0.895 0.929 0.9100.927

MLE 0.909 0.950 0.851 0.954 0.781 0.944 0.692 0.953 0.584 0.949

2 MHDE 0.784 0.924 0.693 0.934 0.712 0.933 0.781 0.931 0.843 0.933

MLE 0.780 0.950 0.584 0.952 0.399 0.952 0.235 0.952 0.121 0.956

3 MHDE 0.612 0.929 0.440 0.932 0.464 0.926 0.597 0.931 0.712 0.925

MLE 0.587 0.949 0.308 0.952 0.132 0.951 0.043 0.952 0.009 0.950

From the above simulation results we notice that there seems to be a significant drop in

the coverage for both MLE and MHDE when Q is near 0 when the data are contaminated by

outliers. This manifestation of low coverage persisted even when the number of simulations

were increased to 5000. Further studies have indicated that there is an interaction between

the design parameters and the performance of the estimators related to the parameters of the

”response” variables generated using a RPWD. Methods for quantifying this interaction are

being investigated by the authors.
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8 Concluding Remarks

In this paper we developed Hellinger distance methodology for the analysis of data from a

clinical trial conducted using randomized play the winner designs. Our theoretical and simu-

lation results indicate that the Hellinger distance methodology is competitor to the maximum

likelihood methodology and is in fact a method of choice for problems involving adaptive

sampling. The extension of the methodology to general disparities and to general adaptive

designs allowing for delayed response and a general patient recruitment process is considered

in a separate manuscript.

Acknowledgements: Authors thank the two anonymous referees for a careful and a

detailed reading of the manuscript and several critical questions and useful suggestions.

References:

1. Athreya, K.B. and Karlin, S. (1968). Embedding of urn schemes into continuous time

Markov Branching processes and related limit theorems, The Annals of Mathematical

Statistics, 39 1801-1817.

2. Athreya, K.B. and Vidyashankar, A.N. (1995). Large deviation rates for supercritical

and critical branching processes, Classical and Modern Branching Processes, The IMA

Volumes in Mathematics and its Applications, 84 1-18.

3. Basu, Ayanendranath and Lindsay, Bruce G. (1994). Minimum disparity estimation for

continuous models: efficiency, distribution and robustness, Ann. Inst. Statist. Math.,

46 683-705.

4. Basu, Ayanendranath and Sarkar, Sahadeb. (1994). The trade-off between robustness

and efficiency and the effect of model smoothing in minimum disparity inference. J.

Statist. Comput. Simul. 50 173-185.

5. Basu, Ayanendranath, Sarkar, Sahadeb and Vidyashankar, A.N.. (1997). Minimum

negative exponential disparity estimation on parametric models, Journal of Statistical

Planing and Inference, 58 349-370.

6. Bai, Z.D., Hu,Feifang and Rosenberger, William F.. (2002). Asymptotic properties of

adaptive designs for clinical trials with delay response, The Annals of Statistics, 30 122-

139.

7. Beran, Rudolf. (1977). Minimum Hellinger distance estimates for parametric models,

Annals of Statistics, 5 445-463.

33



8. Cutler, Adele and Cordero-Braña, Oiga I. (1996). Minimum Hellinger distance estima-

tion for finite mixture models, Journal of the American Statistical Association, 91 1716-

1723.

9. Chung, K.L.(1974). A Course in Probability Theory, Academic Press.

10. Devroye, Luc. (1986). Non-Uniform Random Variate Generation, Springer-Verlag.

11. Devroye, Luc. (1987). A Course in Density Estimation, Birkhauser Boston.

12. Ivanova, Anastasia, Rosenberger, William F. Durham S. and Flournoy, Nancy.(2000). A

Birth and Death Urn for randomized clinical trials: asymptotic methods, Biostatistics,

62 104-118

13. Ivanova, Anastasia and Durham S.. (2002). The Drop the Loser Rule. Submitted.

14. Kupfer, D.J. (1976). REM Latency: A Psychobiological Marker for Primary Depressive

Disease, Biological Psychiatry, 11 159-174.

15. Lindsay, Bruce G. (1994). Efficiency verses robustness: the case for minimum Hellinger

distance and related methods, Annals of Statistics, 22 1081-1114.

16. Markatou, Marianthi, Basu, Ayanedranath and Lindsay, Bruce. (1997). Weighted like-

lihood estimating equations: the discrete case with applications to logistic regression.

Robust statistics and data analysis, II. J. Statist. Plann. Inference 57 215-232.

17. Melfi, Vincent F. and Page Connie. (2000). Estimation after adaptive allocation, Jour-

nal of Statistical Planing and Inference, 87 353-363

18. Rosenberger, William F., Flournoy, Nancy and Durham, Stephen D. (1997). Asymp-

totic normality of maximum likelihood estimators from multiparameter response-driven

designs, Journal of Statistical Planing and Inference, 60 69-76.

19. Simpson, Douglas G. (1987). Minimum Hellinger distance estimation for the analysis of

count data, Journal of the American Statistical Association, 82 802-807.

20. Simpson, Douglas G. (1989). Hellinger deviance tests: efficiency breakdown points, and

examples,Journal of the American Statistical Association, 84 107-113.

21. Sriram, T. N. and Vidyashankar, A. N. (2000). Minimum Hellinger distance estimation

for supercritical Galton-Watson processes. Statist. Probab. Lett. 50 331-342

34



22. Tamura, Roy N. and Boos, Dennis D..(1986). Minimum Hellinger distance estimation

for multivariate location and covariate, Journal of the American Statistical Association,

81 223-229.

23. Tamura, Roy N., Faries, D.E., Anderson, J.s., and Heiligenstein, J.H. (1994). A case

sttudy of an adaptive clinical trialin the treatment of out-patients with depressive dis-

order. Journal of the American Statistical Association, 89 768-776.

24. Vidyashankar (1994). Large deviation rates for branching processes in fixed and random

environments, Thesis, Iowa State University.

25. Wei,L.J. and Durham S.. (1978). The randomized play-the-winner rule in medical trials.

Journal of the American Statistical Association, 73 840-843
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