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Abstract

This paper develops a methodology for robust Bayesian inference through the use of disparities.

Metrics such as Hellinger distance and negative exponential disparity have a long history in robust

estimation in frequentist inference. We demonstrate that an equivalent robustification may be

made in Bayesian inference by substituting an appropriately scaled disparity for the log likelihood

to which standard Monte Carlo Markov Chain methods may be applied. A particularly appealing

property of minimum-disparity methods is that while they yield robustness, the resulting parameter

estimates are also efficient when the posited probabilistic model is correct. We demonstrate that a

similar property holds for disparity-based Bayesian inference. We further show that in the Bayesian

setting, it is also possible to extend these methods to robustify regression models, random effects

distributions and other hierarchical models. The methods are demonstrated on real world data.

Keywords: Deviance test, Kernel density, Hellinger distance, Negative exponential disparity,

MCMC, Bayesian Inference, Posterior, Outliers, and Inliers.

1. INTRODUCTION

We focus on a new methodology for providing robust inference in a Bayesian context. When

the data at hand are suspected of being contaminated with large outliers it is standard practice to

account for these either 1. by postulating a heavy-tailed distribution, 2. by viewing the data as a

mixture with the contamination explicitly occurring as a mixture component or 3. by employing

priors that penalize large values of a parameter (see Berger et al., 1994; Albert, 2009; Andrade

and O’Hagan, 2006). As is the case for Huberized loss functions in frequentist inference, even

though these approaches provide robustness they lead to a loss of precision when contamination

is not present or to a distortion of prior knowledge. This paper develops a systematic alternative

approach based on disparity estimates that is shown to provide robust inference without loss of

efficiency for large samples.

In parametric frequentist inference using independent and identically distributed (i.i.d.) data,

several authors (Beran, 1977; Tamura and Boos, 1986; Simpson, 1987, 1989; Cheng and Vidyashankar,

2006) have demonstrated that the dual goal of efficiency and robustness is achievable by using

2



the minimum Hellinger distance estimator (MHDE). In an i.i.d. context, MHDE estimators are

based on minimizing the Hellinger distance between a proposed parametric density fθ(·) and a

non-parametric estimate gn(·):

θ̂HD = arg inf
θ∈Θ

∫ (
g1/2
n (x)− f1/2

θ (x)
)2
dx (1)

over the p-dimensional parameter space Θ. Typically, for continuous data, gn(·) is taken to be

a kernel density estimate; if the probability model is supported on discrete values, the empirical

distribution is used. More generally, Lindsay (1994) introduced the concept of a minimum disparity

procedure; developing a class of divergence measures that have similar properties to minimum

Hellinger distance estimates. These have been further developed in Basu et al. (1997) and Park

and Basu (2004). Recently, Hooker and Vidyashankar (2010a) have extended these methods to a

non-linear regression framework.

A remarkable property of disparity-based estimates is that while they confer robustness, the are

also first-order efficient. That is, they obtain the information bound when the postulated density

fθ(·) is correct. In this paper we develop robust Bayesian inference using disparities. We show

that appropriately scaled disparities approximate n times the negative log-likelihood near the true

parameter values. We use this as the motivation to replace the log likelihood in Bayes rule with

a disparity to create what we refer to as the “D-posterior”. We demonstrate that this technique

is readily amenable to Markov Chain Monte Carlo (MCMC) estimation methods. We further

establish that the expected D-posterior estimators are asymptotically efficient and the resulting

credible intervals provide asymptotically accurate coverage, when the proposed parametric model

is correct.

Disparity-based robustification in Bayesian inference can be naturally extended to a regres-

sion framework through the use of conditional density estimation as discussed in Hooker and

Vidyashankar (2010b). We pursue this extension to hierarchical models and replace various terms

in the hierarchy with disparities. This creates a novel “plug-in principle” – allowing the robusti-

fication of inference with respect to particular distributional assumptions in complex models. We

develop this principle and demonstrate its utility on a number of examples.

The use of divergence measures for outlier analysis in a Bayesian context has been considered

in Dey and Birmiwal (1994) and Peng and Dey (1995). Most of this work is concerned with the
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use of divergence measures to study Bayesian robustness when the priors are contaminated and to

diagnose the effect of outliers. The divergence measures are computed using MCMC techniques.

By contrast, our paper is based on explicitly replacing the likelihood with a disparity in order to

provide inherently robust estimation.

The remainder of the paper is structured as follows: we provide a formal definition of the

disparities in Section 2. Disparity-based Bayesian inference are developed in Section 3. Robustness

and efficiency of these estimates are demonstrated theoretically and through a simulation for i.i.d.

data in Section 4. The methodology is extended to regression models in Section 5. The plug-

in principle is presented in Section 6 through an application to a one-way random-effects model.

Some techniques in dimension reduction for regression problems are given in Section 7. Section 8

is devoted to two real-world data sets where we apply these methods to generalized linear mixed

models and a random-slope random-intercept models for longitudinal data. Proofs of technical

results and details of simulation studies are relegated to the appendix.

2. DISPARITIES AND THEIR NUMERICAL APPROXIMATIONS

In this section we describe a class of disparities and numerical procedures for evaluating them.

These disparities compare a proposed parametric family of densities to a non-parametric density

estimate. We assume that we have i.i.d. observations Xi for i = 1, . . . , n from some density h(·).

We let gn be the kernel density estimate:

gn(x) =
1
ncn

n∑
i=1

K

(
x−Xi

cn

)
(2)

where K is a positive, symmetric, integrable function and cn is a bandwidth for the kernel. If cn → 0

and ncn → ∞ it is known that gn(·) is an L1-consistent estimator of h(·) (Devroye and Györfi,

1985). In practice, a number of plug-in bandwidth choices are available for cn (e.g. Silverman, 1982;

Sheather and Jones, 1991; Engel et al., 1994).

We begin by reviewing the class of disparities described in Lindsay (1994). The definition of

disparities involves the residual function,

δθ,g(x) =
g(x)− fθ(x)

fθ(x)
, (3)

defined on the support of fθ(x) and a function G : [−1, ∞) → R. G(·) is assumed to be strictly
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convex and thrice differentiable with G(0) = 1, G′(0) = 0 and G′′(0) = 1. The disparity between

fθ and gn is defined to be

D(gn, fθ) =
∫
R
G(δθ,gn(x))fθ(x)dx. (4)

An estimate of θ obtained by minimizing (4) is called a minimum disparity estimator; it is equivalent

to solving the equation ∫
A(δθ(x))∇θfθ(x)dx = 0,

where A(δ) = G′(δ)− (1 + δ)G(δ) and ∇θ indicates the derivative with respect to θ.

This framework contains Kullback-Leibler divergence as approximation to the likelihood:

KL(gn, fθ) =
∫ (

log fθ(x)
)
gn(x)dx ≈ 1

n

n∑
i=1

log fθ(xi)

for the choice G(δ) = −(δ + 1) log(δ + 1) + a for any constant a. We note that the choice of a is

arbitrary. In particular, we will assume a = 1 so that A(0) = 1. The squared Hellinger disparity

(HD) corresponds to the choice G(x) = [(x+1)1/2−1]2 +1. It has been illustrated in the literature

that HD down weighs the effect of large values of δθ,gn(x) (outliers) relative to the likelihood but

magnifies the effect of inliers: regions where gn is small relative to fθ. An alternative, the negative

exponential disparity, based on the choice G(x) = e−x down weighs the effect of both outliers and

inliers.

The integrals involved in (4) are not analytically tractable and the use of Monte Carlo integration

to approximate the objective function has been suggested in Cheng and Vidyashankar (2006). More

specifically, if z1, . . . , zN are i.i.d. random samples generated from gn(·), one can approximate

D(gn, fθ) by

D̃(gn, fθ) =
1
N

N∑
i=1

G(δθ,gn(zi))
fθ(zi)
gn(zi)

.

In the specific case of Hellinger distance approximation, the above reduces to

H̃D
2
(gn, fθ) = 2− 2

N

N∑
i=1

f
1/2
θ (zi)

g
1/2
n (zi)

. (5)

The use of a fixed set of Monte Carlo samples from gn(·) when optimizing for θ provides a stochastic

approximation to an objective function that remains a smooth function of θ and hence avoids the

need for complex stochastic optimization. Similarly, in the present paper, we hold the zi constant
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when applying MCMC methods to generate samples from the posterior distribution in order to

improve their mixing properties. If fθ is Gaussian with θ = (µ, σ), Gauss-Hermite quadrature rules

can be used to avoid Monte Carlo integration, leading to improved computational efficiency. In

this case we have

D̃(gn, fθ) =
N∑
i=1

wi(θ)G(δθ,n(zi(θ))),

where the zi(θ) and wi(θ) are the points and weights for a Gauss-Hermite quadrature scheme for

parameters θ = (µ, σ). However, if gn(·) contains many local modes surrounded by regions with

near-zero density, a small set of quadrature points can result in choosing parameters for which

some quadrature point coincides with a local mode. In these cases, it is better to use Monte Carlo

samples from gn(·) even though this increases the computational cost. In this paper, unless stated

otherwise, we use the 21-point Gauss-Hermite quadrature rule in all approximations when the

proposed distribution is Gaussian.

3. THE D-POSTERIOR AND MCMC METHODS

We begin this section by a heuristic description of the second-order approximation of KL(fθ, gn)

by D(fθ, gn). A Taylor expansion of KL(fθ, gn) about θ has as its first two terms:

∇θKL(gn, fθ) =
∫ [
∇θfθ(x)

]
(δθ,gn(x) + 1)dx (6)

∇2
θKL(gn, fθ) =

∫ [
∇2
θfθ(x)− 1

fθ(x)
(
∇θfθ(x)

) (
∇θfθ(x)

)T] (δθ,gn(x) + 1)dx.

The equivalent terms for D(gn, fθ) are:

∇θD(gn, fθ) =
∫ [
∇θfθ(x)

]
A(δθ,gn(x))dx (7)

∇2
θD(gn, fθ) =

∫
∇2
θfθ(x)A(δθ,gn(x))dx

−
∫

1
fθ(x)

(
∇θfθ(x)

) (
∇θfθ(x)

)T (δθ,gn(x) + 1)A′(δθ,gn(x))dx.

Now, letting δθ,gn(x) → 0 and observing that A(0) = 1, A′(0) = 1 from the conditions on G, we

obtain the equality of (6) and (7). The fact that these heuristics yield efficiency was first noticed

by Beran (1977) (eq. 1.1).
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In the context of the Bayesian methods examined in this paper, inference is based on the

posterior

P (θ|x) =
P (x|θ)π(θ)∫
P (x|θ)π(θ)dθ

, (8)

where P (x|θ) = exp(
∑n

i=1 log fθ(xi)). Following the heuristics above, we propose the simple expe-

dient of replacing the log likelihood, logP (x|θ), in (8) with a disparity:

PD(θ|gn) =
e−nD(gn,fθ)π(θ)∫
e−nD(gn,fθ)π(θ)dθ

. (9)

In the case of Hellinger distance, the appropriate disparity is 2HD2(gn, fθ) and we refer to the

resulting quantity as the H-posterior. For the Negative Exponential disparity, we refer to the N-

posterior. These choices are illustrated in Figure 1 where we show the approximation of the log

likelihood by Hellinger and negative exponential disparities and the effect of adding an outlier to

these in a simple normal-mean example.

Throughout the examples below, we employ a Metropolis algorithm based on a symmetric

random walk to draw samples from PD(θ|gn). While the cost of evaluating D(gn, fθ) is greater

than the cost of evaluating the likelihood at each Metropolis step, we have found these algorithms

to be computationally feasible and numerically stable. Furthermore, the burn-in period for sampling

from PD(θ|gn) and the posterior are approximately the same, although the acceptance rate of the

former is approximately around ten percent higher.

Since the D-posterior is a proper probability distribution, the Expected D-a posteriori (EDAP)

estimates exist and are given by

θ∗n =
∫

Θ
θPD(θ|gn)dθ.

and credible intervals for θ can be based on the quantiles of PD(θ|gn). These quantities are calcu-

lated via Monte Carlo integration using the output from the Metropolis algorithm. We similarly

define the Maximum D-a posteriori (MDAP) estimates by

θ+
n = arg max

θ∈Θ
PD(θ|gn).

In the next section we describe the asymptotic properties of EDAP and MDAP estimators. In

particular, we establish the posterior consistency, posterior asymptotic normality and efficiency of

these estimators and their robustness properties. Differences between PD(fθ, gn) and the posterior

do exist and are described below:
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1. The disparities D(gn, fθ) have strict upper bounds; in the case of Hellinger distance 0 ≤

HD2(gn, fθ) ≤ 2, the upper bound for negative exponential disparity is e. This implies

that the likelihood part of the D-posterior, exp(−nD(gn, fθ)), is bounded away from zero.

Consequently, a proper prior π(θ) is required in order to normalize PD(θ|gn). Further, the

tails of PD(θ|gn) are proportional to that of π(θ). This leads to a breakdown point of 1 (see

below). However, these results do not affect the asymptotic behavior of PD(θ|gn) since the

lower bounds decrease with n, but they do suggest a potential for alternative disparities that

allow D(gn, fθ) to diverge at a sufficiently slow rate to retain robustness.

2. In Bayesian inference for i.i.d. random variables, the log likelihood is a sum of n terms. This

implies that if new data Xn+1, . . . , Xn∗ are obtained, the posterior for the combined data

X1, . . . , Xn∗ can be obtained by using posterior after n observations, P (θ|X1, . . . , Xn) as a

prior θ:

P (θ|X1, . . . , Xn∗) ∝ P (Xn+1, . . . , Xn∗ |θ)P (θ|X1, . . . , Xn).

By contrast, D(gn, fθ) is generally not additive in gn; hence PD(θ|gn) cannot be factored as

above. Extending arguments in Park and Basu (2004), we conjecture that no disparity that

is additive in gn will yield both robust and efficient posteriors.

3. While we have found that the same Metropolis algorithms can be effectively used for the

D-posterior as would be used for the posterior, it is not possible to use conjugate priors

with disparities. This removes the possibility of using conjugacy to provide efficient sampling

methods within a Gibbs sampler, although these could be approximated by combining sam-

pling from a conditional distribution with a rejection step. In that respect, disparity-based

methods can incur additional computational cost.

The idea of replacing log likelihood in the posterior with an alternative criterion occurs in other

settings. See Sollich (2002), for example, in developing Bayesian methods for support vector ma-

chines. However, we replace the log likelihood with an approximation that is explicitly designed

to be both robust and efficient, rather than as a convenient sampling tool for a non-probabilistic

model.
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Figure 1: Left: A comparison of log posteriors for µ with data generated from N(µ, 1) and N(0, 1)

prior for µ. The exact log posterior is very well approximated by the Kullback-Leibler divergence

between the proposed density and the kernel density estimate. Both Hellinger distance and negative

exponential disparity provide good local approximation. Right: influence of an outlier on EDAP

estimates of µ as the value of the outlier is changed from 0 to 20.

4. ROBUSTNESS AND EFFICIENCY

In this section, we present theoretical results for i.i.d. data to demonstrate that inference based

on the D-posterior is both asympotically efficient and robust. Results for maximum D-a posteriori

estimates naturally inherit the properties of minimum disparity estimators and hence we focus on

EDAP estimators only.

4.1 Efficiency

We recall that under suitable regularity conditions, Expected a posteriori estimators are strongly

consistent, asymptotically normal and are statistically efficient; (see Ghosh et al., 2006, Theorems

4.2-4.3). Our results in this section show that this property continues to hold for EDAP estimators

under regularity conditions on G(·) and the model {fθ : θ ∈ Θ}. These are given without requiring

that the generating density g is a member of the family fθ. We therefore define

ID(θ) = ∇2
θD(g, fθ), and ÎDn (θ) = ∇2

θD(gn, fθ)
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as the disparity information and θg the parameter that minimizes D(g, fθ) (note that θg here

depends on g). We note that if g = fθ0 , ID(θg) is exactly equal to the Fisher information for θ0.

The proofs of our asymptotic results rely on the assumptions listed below. Among these are that

minimum disparity estimators are strongly consistent and efficient; this in turn relies on further

assumptions, some of which make those listed below redundant. They are given here to maximize

the mathematical clarity of our arguments. We assume that X1, . . . , Xn are i.i.d. generated from

some distribution g(x) and that a parametric family, fθ(x) has been proposed for g(x) where θ has

distribution π. We assume

(A1) G has three continuous derivatives with G′(0) = 0, G′′(0) = 1 and |G′′′(0)| ≤ ∞.

(A2) ∇2
θD(g, fθ) is positive definite and continuous in θ at θg and continuous in g with respect to

the L1 metric.

(A3) For any δ > 0, there exists ε > 0 such that

sup
|θ−θg |>δ

D(g, fθ)−D(g, fθg) > ε

(A4) The parameter space Θ is compact.

(A5) The minimum disparity estimator, θ̂n, satisfies θ̂n → θg almost surely and
√
n(θ̂n − θg)

d→

N(0, ID(θ)−1).

The first three of these are required for the regularity and identifiability of the parametric family fθ

in the disparity D. Specific conditions for (A5) to hold are given in various forms in Beran (1977);

Basu et al. (1997); Park and Basu (2004) and Cheng and Vidyashankar (2006), see conditions in

Appendix A.

Our first result concerns the limit distribution for the posterior density of
√
n(θ − θ̂n), which

demonstrates that the D-posterior converges in L1 to a Gaussian density centered on the minimum

disparity estimator θ̂n with variance
[
nID(θ̂n)

]−1
.

Theorem 1. Let θ̂n be the minimum disparity estimator of θg, π(θ) be any prior that is con-

tinuous and positive at θg with
∫

Θ ‖θ‖2π(θ)dθ < ∞ and π∗Dn (t) be the D-posterior density of
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t = (t1, . . . , tp) =
√
n(θ − θ̂n). Under conditions (A1)-(A5),

lim
n→∞

∫ ∣∣∣∣∣∣π∗Dn (t)−

(
|ID(θg)|

2π

)p/2
e−

1
2
t′ID(θg)t

∣∣∣∣∣∣ dt a.s.−→ 0. (10)

Furthermore, (10) also holds with ID(θg) replaced with ÎDn (θ̂n).

This indicates that credible intervals based on either PD(θ|x1, . . . , xn) or from N(θ̂n, IDn (θ̂n)−1)

will be asymptotically accurate. Our next theorem is concerned with the efficiency and asymptotic

normality of EDAP estimates.

Theorem 2. Assume conditions (A1)-(A5) and
∫

Θ ‖θ‖2π(θ)dθ < ∞, then
√
n
(
θ∗n − θ̂n

)
a.s.−→ 0

where θ∗n is the EDAP estimate. Further,
√
n
(
θ∗n − θg

) d→ N
(

0, ID(θg)
)
.

The proofs of these theorems are deferred to the Appendix A, but the following remarks are in

order:

1. If the proposed parametric model is correct and g = fθ0 , then ID(θ0) is the Fisher information

and θ∗n is efficient.

2. The proofs of these results follow the same principles as those given for posterior asymptotic

efficiency (see Ghosh et al., 2006, for example). However, here we rely on the second-order

convergence of the disparity to the likelihood at appropriate rates and the consequent asymp-

totic efficiency of minimum-disparity estimators.

3. Since the structure of the proof only requires second-order properties and appropriate rates

of convergence, we can replace D(gn, fθ) for i.i.d. data with an appropriate disparity-based

term for more complex models as long as (A5) can be shown hold. In particular, the results

in Hooker and Vidyashankar (2010a) and Hooker and Vidyashankar (2010b) suggest that the

disparity methods for regression problems detailed in Sections 5 and 7 will also yield efficient

estimates.

4. We assume that that the parameter space, Θ, is compact; this result is also used in conditions

that guarantee (A5). As noted in Beran (1977), as well as others, the result continues to hold if

Θ can be appropriately embedded in a compact space. Alternatively, Cheng and Vidyashankar

(2006) assume local compactness.
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5. Assumption (A2) can be replaced by bounds on the absolute size of the third derivatives as in

Ghosh et al. (2006). For Hellinger distance, L1 continuity of the second derivatives of D2(g, fθ)

can be obtained when (∇θfθ(x))/fθ(x) and (∇2
θfθ(x))/fθ(x) are square integrable with respect

to fθ. This can be extended to general disparities when A(δ) A′(δ) and (1 + δ)A′(δ) are all

bounded; see Lindsay (1994) and Park and Basu (2004). Equivalent conditions on third

derivatives require bounding further derivatives of fθ.

6. We have assumed the data are drawn from a fixed density g(·) in the same manner that a

fixed parameter value θ0 is assumed to generate the data in the case of likelihood studied in

Ghosh et al. (2006). A Bayesian extension of this theorem would include a non-parametric

prior on possible densities g(·). Asymptotic results would then need to be studied over the

distribution of (X1, . . . , Xn, g) drawn from the product space.

4.2 Robustness

To describe robustness, we view our estimates as functionals T (h) of a density h. We analyze

the behavior of T (h) under the sequence of perturbations hk,ε(x) = (1 − ε)g(x) + εtk(x) for any

sequence of densities tk(·) and 0 ≤ ε ≤ 1. We measure robustness via two quantities, namely the

influence function:

IFT (tk) = lim
ε→0

Tn((1− ε)g + εtk)− Tn(g)
ε

(11)

and the breakdown point:

B(T ) = inf

{
ε : sup

k
|Tn((1− ε)g + εtk)| ≤ ∞

}
, (12)

(see Huber (1981)). EDAP estimates turn out to be highly robust. In fact, while the most common

robust estimators have breakdown points of 0.5, for most of the commonly-used robust disparities

the D-posterior breakdown point is 1. As described previously this is due to the fact that these

disparities are bounded above. We point out here that the Kullback-Leibler disparity is not bounded

above and is not robust, both in frequentist and in Bayesian settings.

Theorem 3. Let D(g, fθ) be bounded for all θ and all densities g and let
∫
‖θ‖2π(θ)dθ <∞, then

the breakdown point is 1.
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We remark that this result demonstrates that the disparity approximation to the likelihood is

weak in its tails; it is precisely this property from which robustness is derived. However, it gains

strength as n increases, becoming asymptotically equivalent to the likelihood at any θ.

The condition that D(g, fθ) be bounded holds true if G is bounded above and below; this is

assumed in Park and Basu (2004) and holds for the negative exponential disparity. It can be readily

verified that 0 ≤ 2HD(g, fθ) ≤ 4.

To examine the influence function, we assume that the limit may be taken inside all integrals

in (11) and obtain

IF(θ; g, tk) = EPD(θ|g)
[
θCnk(θ, g)

]
−
[
EPD(θ|g)θ

] [
EPD(θ|g)Cnk(θ, g)

]
.

where EPD(θ|g) indicates expectation with respect to the D-posterior with density g and

Cnk(θ, g) =
d

dε
n

∫
G

(
hk,ε(x)
fθ(x)

− 1
)
fθ(x)dx

∣∣∣∣∣
ε=0

= n

∫
G′
(
g(x)
fθ(x)

− 1
)

(g(x)− tk(x))dx.

Thus, if we can establish the posterior integrability of Cnk(θ, f) and θCnk(θ, f), the influence

function will be everywhere finite. This is trivially true if G′(·) is bounded, as is the case for the

negative exponential disparity. However, G′ is not bounded at -1 for Hellinger distance. To handle

this case, we require a more complex condition:

Theorem 4. Let D(g, fθ) be bounded and assume that

e0 = sup
x

∫ ∣∣∣∣∣G′
(
g(x)
fθ(x)

− 1
)
π(θ)

∣∣∣∣∣ dθ <∞ (13)

and

e1 = sup
x

∫ ∣∣∣∣∣θG′
(
g(x)
fθ(x)

− 1
)
π(θ)

∣∣∣∣∣ dθ <∞ (14)

then |IF (θ; g, tk)| <∞.

In the case of Hellinger distance the conditions of Theorem 4 require the boundedness of

r(x) =
∫ √

fθ(x)√
g(x)

π(θ)dθ.
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The proofs of Theorems 3 and 4 have been left to Appendix B. Since tk(x) can be made to

concentrate on regions where r(x) is large, we conjecture that the conditions in Theorem 4 are

necessary. In fact, this requirement means that the H-posterior influence function will not be

bounded for a large collection of parametric families. As in Beran (1977), however, we note that

Theorem 3 guarantees that α-level influence functions will be bounded for each α.

4.3 Simulation Studies

To illustrate the small sample performance of D-posteriors, we undertook a simulation study

for i.i.d. data from Gaussian and log-Gamma distributions and these are reported in detail in

Appendix C.1. In both cases, we used the same random-walk Metropolis algorithm to sample from

the posterior and the H- and N-posteriors. In general, we record an approximate 10% increase in the

acceptance rate for the disparity-based procedures and a 10% increase in variance. The H-posterior,

however, demonstrated higher variance for the log-Gamma distribution due to its tendency to create

inliers to which Hellinger distance is sensitive. Incorporating outliers into the data strongly biased

the posterior for both distributions, but the disparity-based methods were essentially unaffected.

The effect of the size of the outlier is investigated in the second plot of Figure 1 where the EDAPs

for both disparities smoothly down-weigh the outlying point, while the posterior is highly sensitive

to it.

5. DISPARITIES BASED ON CONDITIONAL DENSITY FOR REGRESSION MODELS

The discussion above, along with most of the literature on disparity estimation, has focussed on

i.i.d. data in which a kernel density estimate may be calculated. The restriction to i.i.d. contexts

severely limits the applicability of disparity-based methods. We extend these methods to non-

stationary data settings via the use of conditional density estimates. This extension is studied in

the frequentist context in the case of minimum-disparity estimates for parameters in non-linear

regression in Hooker and Vidyashankar (2010b).

Consider the classical regression framework with data (Y1, X1), . . . , (Yn, Xn) is a collection of

i.i.d. random variables where inference is made conditionally on Xi. For continuous Xi, a non-
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parametric estimate of the conditional density of y|x is given by Hansen (2004):

gcn(y|x) =
1

ncn1c2,n

∑n
i=1K

(
y−Yi
cn1

)
K
(
‖x−Xi‖
c2,n

)
1

nc2,n

∑n
i=1K

(
‖x−Xi‖
c2,n

) . (15)

Under a parametric model fθ(y|Xi) assumed for the conditional distribution of Yi given Xi, we

define a disparity between gcn and fθ as follows:

Dc(gcn, fθ) =
n∑
i=1

D
(
gcn(·|Xi), fθ(·|Xi)

)
. (16)

As before, for Bayesian inference we replace the log likelihood by minus the conditional disparity

(16):

el(Y|Xi,θ)π(θ) ≈ e−Dc(gcn,fθ)π(θ).

In the case of simple linear regression, Yi = β0 + β1Xi + εi, θ = (β0, β1, σ
2) and fθ(·|Xi) =

φβ0+β1Xi,σ2(·) where φµ,σ2 is Gaussian density with mean µ and variance σ2. An empirical inves-

tigation of this estimate is deferred to Section 7 where some alternative formulations of disparity

are also studied.

When the Xi are discrete, (15) reduces to a distinct conditional density for each level of Xi.

For example, in a one-way ANOVA model Yij = Xi + εij , j = 1, . . . , ni, i = 1, . . . , N , this reduces

to

gcn(y|Xi) =
1

nicn

ni∑
i=1

K

(
y − Yij
cn

)
.

When the ni are small, or for high-dimensional covariate spaces the non-parametric estimate

gn(y|Xi) can become inaccurate. We discuss techniques for reducing the dimension of the space

over which a conditional density is estimated in Section 7.

6. DISPARITY METRICS AND THE PLUG-IN PRINCIPLE

The disparity-based techniques developed above can be extended to hierarchical models. In

particular, consider the following structure for an observed data vector Y along with an unobserved

latent effect vector Z of length n:

P (Y, Z, θ) = P1(Y |Z, θ)P2(Z|θ)P3(θ) (17)
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Any term in this factorization that can be expressed as the product of densities of i.i.d. random

variables can now be replaced by a suitably chosen disparity. This creates a plug-in principle. For

example, if the middle term is assumed to be a product:

P (Z|θ) =
n∏
i=1

p(Zi|θ),

inference can be robustified for the distribution of the Zi by replacing (17) with

PD1(Y,Z, θ) = P (Y |Z, θ)e−2D(gn(·;Z),P2(·|θ))P3(θ)

where

gn(z;Z) =
1
ncn

n∑
i=1

K

(
z − Zi
cn

)
.

In an MCMC scheme, the Zi will be imputed at each iteration and the estimate gn(·;Z) will change

accordingly. If the integral is evaluated using Monte Carlo samples from gn, these will also need to

be updated. The evaluation of D(gn(·;Z), P2(·|θ)) creates additional computational overhead, but

we have found this to remain feasible for moderate n. A similar substitution may also be made for

the first term using the conditional approach suggested above.

To illustrate this principle in a concrete example, consider a one-way random-effects model:

Yij = Zi + εij , i = 1, . . . , n, j = 1, . . . , ni

under the assumptions

εij ∼ N(0, σ2), Zi ∼ N(µ, τ2)

where the interest is in the value of µ. Let π(µ, σ2, τ2) be the prior for the parameters in the model;

an MCMC scheme may be conducted with respect to the probability distribution

P (Y,Z, µ) =
n∏
i=1

 ni∏
j=1

φ0,σ2(Yi − Zi)

 n∏
i=1

φµ,τ2(Zi)π(µ, σ2, τ2) (18)

where φµ,σ2 is the N(µ, σ2) density. There are now two potential sources of distributional errors:

either in individual observed Yij , or in the unobserved Zi. Either (or both) possibilities can be

dealt with via the plug-in principle described above.
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If there are concerns that the distributional assumptions on the εij are not correct, we observe

that the statistics Yij − Zi are assumed to be i.i.d. N(0, σ2). We may then form the conditional

kernel density estimate:

gcn(t|Zi;Z) =
1

nc1,n

ni∑
j=1

K

(
t− (Yij − Zi)

c1,n

)

and replace (18) with

PD2(Y, Z, µ) = e−
∑n
i=1 niD(gcn(t|Zi;Z),φ0,σ2 (·))

n∏
i=1

φµ,τ2(Zi)π(µ, σ2, τ2).

On the other hand, if the distribution of the Zi is miss-specified, we form the estimate

gn(z;Z) =
1

nc2,n

n∑
i=1

K

(
z − Zi
c2,n

)

and use

PD1(X,Y, µ) =
n∏
i=1

 ni∏
j=1

φ0,σ2(Yi − Zi)

 e−nD(gn(·;Z),φµ,τ2 (·))π(µ, σ2, τ2)

as the D-posterior. For inference using this posterior, both µ and the Zi will be included as

parameters in every iteration, necessitating the update of gn(·;Z) or gcn(·|z;Z). Naturally, it is also

possible to substitute a disparity in both places:

PD12(Z, Y, µ) = e−
∑n
i=1 niD(gcn(·|Zi;Z),φ0,σ2 (·))e−nD(gn(·;Z),φµ,τ2 (·))π(µ, σ2, τ2).

A simulation study considering all these approaches with Hellinger distance chosen as the dis-

parity is described in Appendix C.2. Our results indicate that all replacements with disparities

perform well, although some additional bias is observed in the estimation of variance parameters

which we speculate to be due to the interaction of the small sample size with the kernel bandwidth.

Methods that replace the random effect likelihood with a disparity remain largely unaffected by

the addition of an outlying random effect while for those that do not the estimation of both the

random effect mean and variance is substantially biased.

7. DIMENSION REDUCTION METHODS

The conditional disparity formulation outlined above requires the estimation of the density of a

response conditioned on a potentially high-dimensional set of covariates. While this dimensionality
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does not affect the asymptotic or computational performance of disparity-based Bayesian inference,

it may result in poor performance in small samples. In this section, we explore two methods

for reducing the dimension of the conditioning spaces. The first is referred to as the “marginal

formulation” and requires only a univariate, unconditional, density estimate. This is a Bayesian

extension of the approach suggested in Hooker and Vidyashankar (2010a). It is more stable and

computationally efficient than schemes based on nonparametric estimates of conditional densities.

However, in a linear-Gaussian model with Gaussian covariates, it requires an external specification

of variance parameters for identifiability. For this reason, we propose a two-step Bayesian estimate.

The asymptotic analysis for i.i.d. data can be extended to this approach by using the technical

ideas in Hooker and Vidyashankar (2010a).

The second method produces a conditional formulation that relies on the structure of a ho-

moscedastic location-scale family P (Yi|Xi, θ, σ) = fσ(y−η(Xi, θ)) and we refer to it as the “conditional-

homoscedastic” approach. This method provides a full conditional estimate by replacing a non-

parametric conditional density estimate with a two-step procedure as proposed in Hansen (2004).

The method involves first estimating the mean function non-parametrically and then estimating a

density from the resulting residuals.

7.1 Marginal Formulation

Hooker and Vidyashankar (2010a) proposed basing inference on a marginal estimation of resid-

ual density in a nonlinear regression problem. A model of the form

Yi = η(Xi, θ) + εi

is assumed for independent εi from a scale family with mean zero and variance σ2. θ is an unknown

parameter vector of interest. A disparity method was proposed based on a density estimate of the

residuals

ei(θ) = Yi − η(Xi, θ)

yielding the kernel estimate

gmn (e, θ, σ) =
1
ncn

∑
K

(
e− ei(θ)/σ

cn

)
(19)
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and θ was estimated by minimizing D(φ0,1(·), gmn (·, θ, σ)) where φ0,1 is is the postulated density. As

described above, in a Bayesian context we replace the log likelihood by −nD(φ0,1(·), gmn (·, θ, σ)).

This formulation has the advantage of only requiring the estimate of a univariate, unconditional

density gmn (·, θ, σ). This reduces the computational cost considerably as well as providing a density

estimate that is more stable in small samples.

Hooker and Vidyashankar (2010a) proposed a two-step procedure to avoid identifiability prob-

lems in a frequentist context. This involves replacing σ by a robust external estimate σ̃. It was

observed that estimates of θ were insensitive to the choice of σ̃. After an estimate θ̂ was obtained by

minimizing D(φ0,1(·), gmn (·, θ, σ̃)), an efficient estimate of σ was obtained by re-estimating σ based

on a disparity for the residuals ei(θ̂). A similar process can be undertaken here.

In a Bayesian context a plug-in estimate for σ2 also allows the use of the marginal formulation:

an MCMC scheme is undertaken with the plug-in value of σ2 held fixed. A pseudo-posterior

distribution for σ can then be obtained by plugging in an estimate for θ to a Disparity-Posterior

for σ. More explicitly, the following scheme can be undertaken:

1. Perform an MCMC sampling scheme for θ using a plug-in estimate for σ2.

2. Approximate the posterior distribution for σ2 with an MCMC scheme to sample from the

D-posterior PD(σ2|y) = e−nD(gn(·,θ̂,σ),φ0,1(·))π(σ2) where θ̂ is the EDAP estimate calculated

above.

This scheme is not fully Bayesian in the sense that fixed estimators of σ and θ are used in each step

above. However, the ideas in Hooker and Vidyashankar (2010a) can be employed to demonstrate

that under these schemes the two-step procedure will result in statistically efficient estimates and

asymptotically correct credible regions. We note that while we have discussed this formulation with

respect to regression problems, it can also be employed with the plug-in principle for random-effects

models and we use this in Section 8.2, below.

The formulation presented here resembles the methods proposed in Pak and Basu (1998) based

on a sum of disparities between weighted density estimates of the residuals and their expectations

assuming the parametric model. For particular combinations of kernels and densities, these esti-

mates are efficient, and the sum of disparities, appropriately scaled, should also be substitutable
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for the likelihood in order to achieve an alternative D-posterior.

7.2 Nonparametric Conditional Densities for Regression Models in Location-Scale Families

Under a homoscedastic location-scale model p(Yi|Xi, θ, σ) = fσ(Yi − η(Xi, θ)) where fσ is a

distribution with zero mean, an alternative density estimate may be used. We first define a non-

parametric estimate of the mean function

mn(x) =

∑
YiK

(
x−Xi
c2,n

)
∑
K
(
x−Xi
c2,n

)
and then a non-parametric estimate of the residual density

gc2n (e) =
1

nc1,n

∑
K

(
e− yi +mn(Xi)

c1,n

)
.

We then consider the disparity between the proposed fθ,σ and gn:

Dc2(gn, θ, σ) =
∑

D(gc2n (·+m(Xi)), fσ(·+ η(Xi, θ))).

As before, −Dc2(gn, f) can be substituted for the log likelihood in an MCMC scheme.

Hansen (2004) remarks that in the case of a homoscedastic conditional density, gc2n has smaller

bias than gcn. This formulation does not avoid the need to estimate the high-dimensional function

mn(x). However, the shift in mean does allow the method to escape the identification problems of

the marginal formulation while retaining some of its stabilization.

Appendix C.3 gives details of a simulation study of both conditional formulations and the

marginal formulation above for a regression problem with a three-dimensional covariate. All

disparity-based methods perform similarly to using the posterior with the exception of the condi-

tional form in Section 5 when Hellinger distance is used which demonstrates a substantial increase

in variance. We speculate that this is due to the sparsity of the data in high dimensions creating

inliers; negative exponential disparity is less sensitive to this problem (Basu et al., 1997).

8. REAL DATA EXAMPLES

8.1 Parasite Data

We begin with a one-way random effect model for binomial data. These data come from one

equine farm participating in a parasite control study in Denmark in 2008. Fecal counts of eggs of
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the Equine Strongyle parasites were taken pre- and post- treatment with the drug Pyrantol; the full

study is presented in Nielsen et al. (2010). The data used in this example are reported in Appendix

D.

For our purposes, we model the post-treatment data from each horse as binomial with proba-

bilities drawn from a log normal distribution. Specifically, we consider the following model:

ki ∼ Bin(Ni, pi), log(pi) ∼ N(µ, σ2), i = 1, . . . , n,

where Ni are the pre-treatment egg counts and ki are the post-treatment egg counts. The log

normal was chosen due to the very small empirical probabilities in the data. We observe the data

(ki, Ni) and desire an estimate of µ and σ. The likelihood for these data are

l(µ, σ|k,N) = −
n∑
i=1

[
ki log pi + (Ni − ki) log(1− pi)

]
− 1

2σ2

n∑
i=1

(
log(pi)− µ

)2
.

We cannot use conditional disparity methods to account for outlying ki since we have only one

observation per horse. However, we can consider robustifying the pi distribution by use of a

negative exponential disparity:

gn(p; p1, . . . , pn) =
1
ncn

∑
K

(
p− log(pi)

cn

)
lN (µ, σ|k,N) = −

n∑
i=1

[
ki log pi + (Ni − ki) log(1− pi)

]
− nD(gn(·; p1, . . . , pn), φµ,σ2(·))

In order to perform a Bayesian analysis, µ was given a N(0, 5) prior and σ2 an inverse Gamma prior

with shape parameter 3 and scale parameter 0.5. A random walk Metropolis algorithm was run for

this scheme with parameterization (µ, log(σ), log(p1), . . . , log(pn)) for 200,000 steps with posterior

samples collected every 100 steps in the second half of the chain. cn was chosen via the method in

Sheather and Jones (1991) treating the empirical probabilities as data.

The resulting posterior distributions, given in Figure 2, indicate a substantial difference between

the two posteriors, with the N-posterior having higher mean and smaller variance. This suggests

some outlier contamination and a plot of a sample of densities gn on the right of Figure 2 suggests a

lower-outlier with log(pi) around -4. In fact, this corresponds to observation 5 which had unusually

high efficacy in this horse. Removing the outlier results in good agreement between the posterior

and the N-posterior. We note that, as also observed in Stigler (1973), trimming observations in

this manner, unless done carefully, may not yield accurate credible intervals.
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Figure 2: Posterior distributions for the parasite data. Left: posteriors for µ with and without an

outlier and the N-posterior. Middle: posteriors for σ. Right: samples of gn based on draws from

the posterior for p1, . . . , pn, demonstrating an outlier at -3.

While this example has demonstrated the practical use of disparity methods in Bayesian in-

ference, we feel it important to note that in the context of generalized linear mixed models the

distinction between outlying random effects and mis-specification of a link function is not always

clear. In particular, an alternative transformation of the pi such as the square-root transform would

not spread out low values to the same extent. The use of disparities therefore controls for outliers

only in the context of the particular probability model being employed. The square-root transform

would restrict the distribution of the
√
p
i

to the half-line and while asymptotic results continue to

hold for kernel densities, this suggest a density estimate which is truncated at 0 and the properties

of disparity-based methods for such estimates have not been studied.

8.2 Class Survey Data

Our second data set are from an in-class survey in an introductory statistics course held at

Cornell University in 2009. Students were asked to specify their expected income at ages 35, 45,

55 and 65. Responses from 10 American-born and 10 foreign-born students in the class are used as

data in this example; the data are presented and plotted in Appendix D. Our object is to examine

the expected rate of increase in income and any differences in this rate or in the over-all salary

level between American and foreign students. From the plot of these data in Figure 8 in Appendix

D some potential outliers in both over-all level of expected income and in specific deviations from

income trend are evident.
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This framework leads to a longitudinal data model. We begin with a random intercept model

Yijk = b0ij + b1jtk + εijk (20)

where Yijk is log income for the ith student in group j (American (a) or foreign (f)) at age tk. We

extend to this the distributional assumptions

b0ij ∼ N(β0j , τ
2
0 ), εijk ∼ N(0, σ2)

leading to a complete data log likelihood given up to a constant by

l(Y, β, σ2, τ2
0 ) = −

n∑
i=1

∑
j∈{a,f}

4∑
k=1

1
2σ2

(
Yijk − b0ij − β1jtk

)2 − n∑
i=1

∑
j∈{a,f}

1
2τ2

0

(
b0ij − β0j

)2 (21)

to which we attach Gaussian priors centered at zero with standard deviations 150 and 0.5 for the

β0j and β1j respectively and Gamma priors with shape parameter 3 and scale 0.5 and 0.05 for τ2
0

and σ2. These are chosen to correspond to the approximate orders of magnitude observed in the

maximum likelihood estimates of the b0ij , β1j and residuals.

As in Section 6 we can robustify this likelihood in two different ways: either against the distri-

butional assumptions on the εijk or on the b0ij . In the latter case we form the density estimate

gn(b; β) =
1

2ncn

n∑
i=1

∑
j∈{a,f}

K

(
b− b0ij + β0j

cn

)

and replace the second term in (21) with −2nD(gn(·; β), φ0,τ2
0
(·)). Here we have used

β = (β0a, β0f , β1a, β1f , b01a, b01f , . . . , b0na, b0nf )

as an argument to gn to indicate its dependence on the estimated parameters. We have chosen to

combine the b0ia and the b0if together in order to obtain the best estimate of gn, rather than using

a sum of disparities, one for American and one for foreign students.

To robustify the residual distribution, we observe that we cannot replace the first term with

a single disparity based on the density of the combined εijk since the b0ij cannot be identified

marginally. Instead, we estimate a density at each ij:

gcij,n(e; β) =
1

4ncn

4∑
k=1

K

(
e− (Yijk − b0ij − β1jtk)

cn

)
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and replace the first term with
∑n

i=1

∑
j∈{a,f} 4D(gcij,n(·;β), φ0,σ2(·)). This is the conditional form

of the disparity. Note that this reduces us to four points for each density estimate; the limit of

what could reasonably be employed. Naturally, both replacements can be made.

Throughout our analysis, we used Hellinger distance as a disparity; we also centered the tk,

resulting in b0ij representing the expected salary of student ij at age 50. Bandwidths were fixed

within a Metropolis sampling procedures. These were chosen by estimating the b̂0ij and β̂1j via

least squares, and using these to estimate residuals and all other parameters:

β̂0j =
1
n
b̂0i

eijk = Yijk − b̂0ij − β̂1jtk

σ̂2 =
1

8n− 1

∑
ijk

e2
ijk

τ̂2
0 =

1
2n− 1

∑
ij

(b̂0ij − β̂0j)2.

The bandwidth selector in Sheather and Jones (1991) was applied to the b̂0ij − b̂0j to obtain a

bandwidth for gn(b; β). The bandwidth for gcij,n(e; β) was chosen as the average of the bandwidths

selected for the eijk for each i and j. For each analysis, a Metropolis algorithm was run for 200,000

steps and every 100th sample was taken from the second half of the resulting Markov chain. The

results of this analysis can be seen in Figure 3. Here we have plotted only the differences β0f − β0a

and β1f − β1a along with the variance components. We observe that for posteriors that have

not robustified the random effect distribution, there appears to be a significant difference in the

rate of increase in income (P (β1f < β1a) < 0.02 for both posterior and replacing the observation

likelihood with Hellinger distance), however when the random effect likelihood is replaced with

Hellinger distance, the difference is no longer significant (P (β1f < β1a) > 0.145 in both cases).

We also observe that the observation variance is significantly reduced for posteriors in which the

observation likelihood is replaced by Hellinger distance, but that uncertainty in the difference

β0f − β0a is increased.

Investigating these differences, there were two foreign students who’s over-all expected rate of

increase is negative and separated from the least-squares slopes for all the other students. Removing

these students increased the posterior probability of β1a > β1f to 0.11 and decreased the estimate
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of σ from 0.4 to 0.3. Removing the evident high outlier with a considerable departure from trend

at age 45 in Figure 8 in Appendix D further reduced the EAP of σ to 0.185, in the same range as

those obtained from robustifying the observation distribution.

A further model exploration allows a random slope for each student in addition to the random

offset. The model now becomes

Yijk = b0ij + b1ijtk + εijk (22)

with additional distributional assumptions

b1ij ∼ N(β1j , τ
2
1 )

and an additional term

− 1
2τ2

1

n∑
i=1

∑
j∈{a,f}

(b1ij − β1j)2

added to (21). Here, this term can be robustified in a similar manner to the robustification of the

b0ij . However, we note that a robustification of the error terms would require the estimation of a

conditional density for each ij – based on only four data points. We viewed this as being too little

to achieve reasonable results and therefore employed the marginal formulation described in Section

7. Specifically, we first obtained residuals eijk for the random slope model from the maximum

likelihood estimates for each subject-specific effect and estimated

σ̂2 =
1

0.674
√

2
|eijk −median(e)|.

Following this, we estimated a combined density for all residuals, conditional on the random effects

gmn (e; β) =
1

8ncn

n∑
i=1

∑
j∈{a,f}

4∑
k=1

K

(
e− (Yijk − b0ij − b1ijtk)

cn

)

and replaced the first term in (21) with −8nD(gmn (·; β), φ0,σ̂2(·)). Following the estimation of all

other parameters, we obtained new residuals ẽijk = Yijk − b̃0ij − b1ijtk where the b̃0ij and b̃1ij are

the EDAP estimators. We then re estimated σ2 based on its H-posterior using the ẽijk as data. In

this particular case a large number of outliers from a concentrated peak (see Figure 4) meant that

the use of Gauss-Hermite quadrature in the evaluation of

HD(gmn (·, β̃), φ0,σ2) = 2− 2
∫ (√

gmn (e; β̃)/
√
φ0,σ2(e)

)
φ0,σ2(e)de
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Figure 3: Analysis of the class survey data using a random intercept model with Hellinger distance

replacing the observation likelihood, the random effect likelihood or both. Top: differences in

intercepts between foreign and American students (left) and differences in slopes (right). Bottom:

random effect variance (left) and observation variance (right). Models robustifying the random

effect distribution do not show a significant difference in the slope parameters. Those robustifying

the observation distribution estimate a significantly smaller observation variance.
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suffered from large numerical errors and we therefore employed a Monte Carlo integral based on

400 data points drawn from gmn instead, using the estimate (5) which required approximately 30

times the computing time as compared to using Gauss-Hermite quadrature. To estimate both σ2

and the other parameters we used a Metropolis random walk algorithm which was again run for

200,000 iterations with estimates based on every 100th sample in the second half of the chain.

Some results from this analysis are displayed in Figure 4. The residual distribution of the ẽijk

show a very strong peak and a number of isolated outliers. The estimated standard deviation

of the residual distribution is therefore very different between those methods that are robust to

outliers and those that are not; the mean posterior σ was increased by a factor of four between

those methods using a Hellinger disparity and those using the random effect log likelihood. The

random slope variance was estimated to be small by all methods – we speculate that the distinction

between random effect log likelihoods and Hellinger methods is bias due to bandwidth size – but

this was not enough to overcome the differences between the methods concerning the distinction

between β1f and β1a.

9. CONCLUSIONS

This paper combines disparity methods with Bayesian analysis to provide robust and efficient

inference across a broad spectrum of models. In particular, these methods allow the robustification

of any portion of a model for which the likelihood may be written as a product of distributions

for i.i.d. random variables. This can be done without the need to modify either the assumed

data-generating distribution or the prior. In our experience, Metropolis algorithms developed

for the parametric model can be used directly to evaluate the D-posterior and generally incur a

modest increase in the acceptance rate and computational cost. Our use of Metropolis algorithms

in this context is deliberately naive in order to demonstrate the immediate applicability of our

methods in combination with existing computational tools. We expect that a more careful study of

sampling properties of these methods will yield considerable improvements in both computational

and sampling efficiency.

The methods in this paper can be employed as a tool for model diagnostics; differences in

results by an application of posterior and D-posterior can indicate problematic components of
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Figure 4: Analysis of a random-slope random-intercept model for the class survey data. Top left: a

density estimate of the errors following a two-step procedure with the error variance held constant.

This shows numerous isolated outliers than create an ill-conditioned problem for Gauss-Hermite

quadrature methods. Top right: estimates of residual standard deviation replacing various terms

in the log likelihood with Hellinger distance. The effect of outliers is clearly apparent in producing

an over-estimate of variance. Bottom left: estimated variance of the random slope. Bottom right:

estimated difference in mean slope between American and foreign students.
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a hierarchical model. Further, estimated densities can indicate how the current model may be

improved. However, the D-posterior can also be used directly to provide robust inference in an

automated form.

Our mathematical results are given solely for i.i.d. data; ideas from Hooker and Vidyashankar

(2010a) can be used to extend these to the regression framework. Our proposal of hierarchical

models remains under mathematical investigation, but we expect that similar results can be es-

tablished in this case. The methodology can also be applied within a frequentist context to define

an alternative marginal likelihood for random effects models, although the numerical estimation of

such models is likely to be problematic.

An opportunity for further development of the proposed methodology lies in removing the

boundedness of many disparities in common use. These yield EDAP estimates with breakdown

points of 1, indicating hyper-insensitivity to the data. Theoretically, some form of boundedness has

been used within proofs of the efficiency of minimum disparity estimators. However these results

suggest an investigation of the necessity of this assumption and the development of new disparities

which diverge at a rate slow enough to retain robustness.

The use of a kernel density estimate may also be regarded as inconsistent with a Bayesian

context and it may therefore be desirable to employ non-parametric Bayesian density estimates

as an alternative. Results for disparity estimation are heavily dependent on properties of kernel

density estimates and this extension will require significant mathematical development.

There is considerable scope to extend these methods to further problems. Robustification of the

innovation distribution in time-series models, for example, can be readily carried though through

disparities and the hierarchical approach will extend this to either the observation or the innovation

process in state-space models. The extension to continuous-time models such as stochastic differ-

ential equations, however, remains an open and interesting problem. More challenging questions

arise in spatial statistics in which dependence decays over some domain and where a collection of

i.i.d. random variables may not be available. There are also open questions in the application of

these techniques to non-parametric smoothing, and in functional data analysis.
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A. PROOFS OF EFFICIENCY

A.1 Efficiency Conditions for Minimum Disparity Estimators

Here we provide conditions that ensure the consistency and asymptotic normailty of the minimum-

disparity estimator θ̂n. There is a slight variation through the literature in conditions required for

efficiency (see Beran (1977), Basu et al. (1997), Park and Basu (2004) and Cheng and Vidyashankar

(2006)). The conditions given below are adapted from Cheng and Vidyashankar (2006) for the spe-

cific case of Hellinger distance. A small modification of these conditions will also provide the

consistency and asymptotic normality for more general disparities under appropriate conditions on

G(·).

We first require conditions on the data and the proposed parametric family:

(D1) X1, . . . , Xn are i.i.d. with distribution given by the density function g(·).

(D2) fθ(·) is twice continuously differentiable with respect to θ.

(D3)
∥∥∥∥∇θ (√fθ(·))∥∥∥∥

2

is continuous and bounded.

(D4) f−1
θ (x)

[
∇θfθ(x)

]
is continuous and bounded in L2 at θ = θg.

(D5) f
−1/2
θ (x)

[
∇2
θfθ(x)

]
− f−3/2

θ (x)
[
∇θfθ(x)

] [
∇θfθ(x)

]T is continuous and bounded in L2 at θ =

θg.

(D6) f
−1/2
θ (x)

[
∇θfθ(x)

] [
∇θfθ(x)

]T is continuous and bounded in L2 at θ = θg.

We also require conditions on the kernel function K in the kernel density estimate and its

relationship to the parametric density family:

(K1) K(·) is symmetric about 0 and
∫
K(t)dt = 1.

(K2) The bandwidth is chosen so that cn → 0, nc2
n → 0, ncn →∞.

(K3) There is a sequence an, n ≥ 0 diverging to infinity such that

(a) For X a random variable with density fθg(·)

lim
n→∞

nP
(
|X| > an

)
= 0,
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(b)

sup
n≥1

sup
|x|<an

sup
t∈R

∣∣∣∣∣K(t)
fθg(x+ tcn)
fθg(x)

∣∣∣∣∣ <∞,
(c) The parametric score functions have regular central behavior relative to the bandwidth:

lim
n→∞

1
n1/2cn

∫ an

−an

∇θfθg(x)
fθg(x)

dx = 0

and

lim
n→∞

1
n1/2c4

n

∫ an

−an

∇θfθg(x)
fθg(x)

dx = 0,

(d) The score functions are smooth with respect to K in an L2 sense:

lim
n→∞

sup
t∈R

∫
R
K(t)

[
∇θfθg(x+ cnt)
fθg(x+ cnt)

−
∇θfθg(x)
fθg(x)

]2

fθg(x)dx = 0.

This statement of assumptions in particular remove the condition that K(t) has compact sup-

port, which was assumed in Beran (1977); Basu et al. (1997); Park and Basu (2004). These

assumptions significantly expand the class of kernels available for use and hence expands the ap-

plicability of Theorem 1 (see Hooker and Vidyashankar (2010a) for formal details). In practice, it

is numerically more stable to use a Gaussian kernel or some other distribution with support on the

whole real line and we have used Gaussian kernels throughout our numerical experiments.

A.2 Proof of Theorem 1

We begin with the following Lemma:

Lemma 1. Let

wn(t) = π(θ̂n + t/
√
n)e−nD

(
gn,fθ̂n+t

√
n

)
+nD

(
gn,fθ̂n

)
− π(θg)e−

1
2
t′ID(θg)t

then under (A1)-(A5) ∫
|wn(t)|dt a.s.−→ 0 and

∫
‖t‖2|wn(t)|dt a.s.−→ 0.

Proof. We divide the integral into A1 = {‖t‖2 > δ
√
n} and A2 = {‖t‖2 ≤ δ

√
n}:∫

|wn(t)|dt =
∫
A1

|wn(t)|dt+
∫
A2

|wn(t)|dt (A.1)

34



and show that each vanishes in turn. First, since

sup
θ∈Θ

∣∣D (gn, fθ)−D (g, fθ)
∣∣ a.s.−→ 0

by Assumption (A3), for some ε > 0 with probability 1 it follows that

∃N : ∀n ≥ N, sup
‖t‖2>δ

D(gn, fθ̂n+t
√
n)−D

(
gn, fθ̂n

)
> −ε.

This now allows us to demonstrate the convergence of the first term in (A.1):∫
A1

|wn(t)|dt ≤
∫
A1

π(θ̂n + t/
√
n)e−nD

(
gn,fθ̂n+t

√
n

)
+nD

(
gn,fθ̂n

)
dt

+
∫
A1

π(θg)e−
1
2
t′ID(θg)tdt

≤ e−nε + π(θg)

(
|ID(θg)|

2π

)p/2
P (‖Z‖2 >

√
nδ)

a.s.−→ 0

where Z is a N(0, ID(θg)) random variable.

We now deal with the second term in (A.1). Notice that

nD
(
gn, fθ̂n+t/

√
n

)
− nD

(
gn, fθ̂n

)
=

1
2
t′IDn (θ′n)

for θ′n = θ̂n + αt/
√
n with 0 ≤ α ≤ 1 and therefore

wn(t) = π(θ̂n + t/
√
n)e−

1
2
t′IDn (θ′n) − π(θg)e−

1
2
t′ID(θg)t

→ 0

for every t.

By Assumption (A2) we can choose δ so that ID(θ) � 2M if ‖θ − θg‖2 ≤ 2δ for some positive

definite matrix M where A � B indicates t′At > t′Bt for all t. Since ‖θ′n− θ̂n‖ ≤ δ with probability

1 for all n sufficiently large

e
−nD

(
gn,fθ̂n+t

√
n

)
+nD

(
gn,fθ̂n

)
≤ e−

1
2
t′Mt.

Therefore ∫
A2

|wn(t)|dt ≤
∫
A2

π(θ̂n + t/
√
n)e−

1
2
t′Mt + π(θg)

∫
A2

e−
1
2
tID(θg)tdt <∞.
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and the result follows from the pointwise convergence of w(t) and the dominated convergence

theorem.

We can prove ∫
‖t‖2|wn(t)|dt a.s.−→ 0

in an analogous manner by observing that on A1∫
A1

‖t‖2|wn(t)|dt ≤
∫
A1

‖t‖2π(θ̂n + t/
√
n)e−nD

(
gn,fθ̂n+t

√
n

)
+nD

(
gn,fθ̂n

)
dt

+
∫
A1

π(θg)‖t‖2e−
1
2
t′ID(θg)tdt

a.s.−→ 0

and on A2, ‖t‖2|wn(t)| a.s.−→ 0 and∫
A2

‖t‖2|wn(t)|dt ≤
∫
A2

‖t‖2π(θ̂n + t/
√
n)e−

1
2
t′Mt + π(θg)

∫
A2

‖t‖2e−
1
2
tID(θg)tdt <∞.

Following this lemma, we prove Theorem 1.

Proof. First, from Assumption (A5),

√
n
(
θ̂n − θg

)
d→ N(0, ID(θg)),

using that
∫
|gn(t)− fθg(t)|dt

a.s.−→ 0, the continuity of G and the compactness of Θ, it follows that

sup
θ∈Θ

∣∣D (gn, fθ)−D (g, fθ)
∣∣ a.s.−→ 0

and

D
(
gn, fθ̂n

)
a.s.−→ D

(
g, fθg

)
, ∇θD

(
gn, fθ̂n

)
a.s.−→ ∇θD

(
g, fθg

)
, ∇2

θD
(
gn, fθ̂n

)
a.s.−→ ∇2

θD
(
g, fθg

)
Now, we write that

π∗Dn (t) = κ−1
n π(θ̂n + t/

√
n)e−nD

(
gn,fθ̂n+t

√
n

)
+nD(gn,fθ̂)

where κn is chosen so that
∫
π∗Dn (t)dt = 1. Let

wn(t) = π(θ̂n + t/
√
n)e−nD

(
gn,fθ̂n+t

√
n

)
+nD

(
gn,fθ̂n

)
− π(θg)e−

1
2
t′ID(θg)t
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from Lemma 1, we have ∫
|wn(t)|dt a.s.−→ 0

from which

κn =
∫
π(θ̂n+t/

√
n)e−nD

(
gn,fθ̂n+t

√
n

)
+nD

(
gn,fθ̂n

)
dt

a.s.−→ π(θg)
∫
e−

1
2
t′ID(θg)tdt = π(θg)

(
2π

|ID(θg)|

)p/2
and

lim
n→∞

∫ ∣∣∣∣∣π∗Dn (t)−
√
ID(θg)√

2π
e−

1
2
t′ID(θg)t

∣∣∣∣∣ dt =
∫ ∣∣∣∣∣∣∣κ−1

n wn(t) +

κ−1
n π(θg)−

(
|ID(θg)|

2π

)p/2 e−
1
2
t′ID(θg)t

∣∣∣∣∣∣∣ dt
≤ κ−1

n

∫
|wn(t)|dt+

(
2π

|ID(θg)|

)p/2 ∣∣∣∣∣∣κ−1
n π(θg)−

(
|ID(θg)|

2π

)p/2∣∣∣∣∣∣
a.s.−→ 0.

That the result holds for ID(θg) replaced with ÎDn (θ̂n) follows from the almost sure convergence of

the latter to the former.

A.3 Proof of Theorem 2

Proof. Let t = (t1, . . . , tp), from Theorem 1

∫
tiπ
∗D(t|x1, . . . , xn) a.s.−→

(
2π

|ID(θg)|

)p/2 ∫
tie
− 1

2
t′ID(θg)tdt = 0.

Since

θ∗n = E(θ̂n + t/
√
n|X1, . . . , Xn)

we have
√
n
(
θ∗n − θ̂n

)
a.s.−→

(
2π

|ID(θg)|

)p/2 ∫
te−

1
2
t′ID(θg)tdt = 0.

Since
√
n
(
θ̂n − θg

)
d→ N

(
0, ID(θg)

)
, it follows that

√
n
(
θ∗n − θg

) d→ N
(

0, ID(θg)
)

; hence θ∗n is

asymptotically normal, efficient as well as robust.
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B. PROOFS OF ROBUSTNESS

B.1 Proof of Theorem 3

Proof. Under the assumptions, supθ,gD(g, fθ) = R < ∞ and infθ,gD(g, fθ) = r > −∞. Let

hk,ε = (1− ε)g + εtk, then for all θ,

e−nR ≤ e−nD(hk,ε,fθ) < e−nr, ∀k ∈ 1, 2, . . . , ∀ε ∈ [0 1]

and therefore

en(r−R)Eπ(θ)θ =
∫
θe−nRπ(θ)dθ∫
e−nrπ(θ)dθ

≤ EPD(θ|hk,ε)θ ≤
∫
θe−nrπ(θ)dθ∫
e−nRπ(θ)dθ

= en(R−r)Eπ(θ)θ.

B.2 Proof of Theorem 4

Proof. It is sufficient to show that∣∣∣EPD(θ|g)Cnk(θ, g)
∣∣∣ <∞ and

∣∣∣EPD(θ|g)
[
θCnk(θ, g)

]∣∣∣ <∞.
We will prove the first of these, the second follows analogously.∣∣∣EPD(θ|g)Cnk(θ, g)

∣∣∣ ≤ en(R−r)
∣∣∣∣∫ Cnk(θ, g)π(θ)dθ

∣∣∣∣
≤ en(R−r)

∫ ∣∣∣∣∣(g(x)− tk(x))
∫
G′
(
g(x)
fθ(x)

− 1
)
π(θ)dθ

∣∣∣∣∣ dx
≤ en(R−r)e0

∫
|g(x)− tk(x)|dx (A.2)

< 2en(R−r)e0.

where supθ,gD(g, fθ) = R < ∞ and infθ,gD(g, fθ) = r > −∞ and (A.2) follows from the assump-

tion (13).

C. SIMULATION STUDIES

C.1 Gaussian and Gamma Distributions – The i.i.d. Case

We undertook a simulation study for the normal mean example in Figure 1 to examine the

efficiency and robustness of Hellinger and Negative-Exponential posterior samples. 2,500 sample

data sets of size 20 from a N(1, 1) population were generated. For each sample data set, a random
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walk Metropolis algorithm was run for 100,000 steps using a N(0, 0.5) proposal distribution and a

N(0, 1) prior. The kernel bandwidth was selected by the bandwidth selection in Sheather and Jones

(1991). H- and N-posteriors were easily calculated by combining the KernSmooth (original by Matt

Wand. R port by Brian Ripley., 2009) and LearnBayes (Albert, 2008) packages in R. Expected

a posteriori estimates for the sample mean were obtained along with 95% credible intervals from

every 10th sample in the second half of the MCMC chain. An outlier was then added to each data

set taking the value 20 and the estimate re-computed. The analytic posterior without the outlier

is normal with mean 0.9524 (equivalently, bias of -0.048) and variance 0.0476. The results of this

simulation are summarized in Table 1. As can be expected, the standard Bayesian posterior suffers

from sensitivity to large values; it’s theoretical bias when the outlier is added is 0.8182. However,

both the Hellinger and the negative exponential posterior estimates remained nearly unchanged

by the additional data point. For a data set of this size, there is approximately a 10% increase in

variance for both robust estimates relative to the standard posterior.

The problem of estimating a Gaussian mean is made relatively straightforward by the symmetry

of the distribution. We therefore conducted a further study, estimating both shape and scale

parameters in a log-gamma distribution. In this case, the shape parameter was chosen at 5 and

the scale parameter at 0.25 and these were given χ2 priors with degrees of freedom 3 and 0.3

respectively. 5,000 data sets were simulated of 20 points each and the D-posteriors were calculated

as above both with and without an outlier placed at ln(20). For this chain a random walk Metropolis

algorithm was again conducted with the random walk on the log shape and log scale parameters

again using the LearnBayes package. Table 2 reports the tabulated results. We note in particular

that the efficiency of the H-posterior has been considerably reduced, as have its coverage properties;

additionally two simulation runs were removed due to poor convergence. This is explained as being

due to the inlier effect; the skewness of the gamma distribution produces density estimates gn that

tend to have “holes” and the Hellinger disparity is sensitive to these; an example is give in Figure

5. By contrast, the negative exponential disparity is much less sensitive.

C.2 One-Way Random Effects Models

Figure 6 demonstrates the differences resulting from robustifying different distributional as-

sumptions in the one-way random effects model described in Section 6. We simulated a set of five
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No Outliers

Bias Variance Coverage

Posterior -0.047 0.045 0.9506

Hellinger -0.052 0.050 0.9434

Negative Exponential -0.066 0.048 0.9684

Outlier at 20

Bias Variance Coverage

Posterior 0.818 0.041 0.0276

Hellinger -0.050 0.050 0.9362

Negative Exponential -0.063 0.049 0.9634

Table 1: A simulation study for a normal mean using the usual posterior, the Hellinger posterior

and the Negative Exponential posterior. Columns give the bias and variance of the posterior mean

and the coverage of the central 95% credible interval based on 2,500 simulations. Note that the

same data sets are used in for both tables, an outlier being added to the data sets when calculating

the quantities in the lower table.
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No Outliers

Shape Scale

Bias Variance Coverage Bias Variance Coverage

Posterior -0.088 0.571 0.9516 0.004 0.0005 0.9562

Hellinger -0.081 1.005 0.850 0.010 0.0011 0.839

Negative Exponential -0.182 0.739 0.9436 0.008 0.0007 0.9556

Outlier at 20

Shape Scale

Bias Variance Coverage Bias Variance Coverage

Posterior -3.068 0.001 0 0.988 0.00006 0

Hellinger -0.013 1.046 0.8508 0.010 0.0011 0.8440

Negative Exponential -0.210 0.725 0.9496 0.010 0.0008 0.9586

Table 2: A simulation study for a log gamma using the usual posterior, the Hellinger posterior and

the Negative Exponential posterior. Columns give the bias and variance of the posterior mean and

the coverage of the central 95% credible interval based on 5000 simulations. Note that the same

data sets are used in for both tables, an outlier being added to the data sets when calculating the

quantities in the bottom table. The shape parameter is given in the first column and the scale

parameter in the second in each entry.
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Figure 5: Comparisons of gn(x) (dashed) and the true log Γ(5, 0.25) density generating the data

(solid). Hellinger distance estimators are sensitive to valleys in the density that are due to a density

estimate naively applied to skewed data. Negative exponential disparity are robust towards these

effects as well.
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groups of twenty observations. Each group had variance 0.2 with a mean drawn from a N(µ, 1)

population. This produces a random-effects model and the goal is to estimate µ. The plots in

Figure 6 show that the use of disparity methods in either the random effect or on the residual

process or on both provide very similar distributions to the correct posterior. When an outlying

group is added with mean 40, those methods that replace the random effects distribution with a

disparity are unaffected while those that do not are substantially biased.

In order to verify the apparent success of this method, we conducted a simulation study of a

one-way random effects model with ten random effects and five observations per random effect. The

random effects were simulated from a standard normal distribution, while the observations were

Gaussian, centered on the random effect and with standard deviation 0.2. We simulated 1,000 ver-

sions of these data. For each version a random-walk Metropolis scheme was run to sample from the

posterior, the posterior with the observation likelihood replaced by H-posterior, the posterior with

the random effect likelihood replaced by H-posterior and the posterior with both replacements. All

MCMC schemes were run for 10,000 steps with posterior distributions calculated based on every 5th

sample from the second half of the chain. We additionally added a further random effect with five

observations distributed around the value 40 with standard deviation 0.2. Bandwidth parameters

were chosen by the selection criterion of Sheather and Jones (1991) based on maximum-likelihood

estimates of random effects and residual errors. The results of this simulation are summarized in

Table 3. Here we see that the estimation of σ is biased downwards by the estimation of a conditional

density for each random effect, based on only five observations and there is more uncertainty in

the estimate of τ when Hellinger distance is used in place of the random effect log likelihood. The

disparity-based methods otherwise perform very similarly to the true likelihood. When an outlying

random effect is added, replacing the random effect likelihood with Hellinger distance robustified

inference, where those posteriors without this replacement were severely biased.

C.3 Linear Regression Models

Figure 7 provides example D-posterior distributions of all regression disparities described in

Sections 5 and 7 along with the posterior for an example 3-dimensional linear regression based

on 30 points. Both Hellinger and negative exponential disparities were used. Covariates were

generated from a standard normal distribution with errors also generated from a standard normal
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Figure 6: Posterior distributions for a random-effects model. 5 groups of 20 observations each with

mean drawn from N(µ, 1) and variance 0.2. µ was given a N(0, 1) prior. Posterior densities for µ

were estimated from every 50th observation in the last half of a random-walk Markov chain run for

100,000 steps. Hellinger distance was used to replace the component of the likelihood representing

Yij −Xi, representing Xi and both. Left: posterior densities for µ from the original data when the

model is correct. Right: posterior densities after adding a further group of 5 observation generated

from N(40, 0.2). First row: estimates for µ, second: σ2, third: τ2.
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No Outliers

µ sd(µ) coverage σ sd(σ) coverage τ sd(τ) coverage

Likelihood 0.0013 0.286 0.947 0.200 0.0230 0.940 0.979 0.234 0.919

HD - obs 0.0035 0.285 0.937 0.200 0.0231 0.939 1.070 0.342 0.900

HD - rand 0.0021 0.286 0.936 0.191 0.0259 0.686 0.982 0.231 0.928

HD - both 0.0024 0.291 0.933 0.191 0.0258 0.692 1.068 0.342 0.899

Outlying Random Effect

µ sd(µ) coverage σ sd(σ) coverage τ sd(τ) coverage

Likelihood 0.365 0.197 1.000 0.200 0.0222 0.930 10.11 0.163 0.000

HD - obs 0.002 0.288 0.926 0.200 0.0223 0.922 1.088 0.389 0.887

HD - rand 0.353 0.252 1.000 0.191 0.0249 0.684 10.13 0.196 0.000

HD - both 0.002 0.295 0.917 0.191 0.0249 0.674 1.066 0.325 0.885

Table 3: A simulation study for a one-way random effect model from using the posterior, replacing

the observation likelihood with a conditional Hellinger distance, replacing the random effect likeli-

hood with Hellinger distance and making both replacements. The columns give the mean, standard

deviation and coverage of µ, σ2 and τ2 based on 1,000 simulations. The lower table indicates the

effect of adding an outlying random effect at 40. A total of 8 simulations were excluded due to

poor convergence of the MCMC chain.
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distribution. The likelihood is noticeably more concentrated than the disparity-based posteriors,

but all exhibit broadly similar shapes.

We have supplemented this experiment with a simulation. 1,000 data sets were simulated from

a linear regression model on three covariates. The covariates were chosen from an independent stan-

dard normal distribution and were held fixed across all simulations. The parameters in the model

were chosen as (β0, β1, β2, β3, σ
2) = (1, 1, 1, 1, 1). Bandwidths were chosen using the criterion in

Sheather and Jones (1991) based on the observed covariates and maximum likelihood estimates

of the residuals. Both Hellinger distance and negative exponential disparity were considered, and

the conditional formulation, marginal formulation and conditional-homoscedastic form were used

to estimate the five parameters in the model. This resulted in seven estimators including a Gaus-

sian. For each estimate a random-walk Metropolis algorithm was run for 10,000 steps and EDAP

estimates were calculated from every fifth sample in the second half of the chain. The results from

this study are given in Table 4. Here the conditional form of the Hellinger distance performs poorly

and this can be attributed to an under-smoothed conditional density. Other that this anomaly,

we observe good agreement between all disparity-based methods and the likelihood. The choice

between these will therefore depend on the amount of data available and the dimension of the

covariate space.

D. DATA

Table 5 provides the values of the parasitology data set used in Section 8.1. The data used for

the class survey data in Section 8.2 are provided in Table 6; they are graphed in Figure 8.
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Figure 7: D-posterior inference and linear regression. Top left: posterior for β0, bottom left:

posterior for σ. Right: posterior for each βi, i = 1, . . . , 3. Thick lines: posterior based on likelihood.

Solid lines: based on gcn, dashed: based on gc2n , dotted: marginal formulation. Black: Hellinger

distance, grey: negative exponential disparity. Here ’Conditional 1’ indicates the conditional density

estimate in Section 5, ’Conditional 2’ refers to the conditional-homoscedastic approach.
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σ β0 β1 β1 β3

mean sd mean sd mean sd mean sd mean sd

Likelihood 1.035 0.141 0.996 0.193 0.996 0.176 0.988 0.215 0.996 0.183

HD cond. 1 1.986 2.046 0.966 0.703 1.046 1.091 0.872 1.527 0.852 1.613

NED cond. 1 1.127 0.174 0.989 0.211 1.002 0.206 0.972 0.255 0.976 0.244

HD cond. 2 0.980 0.135 0.969 0.194 0.955 0.164 0.855 0.194 0.883 0.163

NED cond. 2 1.010 0.138 0.964 0.193 0.953 0.167 0.857 0.198 0.884 0.166

HD marg. 1.074 0.137 0.993 0.199 0.999 0.189 0.981 0.229 0.989 0.199

NED marg. 1.083 0.139 0.994 0.205 0.997 0.195 0.986 0.237 0.990 0.208

Table 4: Simulation results for linear regression. Columns give mean and standard deviation of

EDAP estimates of parameters based on 1,000 simulated data sets, rows correspond to posteriors us-

ing likelihood, using conditional density estimates with Hellinger distance and negative exponential

disparity (cond .1), using conditional-homoscedastic density estimates with Hellinger distance and

negative exponential disparity (cond. 2) and using the marginal formulation of Hellinger distance

and negative exponential disparity.

Horse 1 2 3 4 5 6 7

Pre-treatment 2440 1000 1900 1820 3260 300 660

Post-treatment 580 320 400 160 60 40 120

Table 5: Data used in Section 8.1: pre- and post-treatment fecal egg count for seven horses on one

farm.
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Status 35 45 55 65

a 11.51293 11.775290 11.98293 12.10071

a 11.91839 12.206073 12.61154 12.20607

a 11.69525 12.100712 12.42922 12.42922

a 11.69525 12.100712 12.38839 12.79386

a 10.71442 10.819778 10.81978 10.81978

a 11.15625 11.512925 11.84940 11.98293

a 10.51867 10.596635 10.71442 11.00210

a 12.20607 12.206073 12.20607 12.20607

a 9.21034 9.903488 10.12663 10.30895

a 10.59663 11.002100 11.28978 11.40756

a 14.22098 12.100712 14.91412 15.60727

f 11.51293 11.918391 11.51293 10.81978

f 11.00210 11.002100 11.15625 11.15625

f 11.91839 12.206073 12.42922 12.42922

f 11.40756 11.695247 11.73607 11.77529

f 11.91839 13.122363 13.30468 13.30468

f 11.51293 11.695247 11.91839 12.20607

f 11.15625 11.512925 11.51293 11.69525

f 12.20607 12.611538 12.76569 11.00210

f 10.81978 11.002100 11.00210 11.00210

f 10.46310 11.002100 11.08214 11.08214

Table 6: Class survey data used in Section 8.2; columns give American (a) or foreign (f) status,

and log expected salary at ages 35, 45, 55, and 65.

49



Figure 8: Responses to an in-class survey on expected income at ages 35, 45, 55 and 65. Students

were either foreign born (dashed) or American (solid).
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