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Abstract

In this paper we study inference for high dimensional data that are characterized by small

sample sizes relative to the dimension of the data. In particular, we provide an infinite-

dimensional framework to study statistical models that involve situations in which (i) the

number of parameters increase with the sample size (that is allowed to be random) and (ii)

there is a possibility of missing data. Under a variety of tail conditions on the components of

the data, we provide precise conditions for the joint consistency of the estimators of the mean.

In the process, we clarify and improve some of the recent consistency results that appeared in

the literature. Furthermore, we provide various results concerning the rate of convergence in

the joint consistency results. An important aspect of the work presented is the development of

asymptotic normality results for these models. As a consequence, we construct different test

statistics for the one-sample problem concerning the mean vector and obtain their asymptotic

dist! ributions as a corollary of the infinite dimensional results. Finally, we use these theoreti-

cal results to develop an asymptotically justifiable methodology for data analyses. Simulation

results presented here bring out the salient features of the proposed methodology and describe

situations where the methodology can be successfully applied. The simulations also evaluate

the robustness of the proposed methodology under a variety of conditions, some of which are

substantially different from the technical conditions required of the theoretical results. Com-

parisons of the proposed methods to other methods used in the literature are also provided.
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1 Introduction

Modern scientific technology is providing a class of statistical problems that typically involve data
that are high dimensional, and frequently lead to questions involving simultaneous inference for large
sets of parameters. The number of parameters in these datasets is often random, and grows rapidly
in comparison to the sample size; furthermore, there can be missing observations. Microarrays
epitomize this situation, but similar problems arise in other areas such as polymerase chain reactions,
proteomics, functional magnetic resonance imaging, and astronomy. For example, in microarray
experiments the number of expressed genes differ between replicates, and certain genes do not
express in all replications, which leads to missing data. Statistical analyses of such problems is
an area of increasing concern, and various statistical models and methods have been developed to
analyze these situations. Some recent references in this area include [11] and [29], which study
the large p small n problem. The references [10], [22], [23], [24] and [25] study joint asymptotics
in the context of general regression problems when the number of parameters diverge to infinity
with the sample size . In particular, [11] investigates the simultaneous estimation of the marginal
distributions in the large p small n problem, and it describes how these results can then be used to
control the so-called False discovery rates(FDR).

The primary focus of this paper is to develop a general framework for the statistical aspects of
these high dimensional problems, incorporating both a random number of parameters and missing
data. This is achieved by relating it to various aspects of infinite dimensional problems. Although
the methods of our paper apply generally to many high dimensional data problems, we will frequently
use the terminology from microarrays to facilitate connections to one of the contemporary scientific
disciplines. Now we turn to some specifics of our model.

For each fixed integer n ≥ 1 we begin with a collection of independent sequences of real valued
random variables {ξn,i,j : j ≥ 1}. All are assumed to be defined on a common probability space,
and there is no dependence relationship assumed as n and j vary. In the context of microarrays,
for n fixed, each of these sequences represents the expression levels of genes in one replication of the
experiment. The index n can be interpreted as either the time frame or as a label for the laboratory
where the experiment is being performed. In particular, the random variable ξn,i,j can then be
thought of as the expression level of the jth gene in the ith replicate with index n. The number
of replicates, for fixed index n, could be any integer r(n), but for the sake of simplicity we take
r(n) = n. Nevertheless, the techniques of this paper can be applied to develop results for other
choices of r(n).

Since the expressed genes between replicates may not coincide, either due to the random number
that appear or for other reasons (which can be viewed as random deletions), we incorporate these
two non-mutually exclusive possibilities into our model. We let Nn,i denote the random number
of variables within the ith replicate having index n. We also assume for each integer n ≥ 1 that
{Nn,i : i ≥ 1} is an i.i.d sequence of integer valued random variables with P (Nn,i ≥ 1) = 1. Of
course, in real datasets we also have P (Nn,i = ∞) = 0, but our results also apply to the situation
where P (Nn,i = ∞) > 0.

To model missing data, we postulate that the missing mechanism is independent of the expression
level and the random number of parameters are involved. For this reason, we introduce the Bernoulli
random variables {Rn,i,j : n ≥ 1, i ≥ 1, j ≥ 1} to represent missing data indicators, where

P (Rn,i,j = 1) = p for n ≥ 1, i ≥ 1, j ≥ 1. (1.1)
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We will assume that 0 < p ≤ 1, and also that the sequences {ξn,i,j : n ≥ 1, i ≥ 1, j ≥ 1}, {Rn,i,j :
n ≥ 1, i ≥ 1, j ≥ 1}, and {Nn,i : n ≥ 1, i ≥ 1} are independent. The case p = 1 corresponds to the
case that there is no missing data.

In traditional multivariate analysis, such data is typically represented as random vectors in a fixed
dimension d. However, since we are studying the model in which the dimension of the parameter
vector diverges to infinity with the sample size, we represent it as a vector in R∞, the linear space
of all real sequences. That is, we set

Xn,i =
∑

j≥1

ξn,i,jθn,i,jej , i = 1, · · · , n, (1.2)

where
θn,i,j = I(j ≤ Nn,i)Rn,i,j, (1.3)

for n ≥ 1, i ≥ 1, j ≥ 1, and {ej : j ≥ 1} is the canonical basis for R∞; that is ej = {δj,k : k ≥ 1} for
j = 1, 2, · · · , where δj,k = 1 for j = k and 0 if j 6= k. In the context of microarrays, the coordinates
of the vector Xn,i are thought to be the “normalized expression levels” of genes identified in the
ith replicate with index n . In probabilistic terms, the collection Xn,1,Xn,2, · · · ,Xn,n forms a
triangular array of n independent R∞-valued random vectors. Let N?

n = max1≤i≤nNn,i denote the
maximum number of components (columns) in the dataset; or in the context of microarrays, the
total number of expressed genes present. If P (N?

n < ∞) = 1, the components of Xn,i, namely
ξn,i,jθn,i,j, equal 0 for j > Nn,i. In other words, Xn,i ∈ c0, where c0 is the linear space of all real
sequences converging to 0. Hence we will be concerned with asymptotic inference for data in c0. We
will also be interested in data in other Banach subspaces of R∞, as these spaces and their norms
arise naturally in various statistical settings. Throughout the paper we allow the possibility that
P (N?

n = ∞) > 0. We also will use the notation x =
∑

j≥1 xjej to denote a typical vector in R∞,
where {ej : j ≥ 1} denotes the canonical basis vectors defined above.

The space c0, with the usual sup-norm given by

||x||∞ = sup
i≥1

|xi|, (1.4)

is naturally appropriate when studying the asymptotic inference for a one-sample problem using the
maximum of suitable “averages” of gene expressions. The other Banach subspaces of R∞ that we
use in this paper are lρ, 2 ≤ ρ ≤ ∞, where the norm is given by

||x||ρ = (
∑

j≥1

|xj|ρ)
1
ρ (1.5)

when 2 ≤ ρ < ∞, and by (1.4) when ρ = ∞. Our main asymptotic results concern the statistics

Sn,n =
n∑

i=1

Xn,i, (1.6)

and

S̃n,n =
n∑

i=1

∑

j≥1

ξn,i,jθn,i,j

V
1/2
n,j

ej ≡
n∑

i=1

Nn,i∑

j=1

ξn,i,jRn,i,j

V
1/2
n,j

ej, (1.7)

where

Vn,j = max{1,
n∑

i=1

θn,i,j}, n ≥ 1, j ≥ 1. (1.8)
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Here the coordinate wise random-normalizers Vn,j take into account the differences amongst columns
due to missing data and random row lengths, and if we replace the Vn,j in S̃n,n by n1/2, then we
obtain Sn,n/n

1/2. Our results include consistency, rates of convergence, and asymptotic normality
for these sums.

The statistic S̃n,n is important when we consider asymptotic normality in our model, as it
essentially normalizes each column by the square root of the number of terms in that column. If
p = 1, and for positive integer constants b(n) we have P (Nn,i = b(n)) = 1 for all i ≥ 1, then (1.7)
reduces to

S̃n,n =
n∑

i=1

b(n)∑

j=1

ξn,i,j
n1/2

ej. (1.9)

If p = 1 and we also have P (Nn,1 = ∞) = 1, then

S̃n,n =
n∑

i=1

∑

j≥1

ξn,i,j
n1/2

ej . (1.10)

We also study the statistic

T̃ n,n =
n∑

i=1

∑

j≥1

ξn,i,jθn,i,j
Vn,j

ej ≡
n∑

i=1

Nn,i∑

j=1

ξn,i,jRn,i,j
Vn,j

ej. (1.11)

For the moment assume that E(ξn,i,j)(≡ µn,j) is independent of i, and Hn,j is the sigma-field
generated by the random variables {Nn,i : i ≥ 1}, {Rn,i,j : i, j ≥ 1} and the event ∪ni=1{θn,i,j = 1}.
Also, for each j ≥ 1, let T̃n,n,j denote the jth coordinate of T̃ n,n. Then, these coordinate sums are
conditionally unbiased estimators of µn,j, i.e. for each j ≥ 1 we have

E(T̃n,n,j|Hn,j) = µn,j.

Furthermore, for each j ≥ 1, these components are also conditionally least squares estimators in the
following one-way analysis of variance model

ξn,i,j = µn,j + εn,i,j, 1 ≤ i ≤ Vn,j, (1.12)

where E(εn,i,j) = 0. Analysis of each of these components can be carried out using traditional
techniques involving one dimensional laws of large numbers and the central limit theorem. However,
the joint analysis of all the variables (or even finitely many components) brings in correlations
between the components of ξn,i,j for various j, and also the correlations induced by the random
sample sizes Nn,i and the random normalizations Vn,j. Our goal is to address the joint behavior of
these statistics under a variety of conditions.

Since the statistics Sn,n, S̃n,n and T̃ n,n are infinite-dimensional vectors, the choice of the norm
will play a critical role in the analysis. As mentioned previously, we will work with different norms
on various subspaces of R∞. Expectedly, the asymptotic results that we develop will depend on the
assumptions on the random variables Nn,i and on the tail behavior of ξn,i,j. When Nn,i = pn, where
pn is non-random, exponential in n, and p = 1, this is the so-called large p small n problem, and
[11] and [29] studied the behavior of Sn,n in the sup-norm under various assumptions on the tail
behavior of ξn,i,j. For example, the results proved in [29] assume that the random variables have
bounded support, while [11] replaces this condition by various exponential decay conditions on the
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tail behavior of ξn,i,j. The primary technique employed in [11] to obtain consistency results uses
Massart’s [16], which provides uniform constants for the exponential rate of sup-norm convergence
of the empirical distribution function to the true distribution function. This is then used to obtain
results for the relevant partial sums of random variables using integration-by-parts techniques. While
this approach yields useful results, the integration by parts required seems to obscure the true nature
of the matter. From what we do here, we will see that it is more fruitful to study the problem from
the point of view of the random variables themselves in that we are able to clarify some of the results
described in [11], and also extend them under a broader range of conditions to our more general
model.

The rest of the paper is organized as follows: Section 2 develops further notation and contains
statements of the main results of the paper. These results concern joint consistency and joint
asymptotic normality. Our first result is a global consistency result providing complete convergence
for ||Sn,n||∞ and ||S̃n,n||∞, and in order to further understand the magnitude of ||Sn,n||∞ our
Theorem 1 also establishes the exponential integrability of a suitably scaled version of ||Sn,n||2∞.
This result is proved under a sub-Gaussian tail condition on the variables {ξn,i,j}. An important
question concerning the role of the index n in ξn,i,j appears in Theorem 3. There the magnitude
of ||Sn,n||∞ is shown to be even smaller if the variables summed are from an i.i.d. sequence of R∞

valued independent random vectors, rather than a triangular array. Theorems 2 and 4 both provide
additional con! sistency results for S̃n,n under a variety of conditions, the main ones being on N∗

n

and the tail behavior of the random variables {ξn,i,j}. In particular, Theorems 2 and 4 cover all
the consistency results in [11], and Theorem 4 even provides results when the tail behavior of the
{ξn,i,j} is polynomial in nature. Theorem 5 provides both weak and strong consistency for T̃ n,n.
The proofs of these consistency results are contained in Section 4.

An important aspect of our work is that it investigates the asymptotic limit distribution of S̃n,n,
and in Theorems 6 and 7 we provide central limit theorems in c0 and in `ρ, 2 ≤ ρ < ∞, under a
variety of asumptions. A novel aspect of these results is that the normalizer is different for each
component in S̃n,n, which is motivated due to the presence of missing data. In this setting we
also obtain the analogous weak laws of large numbers, i.e. we show that the random vectors T̃ n,n

converges to zero in probability as n tends to infinity. An immediate consequence of the asymptotic
normality results is that ||S̃n,n||∞ converges in distribution to the sup-norm of the limiting Gaussian
random vector. These results are useful in developing tests for sample size determination while
designing experiments. Our asymptotic normality results in `2, and also `ρ, naturally yield limit
distributions of statistics analogous to the Hotelling’s T 2 statistic. One can use this convergence
to develop tests similar to those based on Hotelling’s T 2 statistic. A simulation study undertaken
in Section 6 discusses such problems. The proofs of asymptotic normality results are contained in
Section 5, and the concluding remarks are in Section 7.

2 Additional Notation and Main Results

In this section we develop the additional notation and assumptions, and present the main results of
the paper. As mentioned in the introduction, since the dimension of the vectors grow as n increases,
our approach is to view the data as random elements of the space of real sequences R∞.

The results that we obtain will depend critically on the tail probabilities of the random variable
{ξn,i,j}. These assumptions are of two types, namely that the tail probabilities decay at an expo-
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nential rate, or that they decay polynomially. In the large p small n problem, our results imply that
these tail probability conditions are closely tied to the way p must relate to n. For example, in the
classic version of this problem where p grows exponentially fast in n, we need tail probabilities that
decay exponentially fast, whereas if p grows only as a power of n, then we only need polynomial
decay for the tails. The precise nature of this interplay for consistency results is contained in The-
orems 2 and 4. In particular, the remarks following these theorems contain precise information on
their relationship to the large p small n problem.

First we discuss the exponential decay case. Here we assume that for some r, 0 < r ≤ 2, and all
x ≥ 0 there are constants cn,j and kn,j such that

P (|ξn,,i,j| ≥ x) ≤ cn,je
−kn,jx

r

, (2.1)

for all n ≥ 1, j ≥ 1. Random variables satisfying (2.1) with r = 2 are usually said to be sub-Gaussian,
and if for 1 ≤ i ≤ n we have that each ξn,i,j takes values in the interval [an,j, bn,j], then we will see
below that (2.1) holds with r=2,

cn,j = 2 and kn,j = (2(bn,j − an,j)2)−1, n ≥ 1, j ≥ 1. (2.2)

Actually, (2.1) is well known, but it will also emerge from what we prove below. Throughout, when
ξn,i,j = 0 with probability one, in (2.1) we take

cn,j = 1 and kn,j = ∞, n ≥ 1, j ≥ 1. (2.3)

In addition, note that cn,j ≥ 1 is necessary by setting x = 0 in (2.1).
It is also useful to notice that if the condition (2.1) holds for some r∗ > 1, then it holds for

all 1 ≤ r ≤ r∗ by simply adjusting the constants cn,j and keeping the same kn,j. In particular, if
(2.1) holds for some r > 2, then it holds for r = 2, and we are in the sub-Gaussian setting. In [11]
this seems to have gone unnoticed, and there one finds results for r > 2 which are weaker than the
corresponding r = 2 results. However, this should not be the case as the previous comment implies
the r = 2 result applies directly to what is proved there. Of course, in some settings there could be
results that distinguish between various r values, even for r > 2, but that does not happen here,
and is why we restrict r to be in (0, 2]. Our methods also yield results when 0 < r < 1, whereas in
[11] r is always greater than equal to one and, as described above, the r > 2 consistency results are
equivalent to those for ! r = 2.

Another situation we will discuss is when the assumption of exponential decay of the tails of
ξn,i,j in (2.1) is replaced by the polynomial decay

P (|ξn,i,j| ≥ x) ≤ cn,j
(1 + x)kn,j

, x ≥ 0, (2.4)

where cn,j ≥ 1 and typically for our results, 2 < kn,j <∞.
We will assume throughout the paper that E(ξn,i,j) = 0 for all n, i, j ≥ 1. Should this not be

the case, one would simply replace the tail probability conditions in (2.1) and (2.4) by analogous
conditions for the variables {ξn,i,j−E(ξn,i,j)}, and formulate the results in terms of these variables.
One can provide fairly precise formulas for how these tail probability constants for a random variable
ξ compare to those for ξ −E(ξ), but the fact remains it is more convenient from a notational point
of view to assume at the start that our random variables are mean zero. Hence we do this without
further mention.
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2.1 Consistency and Rates of Convergence Results

In this subsection we present several consistency and rate of convergence results for Sn,n, S̃n,n, and
T̃ n,n with respect to the sup-norm on c0. Our first result concerns the statistic S̃n,n.

Theorem 1. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), assume (2.1) holds with r = 2, and take
{an : n ≥ 1} to be a sequence of positive numbers. Furthermore, assume cn,j, kn,j are constants such
that cn,j ≥ 1, kn,j ≤ ∞ and

∑

n≥1

∑

j≥1

exp{−(εan)2kn,j/(16cn,j)} < ∞ (2.5)

for ε > ε0. Then, ∑

n≥1

P (||S̃n,n||∞ ≥ εan) < ∞ (2.6)

for all ε > ε0, where S̃n,n is given as in (1.7). Thus, if the constants cn,j and kn,j are such that
uniformly in n ≥ 1 and for some δ > 0,

kn,j/(16cn,j) ≥ δL(j + 3), (2.7)

then for all ε > 0 such that ε2δ > 1 we have

lim sup
n→∞

||S̃n,n||∞
(L(n + 3))1/2

≤ ε. (2.8)

In particular, if (2.7) holds, then with probability one

M = sup
n≥1

||S̃n,n||∞
(L(n+ 3))1/2

< ∞, (2.9)

and there exists an α > 0 such that
E(eαM

2
) < ∞. (2.10)

Moreover, if the V 1/2
n,j are replaced by n1/2 in S̃n,n , then again (2.6), (2.8), and (2.10) continue to

hold.

Remark 1. The above theorem provides an interesting interplay between the constants an, cn,j, and
kn,j. For example, in order for ||S̃n,n|| to be bounded in probability, the proof shows it is sufficient
that the constants cn,j ≥ 1 and kn,j ≤ ∞ satisfy

sup
n≥1

∑

j≥1

exp{−εkn,j/(16cn,j)} < ∞ (2.11)

for some ε > 0. In Theorem 6, we will establish a central limit theorem for S̃n,n, and that T̃ n,n

converges to zero in probability under related conditions.

In Theorem 1, the impact of the random row sizes {Nn,i : i ≥ 1} is hidden due to our choice
of normalizations {an} as given in (2.5). For example, (2.5) implies the ratio kn,j/cn,j cannot be
bounded as j goes to infinity, but in our next result we only require this ratio to be uniformly
bounded below in both n and j by a strictly positive constant. Under this different set of conditions
the role of {Nn,i : i ≥ 1} appears in the normalizations for S̃n,n given by h(n) in (2.12). In particular,
if Nn,i = pn for {i ≥ 1, n ≥ 1}, then Theorem 2 and Remark 4 below yield the results in Corollaries
1 and 2 in [11] when r = 2. The consistency results in [11] for 1 ≤ r < 2, as well as for many other
cases, follow immediately from Theorem 4 below.
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Theorem 2. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), and assume (2.1) holds with r = 2, and that for
1 ≤ c < ∞, 0 < k < ∞, we have cn.j ≤ c and kn,j ≥ k for all n, j ≥ 1. Let,

h(n) = (θ−1
1 L(E(N∗

n)) + θ2Ln)1/2, (2.12)

where θ1 = k/(16c) and θ2 > 0. Then

lim
n→∞

P (
||S̃n,n||∞
h(n)

≥ 1) = 0, (2.13)

and if also θ1θ2 > 1, then ∑

n≥1

P (||S̃n,n||∞ ≥ h(n)) < ∞. (2.14)

Finally, if the V 1/2
n,j are replaced by n1/2 in S̃n,n, then again (2.13)-(2.14) hold.

Remark 2. Note that (2.13) immediately implies

||S̃n,n||∞
n1/2

= OP ((
L(E(N∗

n)) + Ln

n
)1/2), (2.15)

which relates to the weak consistency of S̃n,n. In particular, if L(E(N∗
n))/n converges to zero, then

(2.15) implies that ||S̃n,n||∞/n1/2 tends to zero in probability. Furthermore, replacing n
1
2 by nδ for

some δ > 0 yields analogous results. Similar comments can be made concerning strong consistency.
For example, (2.14) implies with probability one that

lim sup
n→∞

||S̃n,n||∞
h(n)

≤ 1, (2.16)

and hence S̃n,n/n
1/2 converges to zero with probability one provided L(E(N∗

n))/n converges to zero
as n approaches infinity.

Remark 3. If Nn,i = pn for {i ≥ 1, n ≥ 1}, then (2.13)-(2.16) immediately hold under the
conditions stated, and they also hold under this assumption if the V 1/2

n,j are replaced by n1/2 in S̃n,n.
Furthermore, if pn ≥ n, then (2.15) immediately relates to the results of Corollary 2 in [11], as it
implies

||S̃n,n||∞
n1/2

= OP ((
Lpn
n

)1/2), (2.17)

In particular, (2.15) improves Corollary 2 and its proof considerably whenever r ≥ 2 there, and the
case 0 < r < 2 will be discussed in what follows. To relate these results to Corollary 1 of [11] follows
in a standard way. That is, if ψp(x) = exp{xp} − 1 for x ≥ 0 and 1 ≤ p < ∞, then the ψp-Orlicz
norm of a random variable X is defined to be

||X||ψp = inf{c > 0 : E(ψp(|X/c|) ≤ 1}, (2.18)

where the inf over an empty set is taken to be infinity. Then, by Lemma 1 below, and Lemma 2.2.1
of [30], we have for each n ≥ 1 that

||
n∑

i=1

ξn,i,j/n||ψ2 ≤ 4(3c/(nk))1/2. (2.19)
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Thus by applying Lemma 2.2.2 of [30], and that

||Sn,n||∞
n

= max
1≤j≤pn

|
n∑

i=1

ξn,i,j/n|, (2.20)

it follows that there is a constant β < ∞, depending only on ψ2, such that

|| ||Sn,n||∞
n

||ψ2 ≤ 4(
3c
nk

)1/2β(log(1 + pn))1/2. (2.21)

In view of our Lemma 1, we thus we have an improvement of Corollary 1 in [11], which only provides
a comparable result when the {ξn,i,j} are bounded.

To evaluate the sharpness of the exponential moments of M2 in Theorem 1, we present the
following result. In view of the law of the iterated logarithm this is essentially best possible, and
occurs because for partial sums of a sequence of independent random vectors one can typically work
along geometric subsequences. Of course, for partial sums of triangular arrays this option is generally
unavailable.

Theorem 3. Let X1,X2, · · · be independent random vectors with values in R∞ and such that

Xi =
∑

j≥1

ξi,jej, i ≥ 1, (2.22)

where {ξi,j : j ≥ 1}, i ≥ 1, are independent sequences of mean zero random variables satisfying

P (|ξi,j| ≥ x) ≤ cje
−kjx

2
(2.23)

for all x ≥ 0 and i ≥ 1. If kj/(16cj) ≥ δL(j + 3) for some δ > 0, and all j ≥ 1, and Sn =
X1 + · · ·+ Xn, then

||Sn||∞
n

≤ M (
LLn

n
)1/2, (2.24)

where
M = sup

n≥1

||Sn||∞
(nLLn)1/2

(2.25)

is such that
E(eαM

2
) < ∞ (2.26)

for all α > 0 sufficiently small.

We next study the situation when the random variables {ξn,i,j} satisfy the exponential tail
condition (2.1) with 0 < r < 2, or polynomial decay as in (2.4). When 1 ≤ r < 2, a special case of
these results clarifies Corollary 2 of [11]. This can be seen in Remark 5 below. The r = 2 case in
this corollary already appeared as a simple consequence of Theorem 1. It should also be observed
that this theorem provides sufficient conditions for consistency which involve a precise relationship
between the size of pn in the large p small n problem, and the tail decay of the data. This relationship
is shown to exist even when there is only polynomial decay in the data, and as one might expect in
this situation the growth of pn, or E(N∗

n), needs to be further restricted, i.e. in such results pn and
E(N∗

n) grow at a corresponding polynomial rate.

9



Theorem 4. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2) and assume that (2.1) holds with 0 < r < 2.
Also assume for all n ≥ 1 and j ≥ 1, that cn,j ≤ c and kn,j ≥ k, where 1 ≤ c < ∞, 0 < k <∞. Let
sn = c1(L(E(N∗

n)) + 2Ln)1/r, and

h(n) = (c−1
2 L(E(N∗

n)) + c3Ln)1/2, (2.27)

where c1 > 2/k1/r, c2 = k/(128c), and c3 > 0. Then,

lim
n→∞

P (
||Sn,n||∞
n1/2snh(n)

≥ 1) = 0. (2.28)

If we also assume c2c3 > 1, then
∑

n≥1

P (||Sn,n||∞ ≥ n1/2snh(n)) < ∞. (2.29)

Furthermore, if k > 2 and the polynomial condition in (2.4) holds, then

||Sn,n||∞ = OP (n1/2sn(L(E(N∗
n)))1/2), (2.30)

where sn = (nE(N∗
n))

1
k +β and β > 0. Additionally, if E(N∗

n) ≥ n, b > 8, and kβ > 1/2, then
∑

n≥1

P (||Sn,n||∞ ≥ bsnn
1/2(L(E(N∗

n))1/2) < ∞. (2.31)

In particular, if E(N∗
n) is asymptotic to nγ for γ ≥ 1, then

∑

n≥1

P (||Sn,n||∞ ≥ bsnn
1/2(L(E(N∗

n))1/2) < ∞, (2.32)

provided b > 8 and (γ + 1)kβ > 1.

Remark 4. An immediate consequence of (2.28) is that

||Sn,n||∞
n

= OP (
(L(E(N∗

n)) + Ln)
2+r
2r

n1/2
), (2.33)

and if (L(E(N?
n))

(2+r)
2r /n1/2 → 0, then (2.33) easily implies Sn,n/n converges to zero in probability.

In addition, if Nn,i = pn for n ≥ 1, i ≥ 1, where {pn : n ≥ 1} is a sequence of integers, and pn ≥ n,
then it follows from (2.33) that

||Sn,n||∞
n

= OP (
(Lpn)

2+r
2r

n1/2
). (2.34)

Hence using the above for r ∈ (0, 2), and (2.15) for the case r = 2, one obtains an extension and
clarification of Corollary 2 and its proof in [11]. It is also interesting to observe that the method of
proof for Theorem 4 applied to the r = 2 situation only yields

||Sn,n||∞
n

= OP (
Lpn
n1/2

). (2.35)

Hence we see the methods used for the r = 2 case in Theorem 2 are sharper than those we have for
other values of r.
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Remark 5. If c2 = k/(128c) and c2c3 > 1, then an application of the Borel-Cantelli lemma and
(2.29) implies that, with probability one,

lim sup
n→∞

||Sn,n||∞
(L(E(N∗

n)) + 2Ln)1/rn1/2h(n)
≤ 2/k1/r. (2.36)

Thus, (2.36) implies that ||Sn,n||∞/n converges to 0 with probability one if (L(E(N?
n))

(2+r)
2r /n1/2 →

0. Furthermore, if Nn,i = pn for n ≥ 1, i ≥ 1, where {pn : n ≥ 1} is a sequence of integers and
pn ≥ n, then, with probability one,

lim sup
n→∞

||Sn,n||∞
n1/2(log(n2pn))1/r(c−1

2 logpn + c3 logn)1/2
≤ 2/k1/r (2.37)

provided c2 = k/(128c), and c2c3 > 1. In addition, we easily see from (2.37) that ||Sn,n||∞/n
converges to zero with probability one provided (Lpn)

(2+r)
2r /n1/2 → 0.

Remark 6. Under the assumption of polynomial decay given in Theorem 4, and assuming that
E(N∗

n) is asymptotic to nγ for γ ≥ 1, we easily see from (2.32) that ||Sn,n||∞/n converges to
zero almost surely provided k is sufficiently large so that for β > 0 we have (γ + 1)βk > 1 and
(γ + 1)(1/k + β) < 1/2.

Now we focus on the analogue of Theorem 2 for the case 0 < r < 2. This is more delicate, and
hence we consider random row lengths, but we do not allow random deletions. More precisely, we
study

T̃ n,n =
∑

j≥1

n∑

i=1

ξn,i,jI(j ≤ Nn,i)ej/Vn,j, (2.38)

where Vn,j =
∑n

i=1 I(j ≤ Nn,i).

Theorem 5. Let T̃ n,n be defined as in (2.38) and assume {ξn,i,j : n ≥ 1, i ≥ 1, j ≥ 1} satisfy
(2.1) with 0 < r < 2, and that for 1 ≤ c < ∞, 0 < k < ∞ we have cn.j ≤ c and kn,j ≥ k for
all n, j ≥ 1. Assume further that the support of {Nn,i : i ≥ 1} is a subset of {1, 2, · · · , d(n)} with
P (Nn,1 = d(n)) = qn where qn ≥ n−δ for some δ ∈ [0, 1/4). Let sn = c1(L(E(N∗

n)) + Ln)1/r ,
c1 > 4/k1/r, and

h(n) = sn(
c−1
2 L(E(N∗

n)) + c3Ln

n1−4δ
)1/2, (2.39)

where c2 = k/(128c) and c3 > 0. Then

lim
n→∞

P (
||T̃n,n||∞
h(n)

≥ 1) = 0. (2.40)

Moreover, ∑

n≥1

P (||T̃n,n||∞ ≥ h(n)) < ∞ (2.41)

provided c2c3 > 1.

Remark 7. It follows from (2.40) that

||T̃n,n||∞ = OP (
(L(E(N∗

n)) + Ln)
2+r
2r

n
1−4δ

2

), (2.42)

11



and (2.41) implies that, with probability one,

lim sup
n→∞

||T̃n,n||∞
h(n)

≤ 1. (2.43)

Hence, if limn→∞(L(E(N∗
n)))

2+r
2r /n

1−4δ
2 = 0, then we have ||T̃n,n||∞ tending to zero in probability

and with probability one.

2.2 Asymptotic Normality Results

In this section we present results on the asymptotic normality of the quantity S̃n,n. Since the
estimator typically lives in c0, our first result, Theorem 6, is a central limit theorem in that setting.
Theorem 7 and Remark 11 contain CLT’s in `ρ, 2 ≤ ρ < ∞. These results hold when the underlying
process is a triangular array with random row lengths and possibly missing data. We also are able to
use the coordinate-wise random normalizations Vn,j in Theorems 6 and 7, whereas Remark 11 uses
the classical normalizations and, as result, holds under far weaker moment conditions. The papers
[20] and [21] contain CLT’s in c0, as well as related references, and much is known about the CLT in
the spaces `ρ, 2 ≤ ρ < ∞. However, none of these results incorporate random row lengths, missing
data, or coordinate-wise random normalizations in their formulations. In addition, the results in
[20] and [21] require a uniform boundedness assumption on the {ξn,i,j} to obtain results related to
what we prove.

A key assumption in any central limit theorem is that there is a limiting covariance function.
Since our results include the use of random column-wise normalizers, we have need of a couple
different limiting covariances. That is, if

Γn(j1, j2) =
n∑

i=1

E(ξn,i,j1ξn,i,j2)/n

is such that
lim
n→∞

Γn(j1, j2) = Γ(j1, j2) (2.44)

for all j1, j2 ≥ 1, then for k = 1, 2 we set

Γ(k, j1, j2) = pkΓ(j1, j2), for j1 6= j2, (2.45)

and
Γ(k, j1, j2) = pk−1Γ(j1, j2), for j1 = j2. (2.46)

Theorem 6. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), assume (2.1) holds with r = 2, and that cn,j, kn,j
are constants such that cn,j ≥ 1, kn,j < ∞ and

sup
n,j≥1

cn,j/kn,j < ∞. (2.47)

Also assume for all δ > 0 that

lim
d→∞

sup
n≥1

∑

j≥d

exp{−δkn,j/cn,j} = 0. (2.48)

If S̃n,n is given as in (1.7), then

{L(S̃n,n) : n ≥ 1} is tight in c0. (2.49)
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In addition, if T̃ n,n is as in (1.11), and for each j ≥ 1 we have limn→∞ P (Nn,1 < j) = 0, then
T̃ n,n converges in probability to zero in c0. Moreover, if the V 1/2

n,j are replaced by n1/2 in S̃n,n, then
again (2.49) holds, and T̃ n,n converges in probability to zero. Furthermore, if we also assume (2.44),
(2.45), and (2.46) hold, and for each d < ∞ we have P (min1≤i≤nNn,i < d) = o(1/n2) as n tends to
infinity, then Γ(k, ·, ·) is the covariance of a centered Gaussian measure γk on c0 for k = 1, 2, and

L(S̃n,n) converges weakly to γ1 (2.50)

on c0. If the V 1/2
n,j are replaced by n1/2, then (2.50) still holds with limiting measure γ2.

Remark 8. The conditions (2.44),(2.47), and (2.48), along with (2.1) when r = 2, allows the
limiting Gaussian measures γk to exist on c0. Moreover, without such assumptions, with the most
important being (2.44) and (2.48), there are examples of triangular arrays of the form indicated
when the CLT must fail on c0, although it may hold on R∞. Of course, without (2.44), then the
CLT will fail even on R∞.

Remark 9. If the constants cn,j, kn,j are such that kn,j/(16cn,j) ≥ δjL(j + 3) uniformly in n ≥ 1
for some δj > 0 and limj→∞ δj = ∞, then it is easy to see that (2.48) holds for all δ > 0.

Our next result is a central limit theorem in `ρ, 2 ≤ ρ < ∞. As in Theorem 6, this result holds
when the underlying process is a triangular array with random row lengths and possibly missing
data.

Theorem 7. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2), and assume (2.1) holds with r = 2 and that
cn,j, kn,j are constants such that cn,j ≥ 1, kn,j <∞ and

sup
n,j≥1

cn,j/kn,j < ∞. (2.51)

Also assume for some ρ, 2 ≤ ρ < ∞, we have

lim
d→∞

sup
n≥1

∑

j≥d

(cn,j/kn,j)ρ/2 = 0. (2.52)

If S̃n,n is given as in (1.7), then

{L(S̃n,n) : n ≥ 1} is tight in `ρ. (2.53)

In addition, if T̃ n,n is as in (1.11), and for each j ≥ 1 we have limn→∞ P (Nn,1 < j) = 0, then T̃ n,n

converges in probability to zero in `ρ. Furthermore, if we also assume (2.44), (2.45), and (2.46)
hold, and for each d < ∞ we have P (min1≤i≤nNn,i < d) = o(1/n2) as n tends to infinity, then
Γ(k, ·, ·) is the covariance of a centered Gaussian measure γk on `ρ for k = 1, 2, and

L(S̃n,n) converges weakly to γ1 (2.54)

on `ρ.

Remark 10. If the V 1/2
n,j are replaced by n1/2, then under the conditions of Theorem 7 both (2.53)

and (2.54) hold with limiting measure γ2. We also have T̃ n,n converges in probability to zero in this
situation. This can easily be seen from a simplification of the proof we give for the random normal-
izers V 1/2

n,j and, as one might expect, even more is true. That is, one could apply known sufficient
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conditions for triangular arrays of independent random vectors to satisfy the CLT in `ρ, 2 ≤ ρ < ∞.
Examples of such results and related references can be found in [2], page 206-207. However, in order
to continue in the spirit of this paper, and to phrase our conditions in terms of the random variables
{ξn,i,j} as much as possible, we present an alternative result. It is certainly not best possible, but
instead emphasizes obtaining basic sufficient conditions in terms of the moments of these random
variables. In particular, it replaces (2.1) with r=2, (2.51), and (2.52) by these moment assumptions.

Remark 11. Let {Xn,i : 1 ≤ i ≤ n} be as in (1.2) and assume for some δ > 0 that

sup
n,i,j≥1

E(|ξn,i,j|2+δ) < ∞ (2.55)

and for some ρ, 2 ≤ ρ < ∞,

lim
d→∞

sup
n,i≥1

∑

j≥d

(E(|ξn,i,j|ρ))2/ρ = 0. (2.56)

If Sn,n is given as in (1.6), then

{L(
Sn,n

n1/2
) : n ≥ 1} is tight in `ρ. (2.57)

Furthermore, if we also assume (2.44), (2.45), and (2.46) hold, and for each d < ∞ we have
P (min1≤i≤nNn,i < d) = o(1/n2) as n tends to infinity, then Γ(2, ·, ·) is the covariance of a centered
Gaussian measure γk on `ρ , and

L(
Sn,n

n1/2
) converges weakly to γ2 (2.58)

on `ρ.

Remark 12. The conditions in (2.55) and (2.56) follow from tail conditions of polynomial type.
Hence they require far less than (2.1) with r = 2, but in contrast, it is also easy to see that (2.52),
and also (2.56), are much more restrictive than the analogue in the c0 setting given in (2.48)

3 Some Probability Estimates

Here we provide some basic probability estimates used throughout the paper. The first lemma deals
with the sub-Gaussian situation, and the inequality we present for bounded random variables is not
best possible, as slightly better constants in the basic estimate can be obtained from Theorem 1 in
[9]. Nevertheless, we include a proof for this case, as our argument generalizes to the unbounded case.
Our approach is to compute the necessary Laplace transforms, and then use Markov’s inequality
efficiently. This is standard for such problems, but in order to proceed from first principles, and also
keep track of relevant constants, we include the details.

Lemma 1. Let X1, · · · , Xn be independent random variables with E(Xi) = 0. If P (Xi ∈ [a, b]) = 1
for 1 ≤ i ≤ n, then

P (|
n∑

i=1

Xi|/n ≥ x) ≤ 2 exp{−nx2(2(b− a)2)−1} (3.1)

for all x ≥ 0. In particular, when n = 1 each Xi is sub-Gaussian with relevant constants c = 2 and
k = (2(b− a)2)−1. If

P (|Xi| ≥ x) ≤ ce−kx
2

(3.2)
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for 1 ≤ i ≤ n and all x ≥ 0, then

P (|
n∑

i=1

Xi|/n ≥ x) ≤ 2 exp{−nkx2/(16c)} (3.3)

for all x ≥ 0.

Proof. First observe that if Y is a mean zero random variable, then Jensen’s inequality implies
E(etY ) ≥ etE(Y ) = 1 for all real t. Thus for Y1, Y2 independent copies of Y we have E((Y1−Y2)l) = 0
for l odd, and therefore

E(etY ) ≤ E(etY1)E(e−tY2) = E(et(Y1−Y2)) = 1 +
∑

l≥1

t2lE((Y1 − Y2)2l)/(2l)!. (3.4)

If P (Xi ∈ [a, b]) = 1 for 1 ≤ i ≤ n then E((Y1 − Y2)2l) ≤ (b− a)2l and since (2l)! ≥ 2l(l!)2 for l ≥ 1
we therefore have

E(etY ) ≤ 1 +
∑

l≥1

t2l(b− a)2l/(2ll!) = et
2(b−a)2/2.

Applying this estimate to each of the X ′
is for 1 ≤ i ≤ n, the independence of the X ′

is and Markov’s
inequality implies that for each t ≥ 0 we have

P (
n∑

i=1

Xi/n ≥ x) ≤ e−ntx
n∏

i=1

E(etXi ) ≤ e−n(tx−t2(b−a)2/2).

Since x ≥ 0, minimizing the right hand term over t ≥ 0 we take t = x/(b− a)2, and hence

P (
n∑

i=1

Xi/n ≥ x) ≤ e−nx
2/(2(b−a)2)

Applying the previous argument to −
∑n

i=1Xi we thus have (3.1).
To prove (3.3), we first show that if E(Y ) = 0 and

P (|Y | ≥ x) ≤ ce−kx
2

(3.5)

holds for all x ≥ 0, then
E(etY ) ≤ e4ct

2/k (3.6)

for all t ≥ 0.
To verify (3.6) let Y1, Y2 be independent copies of Y. Then

E((Y1 − Y2)2l) =
∫ ∞

0

P ((Y1 − Y2)2l ≥ x)dx =
∫ ∞

0

P (|Y1 − Y2| ≥ x1/(2l))dx,

and since P (|Y1 − Y2| ≥ x) ≤ 2P (|Y1| ≥ x/2), we thus have

E((Y1 − Y2)2l) ≤ 2
∫ ∞

0

P (|Y1| ≥ 2−1x1/(2l))dx ≤ 2c
∫ ∞

0

e−4−1kx(1/l)
dx.

Taking s = 4−1kx1/l in this last integral, and recalling that c ≥ 1 in (3.5), we have

E((Y1 − Y2)2l) ≤ 2c(4/k)ll
∫ ∞

0

e−ssl−1ds = 2c(4/k)ll! ≤ (8c/k)ll!.
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Thus for all real t we have

E(etY ) ≤ 1 +
∑

l≥1

(t2)ll!(8c/k)l/(2l)! ≤ e4ct
2/k.

Applying the previous inequality, independence, and Markov’s inequality as before, we have for all
x, t ≥ 0 that

P (
n∑

i=1

Xi ≥ nx) ≤ exp{−n(tx− 4ct2/k)}.

Minimizing the right hand side over t ≥ 0 we take t = xk/(8c) and hence

P (
n∑

i=1

Xi ≥ nx) ≤ exp{−nkx2/(16c)}.

Applying the previous argument to −
∑n

i−1Xi, we thus have (3.3), and the lemma is proven.
The next two lemmas apply Lemma 1 to provide probability estimates in the sup-norm.

Lemma 2. Let {Xn,i : 1 ≤ i ≤ n} be defined as in (1.2), and assume (2.1) holds for r = 2, and the
constants cn,j, kn,j are such that 1 ≤ cn,j and 0 < kn,j ≤ ∞. If Qd(x) =

∑
j≥d+1 xjej for x ∈ R∞,

and S̃n,n is given as in (1.7), then for all d ≥ 0 and δ > 0

P (||Qd(S̃n,n)||∞ ≥ δ) ≤
∑

j≥d+1

2 exp{−δ2kn,j/(16cn,j)}. (3.7)

In addition, if the Vn,j are replaced by n1/2 in S̃n,n, then again (3.7) holds.

Proof. We first establish (3.7) for general Vn,j. When the Vn,j are replaced by n1/2, the result
then follows by an immediate simplification of this argument.

If θn,i,j = I(j ≤ Nn,i)Rn,i,j as indicated, then P (θn,i,j = 1) = pn,jp, where pn,j = P (j ≤ Nn,i)
for n ≥ 1, j ≥ 1, and for k = 0, 1, · · · , n we define the events

Ek,n,j = ∪I∈Ik,n,jFI , (3.8)

where Ik,n,j denotes all subsets I = {i1, · · · , ik} of size k in {1, · · · , n} and

FI = {θn,i,j = 1 for all i ∈ I and θn,i,j = 0 for i ∈ {1, · · · , n} ∩ Ic}.

Note that FI depends on n and j, but we suppress that in our notation.
Since Vn,j = max{1,

∑n
i=1 θn,i,j} and

∑n
i=1 ξn,i,jθn,i,j = 0 on E0,n,j, we therefore have for each

δ > 0, n ≥ 1, and d ≥ 0 that

P (||Qd(S̃n,n)||∞ ≥ δ) ≤
∑

j≥d+1

n∑

k=1

P ({|
n∑

i=1

ξn,i,jθn,i,j| ≥ δV
1/2
n,j } ∩Ek,n,j).

Now

P ({|
n∑

i=1

ξn,i,jθn,i,j| ≥ δV
1/2
n,j } ∩Ek,n,j) =

∑

I∈Ik,n,j

P ({|
k∑

l=1

ξn,il,j| ≥ δk1/2} ∩ FI , I = {i1, · · · , ik}),

and letting

An =
∑

j≥d+1

n∑

k=1

P ({|
n∑

i=1

ξn,i,jθn,i,j| ≥ δV
1/2
n,j } ∩Ek,n,j),
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we have by using the independence of the various sequences of random variables involved that

An =
∑

j≥d+1

n∑

k=1

∑

I∈Ik.n,j

P ({|
k∑

l=1

ξn,il,j | ≥ δk1/2})P (FI, I = {i1, . . . , ik})

≤ 2
∑

j≥d+1

n∑

k=1

exp{−δ2kn,j/16cn,j}P (Ek,n,j).

Of course, in the previous inequality we are applying (3.3) of Lemma 1 to estimate P ({|
∑k
l=1 ξn,il,j| ≥

δk1/2}). Thus we have

P (||Qd(S̃n,n)||∞ ≥ δ) ≤
∑

j≥d+1

2 exp{−δ2kn,j/(16cn,j)},

which proves (3.7) for general Vn,j.
When the V 1/2

n,j are replaced by n1/2, the proof is immediate since the random variables {ξn,i,jθn,i,j :
n ≥ 1, i ≥ 1, j ≥ 1} also satisfy (2.1), and hence one can apply (3.3) of Lemma 1 immediately to
obtain (3.7). Hence the lemma is proven.

In order that the probability estimate in the previous lemma be useful kn,j/cn,j must be un-
bounded as j tends to infinity. Our next task is to see what happens if we remove this assumption,
and only ask that this ratio is uniformly bounded below by a strictly positive constant. This is the
content of our next lemma, which is a modification of Lemma 2.

Lemma 3. Let {Xn,i : 1 ≤ i ≤ n} be defined as in (1.2), and assume (2.1) holds for r = 2, and the
constants cn,j, kn,j are such that 1 ≤ cn,j ≤ c < ∞ and 0 < k ≤ kn,j ≤ ∞. If S̃n,n is given as in
(1.7), and N∗

n = max1≤i≤nNn,i, then

P (||S̃n,n)||∞ ≥ x) ≤ 2E(N∗
n) exp{−kx

2

16c
}. (3.9)

In addition, if the Vn,j are replaced by n1/2 in S̃n,n, then again (3.9) holds.

Remark 13. If Nn,i = pn for {i ≥ 1, n ≥ 1}, then (3.9) immediately implies

P (||S̃n,n||∞ ≥ x) ≤ 2pn exp{−kx
2

16c
}, (3.10)

and if the V 1/2
n,j are replaced by n1/2 in S̃n,n, then again (3.10) holds.

Proof of Lemma 3. Following the proof of Lemma 2 we observe that if θn,i,j = I(j ≤
Nn,i)Rn,i,j, then P (θn,i,j = 1) = pn,jp, where pn,j = P (j ≤ Nn,i) for n ≥ 1, j ≥ 1, and for
m = 0, 1, · · · , n we define the events

Em,n,j = ∪I∈Im,n,jFI ,

where Im,n,j denotes all subsets I = {i1, · · · , im} of size m in {1, · · · , n} and

FI = {θn,i,j = 1 for all i ∈ I and θn,i,j = 0 for i ∈ {1, · · · , n} ∩ Ic}.

Recall Vn,j = max{1,
∑n
i=1 θn,i,j} and observe that

∑n
i=1 ξn,i,jθn,i,j = 0 on E0,n,j. Hence for

each x > 0, n ≥ 1,

P (||S̃n,n||∞ ≥ x) ≤
∑

u≥1

u∑

j=1

n∑

m=1

P ({|
n∑

i=1

ξn,i,jθn,i,j| ≥ xV
1/2
n,j } ∩Em,n,j ∩ {N∗

n = u}).
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Now

P ({|
n∑

i=1

ξn,i,jθn,i,j| ≥ xV
1/2
n,j }∩Em,n,j∩{N

∗
n = u}) =

∑

I∈Im,n,j

P ({|
m∑

l=1

ξn,il,j | ≥ xm1/2}∩FI∩{N∗
n = u}},

and letting

An =
∑

u≥1

u∑

j=1

n∑

m=1

P ({|
n∑

i=1

ξn,i,jθn,i,j| ≥ xV
1/2
n,j } ∩Em,n,j ∩ {N∗

n = u}),

we have by using the independence of the various sequences of random variables involved and (3.3)
of Lemma 1 that

An =
∑

u≥1

u∑

j=1

n∑

m=1

∑

I∈Im.n,j

P ({|
m∑

l=1

ξn,il,j| ≥ xm1/2})P ({FI, I = {i1, . . . , im}} ∩ {N∗
n = u})

≤ 2
∑

u≥1

u∑

j=1

n∑

m=1

exp{−x2kn,j/16cn,j}P (Em,n,j ∩ {N∗
n = u}).

Thus we have

P (||S̃n,n||∞ ≥ x) ≤ 2
∑

u≥1

u∑

j=1

exp{−x2kn,j/(16cn,j)}P (N∗
n = u) (3.11)

≤ 2
∑

u≥1

u∑

j=1

exp{−x2k/(16c)}P (N∗
n = u),

where the last inequality follows since cn,j ≤ c and kn,j ≥ k for all n, j ≥ 1. Hence this implies

P (||S̃n,n||∞ ≥ x ≤ 2E(N∗
n) exp{−x2k/(16c)}. (3.12)

Therefore (3.9) holds, and when the V 1/2
n,j are replaced by n1/2, the proof follows from the ideas

used in the general case. That is, by following the previous argument one obtains the analogue of
An to be

An =
∑

u≥1

u∑

j=1

n∑

m=1

∑

I∈Im.n,j

P ({|
m∑

l=1

ξn,il,j| ≥ xn1/2})P ({FI, I = {i1, . . . , im}} ∩ {N∗
n = u}).

Hence by applying (3.3) of Lemma 1 we have

An ≤ 2
∑

u≥1

u∑

j=1

n∑

m=1

exp{−x2kn,jn/(16mcn,j)}P (Em,n,j ∩ {N∗
n = u})

≤ 2
∑

u≥1

u∑

j=1

n∑

m=1

exp{−x2k/(16c)}P (Em,n,j ∩ {N∗
n = u}),

where the last inequality holds since n ≥ m, cn,j ≤ c, and kn,j ≥ k here. Therefore we again have

P (||S̃n,n||∞ ≥ x) ≤ 2E(N∗
n) exp{−x2k/(16c)}

when the V 1/2
n,j are replaced by n1/2, and the lemma is proven.

18



Next we turn to a method which will allow us to handle a broader collection of random variables.
Here the {ξn,i,j} satisfy (2.1) with r ∈ (0, 2), or the less restrictive conditions of polynomial decay
given in (2.4). Of course, the results depend on the rate of decay of the tails of the {ξn,i,j}, but
under a variety of assumptions we are able to obtain further consistency results in this setting. The
relevant probability inequalities are obtained in our next lemma, and can be viewed as a substitute
for those in Lemma 1.

Lemma 4. For each integer n ≥ 1 let X1, · · · , Xn be independent, mean zero random variables,
such that for some r ∈ (0, 2) we have

P (|Xi| ≥ x) ≤ ce−kx
r

(3.13)

for 1 ≤ i ≤ n and all x ≥ 0. Then for all x ≥
√

8Mc,k,r/
√
n and all s ≥ 0

P (|
n∑

i=1

Xi| ≥ nx) ≤ 4 exp{− nx2

32s2
} + 4cn exp{−ks

r

2r
}, (3.14)

where M2
c,k,r =

∫ ∞
0
ce−kx

r/2
dx < ∞. In addition, for all x ≥

√
8Mc,k,r/

√
n and all s ≥ 1, we also

have

P (|
n∑

i=1

Xi| ≥ nx) ≤ 4 exp{− nkx2

128cs2
} + 4cn exp{−ks

r

2r
}. (3.15)

Moreover, if for some c > 0 and k > 2, (3.13) is replaced by

P (|Xi| ≥ x) ≤ c

(1 + x)k
(3.16)

for 1 ≤ i ≤ n and all x ≥ 0, then for all x ≥
√

8Mc,k/
√
n and all s ≥ 0

P (|
n∑

i=1

Xi| ≥ nx) ≤ 4 exp{− nx2

32s2
} +

22+kcn

(2 + s)k
, (3.17)

where M2
c,k =

∫ ∞
0

c
(1+t1/2)k dt < ∞.

Remark 14. If we take s = n
1

2+r x
2

2+r then for x ≥
√

8Mc,k,r/
√
n we have that (3.14) implies

P (|
n∑

i=1

Xi| ≥ nx) ≤ 4 exp{−n
r

2+r x
2r

2+r

32
} + 4cn exp{−kn

r
2+r x

2r
2+r

2r
},

which makes the exponents on the right of comparable size. Since the proof of (3.14) and (3.15) also
implies (3.14) and (3.15) when r = 2, it is interesting to note that the previous inequality is not as
sharp as that in (3.3) in Lemma 1 when r = 2.

Remark 15. If the median of each Xi is zero, then (3.14) and (3.15) hold for all x ≥ 0 and s ≥ 0.
That is, when the medians are zero the key inequality (3.20) below follows directly from (5.8) in [6],
page 147, without restrictions on x. A similar remark holds for (3.15) provided s ≥ 1.

Proof of Lemma 4. First we observe that for r fixed, uniformly in i, 1 ≤ i ≤ n, (3.13) implies

E(X2
i ) =

∫ ∞

0

P (|Xi| > t1/2)dt ≤ M2
c,k,r < ∞.
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Hence if x ≥
√

8Mc,k,r/
√
n we have by Cheyshev’s inequality that

P (|
n∑

i=1

Xi| ≥ nx/2) ≤ 4
n∑

i=1

E(X2
i )/(n2x2) ≤ 1/2. (3.18)

Now let Y1, · · · , Yn be an independent copy of X1, · · · , Xn and observe that

P (|
n∑

i=1

Xi| ≥ nx)P (|
n∑

i=1

Yi| ≤ nx/2) ≤ P (|
n∑

i=1

(Xi − Yi)| ≥ nx/2). (3.19)

Then for all x ≥
√

8Mc,k,r/
√
n, (3.18) and (3.19) combine to imply

P (|
n∑

i=1

Xi| ≥ nx) ≤ 2P (|
n∑

i=1

(Xi − Yi)| ≥ nx/2). (3.20)

Taking s ≥ 0 we define (Xi − Yi)s = (Xi − Yi)I(|Xi − Yi| ≤ s). Then

P (|
n∑

i=1

(Xi − Yi)| ≥ nx/2) ≤ In(s, x) + IIn(s, x) (3.21)

where

In(s, x) = P (|
n∑

i=1

(Xi − Yi)s| ≥ nx/2)

and
IIn(s, x) = P ( max

1≤i≤n
|(Xi − Yi) − (Xi − Yi)s| > 0).

Applying (3.1) of Lemma 1 to (X1 − Y1)s, · · · , (Xn − Yn)s we see that

In(s, x) ≤ 2 exp{−n(x/2)2(2(2s)2)−1}, (3.22)

and (3.13) implies

IIn(s, x) ≤
n∑

i=1

P (|Xi − Yi| > s) ≤ 2
n∑

i=1

P (|Xi| > s/2) ≤ 2cn exp{−ks
r

2r
}. (3.23)

Applying (3.20),(3.21),(3.22), and (3.23) we thus have

P (|
n∑

i=1

Xi| ≥ nx) ≤ 4 exp{− nx2

32s2
} + 4cn exp{−ks

r

2r
}. (3.24)

Thus (3.14) of Lemma 4 is proved.
The proof of (3.15) follows that for (3.14) up to the point we apply (3.1) of Lemma 1 to In(s, x) in

(3.22). At this point we now apply (3.3) of Lemma 1 to the random variables (X1 −Y1)s, · · · , (Xn−
Yn)s. That is, (3.13) implies that for all x ≥ 0 and 1 ≤ i ≤ n that

P (|(Xi − Yi)s| ≥ x) ≤ P (|Xs
i | ≥ x/2) + P (|Y si | ≥ x/2) ≤ 2ce−

kx2

4s2 ,

where the last inequality follows since xr/2r ≥ x2/(4s2) when 0 ≤ x ≤ 2s, 0 < r < 2, and s ≥ 1.
Hence by (3.3) of Lemma 1, with k replaced by k/(4s2) and c by 2c, we obtain

In(s, x) ≤ 2 exp{−nkx2/(128cs2)}. (3.25)
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Now combining (3.25) and the estimate for IIn(s, x) in (3.23) to (3.20) and (3.21), we obtain (3.15).
Next we observe that uniformly in i, 1 ≤ i ≤ n, (3.16) and k > 2 implies

E(X2
i ) =

∫ ∞

0

P (|Xi| > t1/2)dt ≤
∫ ∞

0

c

(1 + t1/2)k
dt < ∞.

Hence if we choose x ≥
√

8Mc,k,/
√
n we have by Cheyshev’s inequality that

P (|
n∑

i=1

Xi| ≥ nx/2) ≤ 4
n∑

i=1

E(X2
i )/(n2x2) ≤ 1/2. (3.26)

Now let Y1, · · · , Yn be an independent copy of X1, · · · , Xn and observe that

P (|
n∑

i=1

Xi| ≥ nx)P (|
n∑

i=1

Yi| ≤ nx/2) ≤ P (|
n∑

i=1

(Xi − Yi)| ≥ nx/2). (3.27)

Then for all x ≥
√

8Mc,k,/
√
n, (3.26) and (3.27) combine to imply

P (|
n∑

i=1

Xi| ≥ nx) ≤ 2P (|
n∑

i=1

(Xi − Yi)| ≥ nx/2), (3.28)

Taking s ≥ 0 we define (Xi − Yi)s = (Xi − Yi)I(|Xi − Yi| ≤ s). Then

P (|
n∑

i=1

(Xi − Yi)| ≥ nx/2) ≤ In(s, x) + IIn(s, x) (3.29)

where

In(s, x) = P (|
n∑

i=1

(Xi − Yi)s| ≥ nx/2)

and
IIn(s, x) = P ( max

1≤i≤n
|(Xi − Yi) − (Xi − Yi)s| > 0).

Applying (3.1) of Lemma 1 to (X1 − Y1)s, · · · , (Xn − Yn)s we see that

In(s, x) ≤ 2 exp{−n(x/2)2(2(2s)2)−1}, (3.30)

and (3.15) implies

IIn(s, x) ≤
n∑

i=1

P (|Xi − Yi| > s) ≤ 2
n∑

i=1

P (|Xi| > s/2) ≤ 2cn
(1 + s/2)k

. (3.31)

Applying (3.28),(3.29), (3.30), and (3.31) we thus have

P (|
n∑

i=1

Xi| ≥ nx) ≤ 4 exp{− nx2

32s2
} +

22+kcn

(2 + s)k
. (3.32)

Thus Lemma 4 is proven.
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4 Proofs of Consistency Results

4.1 Proof of Theorem 1

Applying Lemma 2 with d = 0, we have for all x > 0 and each integer n ≥ 1 that

P (||S̃n,n||∞ ≥ x) ≤
∑

j≥1

2 exp{−x2kn,j/(16cn,j)}. (4.1)

Taking x = εan in (4.1) and applying (2.5), we thus have (2.6) for general V 1/2
n,j , and also when the

V
1/2
n,j are replaced by n1/2.

If the constants cn,j and kn,j satisfy (2.7) as indicated, then with an = (L(n+3))1/2 and x = εan

in (4.1) we have

P (||S̃n,n||∞ ≥ ε(L(n+ 3))1/2) ≤
∑

j≥1

2 exp{−ε2δL(n+ 3)L(j + 3)} = 2
∑

j≥1

(j + 3)−ε
2δL(n+3). (4.2)

Thus for ε2δ > 1

∑

n≥1

P (||S̃n,n||∞ ≥ ε(L(n + 3))1/2) ≤ 2
∑

n≥1

∫ ∞

3

x−ε
2δL(n+3)dx ≤ 2

∑

n≥1

3−L(n+3)−1

(L(n+ 3) − 1)
< ∞, (4.3)

and hence (2.8) holds for general Vn,j. In particular, we then have from (4.3) that (2.9) is immediate,
and it remains to show E(eαM

2
) < ∞ for all α > 0 sufficiently small. Now

E(eαM
2
) =

∫ ∞

0

P (eαM
2
> t)dt ≤ 3 +

∫ ∞

3

P (M > (
log t
α

)1/2)dt,

and ∫ ∞

3

P (M > (
log t
α

)1/2)dt ≤
∑

n≥1

∫ ∞

3

P (||S̃n,n||∞ ≥ (L(n+ 3))1/2(
log t
α

)1/2)dt

≤ 2
∑

n≥1

∑

j≥1

∫ ∞

3

exp{−δL(j + 3)L(n + 3)
log t
α

}dt,

where the last inequality follows from (4.1) and that (2.7) holds. Therefore, for α < δ/2 we have

E(eαM
2
) ≤ 3 + 2

∑

n≥1

∑

j≥1

∫ ∞

3

exp{−2L(j + 3)L(n+ 3) log t}dt

= 3 + 6
∑

n≥1

∑

j≥1

exp{−2 log3L(j + 3)L(n+ 3)}
2L(j + 3)L(n+ 3) − 1

.

Now x, y ≥ 1 + η for some η > 0 implies xy ≥ (x + y)(1 + η)/2 and hence since j, n ≥ 1 implies
L(j + 3), L(n+ 3) ≥ L4 ≥ 1 + η for η = L4 − 1 > 0 we have

E(eαM
2
) ≤ 3 + 6

∑

n≥1

∑

j≥1

exp{−(1 + η) log 3(L(j + 3) + L(n+ 3))}
2L(j + 3)L(n + 3) − 1

< ∞

since (1 + η) log 3 > 1. Since (4.1) holds when the V 1/2
n,j are replaced by n1/2, the proof also holds in

this situation. Thus Theorem 1 is proven.
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4.2 Proof of Theorem 2

Under our assumptions, Lemma 3 with x = h(n) implies that

P (||S̃n,n||∞ ≥ h(n)) ≤ 2E(N∗
n) exp{−kh(n)2

16c
}.

Since x = h(n) = (θ−1
1 L(E(N∗

n)) + θ2Ln)1/2, θ1 = k/(16c) and θ2 > 0 we have

P (||S̃n,n||∞ ≥ h(n)) ≤ 2L(E(N∗
n)) exp{−L(E(N∗

n)) − θ1θ2Ln}.

Since θ1 > 0 we thus have (2.13) if θ2 > 0, and (2.14) follows immediately provided θ1θ2 > 1. Since
the above holds for general V 1/2

n,j , and also the n1/2 normalizations, Theorem 2 is proven

4.3 Proof of Theorem 3

Since E(ξi,j) = 0 for all i, j ≥ 1, Theorem 3 will follow from Theorem 3.1 of [12] with B = `∞, with
the usual sup-norm, provided we show (a)P (Xi ∈ `∞) = 1 for all i ≥ 1, (b) supi≥1E(eα||Xi||2∞) < ∞
for some α > 0, and (c) Sn/n1/2 is bounded in probability with respect to the sup-norm.

Now
||Xi||2∞ = sup

j≥1
|ξi,j|2,

where (2.26) holds uniformly in i, j. Thus

P (||Xi||2∞ > t) ≤
∑

j≥1

P (|ξi,j|2 > t) ≤
∑

j≥1

cje
−kjt ≤

∑

j≥1

kj
16δL(j + 3)

e−kj t,

since kj/(16cj) ≥ δL(j + 3). Hence

E(eα||Xi||2∞) ≤ 3 +
∫ ∞

3

P (eα||Xi||2∞ > t)dt ≤ 3 +
∑

j≥1

kj
16δL(j + 3)

∫ ∞

3

e−kj log t/αdt,

where kj ≥ 16δL(j+3) since cj ≥ 1. Taking α > 0 sufficiently small so that kj/α−1 > kj/(2α) > 1,
we then have

E(eα||Xi||2∞ ) ≤ 3 +
∑

j≥1

kj
16δL(j + 3)

∫ ∞

3

t−kj/αdt

= 3 +
∑

j≥1

kj
16δL(j + 3)

3−kj/α+1

(kj/α− 1)

≤ 3 + 3
∑

j≥1

2α
16δL(j + 3)

3−kj/α < ∞.

Thus (a) and (b) above hold, and it remains to verify (c).
Now

P (||Sn||∞/n1/2 ≥ x) ≤
∑

j≥1

P (|
n∑

i=1

ξi,j| ≥ xn1/2) ≤ 2
∑

j≥1

exp{−kjx2/(16cj)}

for all x ≥ 0, where the last inequality follows from Lemma 1. Since we have kj/(16cj) ≥ δL(j + 3)
for some δ > 0, it follows that

P (||Sn||∞/n1/2 ≥ x) ≤
∑

j≥1

exp{−δL(j + 3)x2} =
∑

j≥1

(j + 3)−δx
2
,
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and hence

P (||Sn||∞/n1/2 ≥ x) ≤
∫ ∞

0

(t + 3)−δx
2
dt = 2

3−δx
2+1

δx2 − 1
≤ ε,

provided x ≥ βε,δ. Thus (c) above holds, and Theorem 3.1 of [12] therefore implies (2.29). Hence
Theorem 3 holds.

4.4 Proof of Theorem 4

First observe that for all x ≥ 0 that

P (||Sn,n||∞ ≥ nx) = P ( max
1≤j≤N∗

n

|
n∑

i=1

ξn,i,jθn,i,j| ≥ nx)

= P (
N∗

n⋃

j=1

{|
n∑

i=1

ξn,i,jθn,i,j)| ≥ nx}). (4.4)

Letting b = (b1, · · · , bn), where bi is a positive integer for 1 ≤ i ≤ n, and setting En,b = {Nn,1 =
b1, · · · , Nn,n = bn} we thus have

P (||Sn,n||∞ ≥ nx) =
∑

(b1,··· ,bn)

P (
max(b1,··· ,bn)⋃

j=1

{|
n∑

i=1

ξn,i,jθn,i,j| ≥ nx}|En,b)P (En,b)

≤
∑

(b1,··· ,bn)

max(b1,··· ,bn)∑

j=1

P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ nx|En,b)P (En,b). (4.5)

Fixing n and j, and defining Xi = ξn,i,jθn,i,jI(j ≤ bi) for 1 ≤ i ≤ n, we see X1, · · · , Xn are
independent random variables, and it is easy to check from our assumptions on cn,j and kn,j, and
(2.1), that for all x ≥ 0

P (|Xi| ≥ x) ≤ ce−kx
r

.

Therefore X1, · · · , Xn satisfy the conditions in Lemma 4 and using the independence of the sequences
{ξn,i,j}, {Rn,i,j}, and {Nn,i} we have for x ≥

√
8Mc,k,r/

√
n and s ≥ 1 that (3.15) implies

P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ nx|En,b) = P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ nx)

≤ 4 exp{−nkx2/(128cs2)} + 4cn exp{−ks
r

2r
}, (4.6)

which combined with (4.5) implies

P (||Sn,n||∞ ≥ nx) ≤ 4
∑

(b1,··· ,bn)

max(b1,··· ,bn)∑

j=1

[exp{−nkx2/(128cs2)} + cn exp{−
ksr

2r
}]P (En,b) (4.7)

= 4E(N∗
n)[exp{−nkx2/(128cs2)} + cn exp{−ks

r

2r
}].

Recalling h(n) = (c−1
2 L(E(N∗

n)) + c3Ln)1/2 and taking s = sn = c1(L(E(N∗
n)) + 2Ln)1/r and

x = xn = sn{c−1
2 L(E(N∗

n)) + c3Ln}1/2/n1/2 in (4.7), then for all sufficiently large n we have
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x ≥
√

8Mc,k,r/
√
n, s ≥ 1, and (4.7) holds. Thus (2.28) holds if c1 > 2/k1/r and c3 > 0, and (2.29)

follows if we also have c2c3 > 1. Thus Theorem 4 is proven when (2.1) holds and 0 < r < 2.
We now turn to the situation where there is only polynomial decay in the tails of the data ξn,i,j

as in (2.4), where cn,j ≤ c and kn,j ≥ k for all n ≥ 1, j ≥ 1 and 1 ≤ c < ∞, 2 < k < ∞. Then
the random variables ξn,i,jθn,i,j are also easily seen to satisfy (2.4), and arguing as in (4.4-4.7), and
applying (3.17)), we have for s ≥ 0 and x ≥

√
8Mc,k/n

1/2 that

P (||Sn,n||∞ ≥ nx) ≤ 4E(N∗
n)[exp{− nx2

32s2
} +

2kcn
(2 + s)k

]. (4.8)

Taking s = sn = (nE(N∗
n))

1
k +β , β > 0, and x = xn = bsn(LE(N∗

n))1/2/n1/2, then for all n
sufficiently large

P (||Sn,n||∞ ≥ bn1/2sn(LE(N∗
n))1/2) ≤ 4E(N∗

n)[exp{− b2

32
L(E(N∗

n))} +
2kcn

(2 + (nE(N∗
n))

1
k +β)k

].

Thus (2.30) holds when β > 0 by taking b large. Moreover, (2.31) holds if b ≥ 8 and kβ > 1/2, and
(2.32) holds when if b > 8 and βk(γ + 1) > 1. Thus Theorem 4 is proven.

4.5 Proof of Theorem 5

If δ = 0, then Nn,i = d(n) for i ≥ 1, and since p = 1 it is easy to check that T̃n,n = Sn,n/n. Hence
the result follows from what has been proven previously in Theorem 4, and we need only prove the
result when 0 < δ < 1/4. However, when comparing Theorems 4 and 5, be careful to notice that
h(n) is used differently in these results.

Let T̃n,n be defined by (2.38) and let λn equal the number of Nn,i, 1 ≤ i ≤ n, that are equal to
N∗
n = max1≤i≤nNn,i. Then

P (||T̃n,n||∞ ≥ x) =
n∑

ρ=1

P (||T̃n,n||∞ ≥ x, λn = ρ) ≤ In + IIn, (4.9)

where

In =
m(n)∑

ρ=1

P (λn = ρ), (4.10)

and

IIn =
n∑

ρ=m(n)+1

P (||T̃n,n||∞ ≥ x, λn = ρ). (4.11)

In order to estimate In we observe that

P (λn = ρ) = Cn,ρP (Nn,n−ρ+1 = · · · = Nn,n > max
1≤i≤n−ρ

Nn,i),

where Cn,ρ = n!/((n − ρ)!ρ!). Therefore, since the Nn,i, 1 ≤ i ≤ n, are i.i.d and their range is in
{1, 2, · · · , d(n)}, with P (Nn,1 = d(n)) = qn > 0, we have

P (λn = ρ) =
d(n)∑

j=2

Cn,ρP ( max
1≤i≤n−ρ

Nn,i < j)P (Nn,n−ρ+1 = · · · = Nn,n = j)
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≤ Cn,ρ(1 − qn)n−ρ
d(n)∑

j=2

P (Nn,1 = j)ρ ≤ Cn,ρ(1 − qn)n−ρ.

Thus
P (λn = ρ) ≤ nρ exp{−(n− ρ)qn},

and hence
In ≤ m(n)nm(n) exp{−(n−m(n))qn}. (4.12)

To estimate IIn we observe by (2.38) that

P (||T̃n,n||∞ ≥ x) = P ( max
1≤j≤N∗

n

|
n∑

i=1

ξn,i,jI(j ≤ Nn,i)| ≥ Vn,jx)

= P (
N∗

n⋃

j=1

{|
n∑

i=1

ξn,i,jI(j ≤ Nn,i)| ≥ Vn,jx}).

Letting b = (b1, · · · , bn), where bi is a positive integer for 1 ≤ i ≤ n, and setting En,b,ρ = {Nn,1 =
b1, · · · , Nn,n = bn, λn = ρ} we thus have

P (||T̃n,n||∞ ≥ x, λn = ρ) =
∑

(b1,··· ,bn)∈Bn,ρ

P (
max(b1,··· ,bn)⋃

j=1

{|
n∑

i=1

ξn,i,jI(j ≤ Nn,i)| ≥ Vn,jx}|En,b,ρ)P (En,b,ρ)

≤
∑

(b1,··· ,bn)∈Bn,ρ

max(b1,··· ,bn)∑

j=1

P (|
n∑

i=1

ξn,i,jI(j ≤ Nn,i)| ≥ Vn,jx|En,b,ρ)P (En,b,ρ),

(4.13)
where Bn,ρ = {(b1, · · · , bn) : there are exactly ρ largest b′is}. Now if λn = ρ, then Vn,j ≥ ρ for
1 ≤ j ≤ N∗

n, and for n, j fixed, the random variables {ξn,i,jI(j ≤ Nn,i) : 1 ≤ i ≤ n} satisfy the
conditions in Lemma 4 with 0 < r < 2. Hence with x in (3.15) replaced by xVn,j/n, we have

P (|
n∑

i=1

ξn,i,jI(j ≤ Nn,i)| ≥ xVn,j|En,b,ρ) = P (|
n∑

i=1

ξn,i,jI(j ≤ Nn,i)| ≥ n(xVn,j/n)|En,b,ρ) (4.14)

≤ 4[exp{−
kx2V 2

n,j

128cns2
} + cn exp{−ks

r

2r
}]

≤ 4[exp{−
kx2ρ2

128cns2
} + cn exp{−

ksr

2r
}],

provided Vn,j ≥ ρ, s ≥ 1, and xVn,j/n ≥
√

8Mc,k,r/
√
n.

Combining (4.14) with (4.13) we have

P (||T̃n,n||∞ ≥ x, λn = ρ) ≤ 4
∑

(b1,··· ,bn)∈Bn,ρ

max(b1,··· ,bn)∑

j=1

[exp{− kx2ρ2

128cns2
} + cn exp{−ks

r

2r
}]P (En,b,ρ)

≤ 4
∑

(b1,··· ,bn)

max(b1,··· ,bn)∑

j=1

[exp{−
kx2ρ2

128cns2
} + cn exp{−

ksr

2r
}]P (En,b,ρ) (4.15)

= 4E(N∗
n|λn = ρ)[exp{− kx2ρ2

128cns2
} + cn exp{−ks

r

2r
}]P (λn = ρ).
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Hence

IIn ≤ 4
n∑

ρ=m(n)+1

E(N∗
n |λn = ρ)[exp{− kx2ρ2

128cns2
} + cn exp{−ks

r

2r
}]P (λn = ρ) (4.16)

≤ 4E(N∗
n)[exp{−kx

2m2(n)
128cns2

} + cn exp{−ks
r

2r
}

Combining (4.9), (4.12), and (4.16) we see

P (||T̃n,n||∞ ≥ x) ≤ m(n)nm(n) exp{−(n−m(n))qn} + 4E(N∗
n)[exp{−kx

2m2(n)
128cns2

} + cn exp{−ks
r

2r
}]

provided s ≥ 1, and xm(n)/n ≥
√

8Mc,k,r/
√
n.

Setting s = sn = c1(L(E(N∗
n)) + Ln)1/r,

x = h(n) = sn(
n[c−1

2 L(E(N∗
n)) + c3Ln]

m2(n)
)1/2,

where c1 > 4/k1/r, c2 = k/(128c), c3 > 0, qn ≥ n−δ, and m(n) = n1−2δ, we have xm(n)/n ≥√
8Mc,k,r/

√
n and s ≥ 1 for all n sufficiently large. Furthermore, from the previous inequality and

that 0 < δ < 1/4, we have for all n sufficiently large that

P (||T̃n,n||∞ ≥ sn[
(128c/k)L(E(N∗

n)) + c3Ln

n1−4δ
]1/2) ≤ exp{(1 − 2δ + n1−2δ)Ln − (n1−δ − n1−3δ)}

+ 4E(N∗
n)[exp{−kx

2m2(n)
128cns2

} + cn exp{−ks
r

2r
}]

≤ exp{−n
1−δ

2
} + 4[exp{−c2c3Ln} + c exp{−(1 + η)Ln}],

where η > 0 is sufficiently small. Hence once δ ∈ (0, 1/4) is specified, then for each such δ we
have (2.41) provided c1 > 4/k1/r and c3 > 0, and (2.42) provided c1 > 4/k1/r and c2c3 > 1. Thus
Theorem 5 is proven.

5 Proofs of Asymptotic Normality Results

The proofs proceed with a sequence of lemmas.

5.1 Proof of Theorem 6

Our first lemma provides tightness in Theorem 6, and shows T̃ n,n converges in probability to zero
in c0.

Lemma 5. Under the conditions (2.47) and (2.48) of Theorem 6,

{L(S̃n,n) : n ≥ 1} is tight in c0. (5.1)

In addition, if for each j ≥ 1 we have limn→∞P (Nn,1 < j) = 0, then T̃ n,n converges in probability
to zero in c0.
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Proof. For general Vn,j, or if the V 1/2
n,j are replaced by n1/2, (3.7) of Lemma 2 implies that

P (||Qd(S̃n,n)||∞ ≥ δ) ≤
∑

j≥d+1

2 exp{−δ2kn,j/(16cn,j)}. (5.2)

Hence (2.48) implies for δ > 0 arbitrary that

lim
d→∞

sup
n≥1

P (||Qd(S̃n,n)||∞ > δ) = 0. (5.3)

Now (2.1) easily implies
E(ξ2n,i,j) ≤ cn,j/kn,j,

and the independence of the sequences of random variables involved implies for each j ≥ 1 that

P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ bV
1/2
n,j ) ≤ b−2E(E((

n∑

i=1

ξn,i,jθn,i,j)2/Vn,j|θn,1,j, · · · , θn,n,j)) ≤ b−2cn,j/kn,j.

Thus (2.47), (5.3), and an application of the remark on page 49 of [19] easily combine to prove the
tightness in (5.1) for general Vn,j and also when the V 1/2

n,j are replaced by n1/2.

If T̃ n,n is defined as in (1.11), then for each ε > 0 and d ≥ 1 we have

P (||T̃n,n||∞ > 2ε) ≤ P (||T̃n,n − Qd(T̃ n,n)||∞ > ε) + P (||Qd(T̃ n,n)||∞ > ε).

Now (5.3) immediately implies there exists d ≥ 1 such that

sup
n≥1

P (||Qd(T̃ n,n)||∞ > ε) < ε/2,

and the independence of the sequences of random variables involved implies for each j ≥ 1 and b > 0
that

P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ bVn,j) ≤ b−2E(E((
n∑

i=1

ξn,i,jθn,i,j)2/V 2
n,j|θn,1,j, · · · , θn,n,j))

≤ b−2E(V −1
n,j )cn,j/kn,j.

Since limn→∞P (Nn,1 < j) = 0, the law of large numbers applied to the i.i.d. sequence of random
variables {Rn,i,j : i ≥ 1} implies for each fixed j ≥ 1 and M > 0 that

lim sup
n→∞

P (Vn,j ≤ M ) = 0.

Thus
lim sup
n→∞

E(V −1
n,j ) = 0,

so for each fixed j ≥ 1 and b > 0 we have

lim
n→∞

P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ bVn,j) = 0.

Now

P (||T̃n,n − Qd(T̃ n,n)||∞ > ε) ≤
d∑

j=1

P (|
n∑

i=1

ξn,i,jθn,i,j| ≥ εVn,j),
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and hence from the above we have for each ε > 0 that

lim
n→∞

P (||T̃n,n||∞ > 2ε) ≤ ε.

Thus the lemma is proven.

Now that we have tightness of {L(S̃n,n) : n ≥ 1} in c0, the next step of the proof is to show that
the finite dimensional distributions induced by ∪d≥1c

∗
0,d are the same for every limiting measure of

{L(S̃n,n) : n ≥ 1}. Here c∗0 denotes the continuous linear functionals on c0 and

c∗0,d = {f ∈ c∗0 : f(Qd(x)) = 0 for all x ∈ c0}. (5.4)

We start by showing that the limiting covariance functions Γ(k, ·, ·) given in (2.44)-(2.46) de-
termine the limiting variance of f(S̃n,n) for each d ≥ 1 and f ∈ c∗0,d. This follows from our next
lemma.

Lemma 6. If (2.44)-(2.46) hold and P (min1≤i≤nNn,i < d) = o(1/n2) as n tends to infinity, then
for all d ≥ 1 and f ∈ c∗0,d we have

lim
n→∞

E(f2(S̃n,n)) =
d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev). (5.5)

If V 1/2
n,j is replaced by n1/2 in S̃n,n, then (5.5) holds with Γ(1, ·, ·) replaced by Γ(2, ·, ·) in the right

hand term.

Proof. Since f ∈ c∗0,d, we have

E(f2(S̃n,n)) = E((
n∑

i=1

d∑

j=1

ξn,i,jθn,i,jf(ej)/V
1/2
n,j )2) =

n∑

i=1

E((
d∑

j=1

ξn,i,jθn,i,jf(ej)/V
1/2
n,j )2),

where the last equality follows immediately since the sequences {θn,i,j} and {Vn,j} are independent
of the sequence {ξn,i,j}, and E(ξn,i,j) = 0 with the random variables ξn,i,j independent in i. Hence
again using the independence cited above we have

E(f2(S̃n,n)) =
n∑

i=1

d∑

u=1

d∑

v=1

E(ξn,i,uξn,iv)E(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

)f(eu)f(ev)

=
d∑

u=1

d∑

v=1

[
n∑

i=1

Γn,i(u, v)E(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

)]f(eu)f(ev), (5.6)

where Γn,i(u, v) = E(ξn,i,uξn,i,v). Hence (5.5) and Lemma 5 follows from (5.6) once we prove the
following lemma. The situation when V

1/2
n,j is replaced by n1/2 in S̃n,n is simpler, so for the time

being we assume the Vn,j are random. The nonrandom case will be taken up later.

Lemma 7. Under the assumptions of Theorem 6 we have

lim
n→∞

n∑

i=1

Γn,i(u, v)E(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

) = Γ(1, u, v). (5.7)
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Proof. Since limn→∞
∑n

i=1 Γn,i(u, v)/n = Γ(u, v) by assumption, (5.7) will follow if we first
show for u 6= v that

E(
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

) =
p

n
an,i, (5.8)

where limn→∞ sup1≤i≤n |an,i − 1| = 0, and that

sup
n≥1,i≥1

Γn,i(u, v) < ∞. (5.9)

Now
sup

n≥1,i≥1
Γn,i(u, v) = sup

n≥1,i≥1
E(ξn,i,uξn,i,v), (5.10)

and, as mentioned earlier, (2.1) with r = 2 implies

E(ξ2n,i,u)) ≤ cn,j/kn,j.

Therefore the Cauchy-Schwartz inequality and (2.47) easily combine to imply (5.9). Hence when
u 6= v it remains to prove (5.8).

To verify (5.8) for random Vn,j, let

Λn,i =
θn,i,u

V
1/2
n,u

θn,i,v

V
1/2
n,v

,

and set

Wn,u = max{1.
n∑

i=1

Rn,i,u}

for n ≥ 1, u ≥ 1. Thus we have

E(Λn,i) = E(Λn,iI( min
1≤i≤n

Nn,i ≥ d)) + E(Λn,iI( min
1≤i≤n

Nn,i < d))

= E(
Rn,i,u

W
1/2
n,u

Rn,i,v

W
1/2
n,v

) − E(
Rn,i,u

W
1/2
n,u

Rn,i,v

W
1/2
n,v

I( min
1≤i≤n

Nn,i < d))

+E(Λn,iI( min
1≤i≤n

Nn,i < d)), (5.11)

where
E(Λn,iI( min

1≤i≤n
Nn,i < d)) ≤ P ( min

1≤i≤n
Nn,i < d) = o(1/n) (5.12)

and
E(

Rn,i,u

W
1/2
n,u

Rn,i,v

W
1/2
n,v

I( min
1≤i≤n

Nn,i < d) ≤ P ( min
1≤i≤n

Nn,i < d) = o(1/n). (5.13)

Hence (5.8) will follow if we show for all i, 1 ≤ i ≤ n, and u 6= v that

E(
Rn,i,u

W
1/2
n,u

Rn,i,v

W
1/2
n,v

) =
p

n
an, (5.14)

where lim→∞ an = 1. To verify (5.14), we establish the following lemma, which immediately implies
(5.14) when u 6= v. If u = v, then from the above we see that the analogue of (5.14) required is that
E(Rn,i,u/Wn,u) = cn/n where limn→∞ cn = 1. This follows since from the proof of Lemma 8 below
we actually have cn = 1 − (1 − p)n. Hence the proof of Lemma 7, and also Lemma 6 for random
Vn,j, will follow once Lemma 8 is established.
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Lemma 8. Let {Xi : 1 ≤ i ≤ n} and {Yi : 1 ≤ i ≤ n} be independent collections of i.i.d Bernoulii
random variables with P (Xi = 1) = P (Yi = 1) = p. Let An = max{1,

∑n
i=1Xi} and Bn =

max{1,
∑n
i=1 Yi}. Then for all i, 1 ≤ i ≤ n, we have

E(
Xi

A
1/2
n

Yi

B
1/2
n

) =
p

n
bn, (5.15)

where lim→∞ bn = 1.

Proof. By the independence assumed we have

E(
Xi

A
1/2
n

Yi

B
1/2
n

) = E(
Xi

A
1/2
n

)E(
Yi

B
1/2
n

),

and hence since {Xi : 1 ≤ i ≤ n} and {Yi : 1 ≤ i ≤ n} i.i.d Bernoulii random variables with
P (Xi = 1) = P (Yi = 1) = p, it suffices to verify that

E(
X1

A
1/2
n

) = (
p

n
)1/2cn, (5.16)

where lim→∞ cn = 1. Now

E(
X1

A
1/2
n

) = pE((
1

1 +
∑n

i=2Xi
)1/2) ≤ p(E(

1
1 +

∑n
i=2Xi

))1/2 = p(
1 − (1 − p)n

np
)1/2,

where the second equality follows from a formula in [27], page 198.
Hence since we assume 0 < p ≤ 1 we have

E(
Xi

A
1/2
n

) ≤ (
p

n
)1/2. (5.17)

Thus Lemma 8 will follow provided we establish a comparable lower bound.
Now for each ε > 0, 0 < ε < p, we have

E(
X1

A
1/2
n

) = pE(
1

(1 +
∑n

i=2Xi)1/2
) ≥ p

∑

{k:|k/(n−1)−p|<ε/Ln}

1
(1 + k)1/2

P (
n∑

i=2

Xi = k),

and hence

E(
X1

A
1/2
n

) ≥ p

(1 + (n− 1)p− (n − 1)ε/Ln)1/2
∑

{k:|k/(n−1)−p|<ε/Ln}

P (
n∑

i=2

Xi = k).

Since ε > 0, Theorem 1 of [18] implies

∑

{k:|k/(n−1)−p|<ε/Ln}

P (
n∑

i=2

Xi = k) ≥ 1 − 2 exp{−2(n− 1)(
ε

Ln
)2},

and hence

E(
X1

A
1/2
n

) ≥ p

(1 + (n − 1)p− (n− 1)ε/Ln)1/2
[1− 2 exp{−2(n− 1)(

ε

Ln
)2}] = (

p

n
)1/2dn,

where lim→∞ dn = 1. This implies the comparable lower bound to (5.17) and therefore Lemma 8
holds.
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As mentioned earlier, Lemma 8 completes the proof of Lemma 7, and hence Lemma 6 is estab-
lished with (5.5) providing a limiting variance function when the Vn,j are random. If the V 1/2

n,j are
replaced by n1/2 in S̃n,n, then the proof of Lemma 7 with the right hand of (5.7) being Γ(2, u, v) is
much simpler, and the details are left for the reader. Hence Lemma 6 is proven.

Now that Lemma 6 is verified, the next step is to show for all d ≥ 1, f ∈ c∗0,d, and random Vn,j

that all limit laws of {L(f(S̃n,n)) : n ≥ 1} are centered Gaussian random variables with variance
given by

σ2(f) =
d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev). (5.18)

Of course, if the V 1/2
n,j are replaced by n1/2 in S̃n,n, then (5.18) holds with Γ(1, u, v) replaced by

Γ(2, u, v).
To verify this step of the proof, we first prove a lemma which will put us in position to allow an

application of Lyapunov’s central limit theorem.

Lemma 9. For each integer d ≥ 1 and x ∈ c0, let

Πd(x) =
d∑

j=1

xjej.

Under the conditions of the theorem we have for each d ≥ 1 that

lim
n→∞

n∑

i=1

E(||Πd(X̃n,i)||4∞) = 0, (5.19)

where
X̃n,i =

∑

j≥1

ξn,i,jθn,i,j

V
1/2
n,j

ej .

Proof. Since Jensen’s inequality implies (a+b2 )4 ≤ a4+b4

2 for all a, b ≥ 0, we easily see that

||Πd(X̃n,i)||4∞ ≤ |
d∑

j=1

|ξn,i,j|θn,i,j
V

1/2
n,j

|4 ≤ 23(d−1)
d∑

j=1

ξ4n,i,jθn,i,j

V 2
n,j

.

Hence

E(||Πd(X̃n,i)||4∞) ≤ 23(d−1)
d∑

j=1

E(
ξ4n,i,jθn,i,j

V 2
n,j

),

and the lemma will follow if we show

lim
n→∞

n∑

i=1

E(
ξ4n,i,jθn,i,j

V 2
n,j

) = 0 (5.20)

for j = 1, · · · , d and all d ≥ 1. Now

E(
ξ4n,i,jθn,i,j

V 2
n,j

) ≤ (E(ξ8n,i,j))
1/2(E(

θn,i,j
V 4
n,j

))1/2,

and using (2.1) with r = 2 we have

E(ξ8n,i,j) =
∫ ∞

0

P (|ξn,i,j| > t1/8)dt ≤ cn,j

∫ ∞

0

exp{−kn,jt1/4}dt = 24cn,j/k4
n,j.
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Applying (2.47) and that cn,j ≥ 1 for all n ≥ 1, j ≥ 1 we therefore have

sup
n≥1,j≥1

E(ξ8n,i,j) < ∞.

Moreover,

E(
θn,i,j
V 4
n,j

) = E(
I(j ≤ Nn,i)Rn,i,j

V 4
n,j

) = E(
Rn,i,jI(min1≤i≤nNn,i ≥ d)

max{1, (
∑n
i=1Rn,i,j)4}

) +O(P ( min
1≤i≤n

Nn,i < d)).

Hence

E(
θn,i,j
V 4
n,j

) = E(
Rn,i,j

max{1, (
∑n
i=1Rn,i,j)4}

) + 2O(P ( min
1≤i≤n

Nn,i < d)) = pE(
1

(1 +
∑n
i=2Xi)4

) + o(1/n2),

where X1, X2, · · · , Xn are i.i.d. Bernoulli random variables with P (Xi = 1) = p and our assumption
that P (min1≤i≤nNn,i < d) = o(1/n2).

Therefore let

An =
n∑

k=0

1
(1 + k)4

P (
n∑

i=1

Xi = k),

and we want an appropriate upper bound on An−1. Now

An ≤ Bn + 2 exp{−2n/(Ln)2}

where

Bn =
∑

{k:|k/n−p|≤1/Ln}

1
(1 + k)4

P (
n∑

i=1

Xi = k)

and the exponential term follows from an immediate application of Theorem 1 in [18]. Now

Bn ≤ 1
(1 + n(p− 1/Ln))4

∑

{k:|k/n−p|≤1/Ln}

P (
n∑

i=1

Xi = k) ≤ 1
(np)4[1 + 1

np
− 1

pLn
]4

≤ 2
(np)4

for all n sufficiently large. Therefore for all n ≥ n0 we have

An−1 ≤ 2
((n − 1)p)4

+ 2 exp{− 2(n− 1)
(L(n− 1))2

},

which implies

E(
θn,i,j
V 4
n,j

) = E(
I(j ≤ Nn,i)Rn,i,j

V 4
n,j

) ≤ 2
((n− 1)p)4

+ o(1/n2)

uniformly in i ≥ 1, j ≥ 1. Thus uniformly in i, j ≥ 1 we have

E(
ξ4n,i,jθn,i,j

V 2
n,j

) ≤ (E(ξ8n,i,j))
1/2(E(

θn,i,j
V 4
n,j

))1/2 = o(1/n),

which implies (5.20). Thus (5.19) holds by the inequality prior to (5.20), and Lemma 9 is proven
for random Vn,j. If the V 1/2

n,j are replaced by n1/2 in S̃n,n, then the proof is even easier and details
are left to the reader. Hence Lemma 9 holds for both normalizations.

The next lemma completes the proof of Theorem 6.
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Lemma 10. The functions Γ(1, ·, ·) and Γ(2, ·, ·) defined by (2.44)-(2.46), are covariances of centered
Gaussian measures γ1 and γ2, respectively, on c0. Furthermore, if the Vn,j are random, then S̃n,n
converges weakly to γ1 on c0, and if the V 1/2

n,j are replaced by n1/2, then S̃n,n converges weakly to γ2

on c0. In addition, for each f ∈ c∗0 and k = 1, 2 we have
∫

c0

f2(x)dγk(x) =
∞∑

u=1

∞∑

v=1

Γ(k, u, v)f(eu)f(ev).

Proof. First assume the Vn,j are random. Then since (5.19) is verified, we also see for all d ≥ 1
and f ∈ c∗0,d that

lim
n→∞

n∑

i=1

E(f4(X̃n,i)) = 0.

Hence by (5.5) and Lyapunov’s Central Limit Theorem, see [4], page 209, we have that f(S̃n,n)
converges in distribution to a mean zero Gaussian random variable with variance given by (5.18) for
all d ≥ 1 and f ∈ c∗0,d. If µ is a probability measure on the Borel subsets of c0, and for all k ≥ 1, d ≥ 1,
f1, · · · , fk ∈ c∗0,d, and A is an arbitrary Borel set of Rk, then the probability distributions

F f1,...,fk(A) = µ({x ∈ c0 : (f1(x), · · · , fk(x)) ∈ A})

are the finite dimensional distributions of µ on c0 induced by ∪d≥1c
∗
0,d, and they uniquely determine

µ on the Borel subsets of c0. In view of the tightness obtained in Lemma 5 we thus have that S̃n,n
converges weakly to a unique probability on the Borel subsets of c0, which for the moment we call µ.
What remains is to show that for every f ∈ c∗0 this limiting measure makes f a centered Gaussian
random variable with variance determined by Γ(1, ·, ·). Recalling that pointwise limits of centered
Gaussian random variables are again centered Gaussian variables with limiting variances the limits
of the variances, and that ∪d≥1c

∗
0,d is weak star dense in c∗0, it follows that µ is a centered Gaussian

measure on c0. Furthermore, if f ∈ c∗0 and fd(x) = f(Πd(x)), x ∈ c0, then for random Vn,j we have

∫

c0

f2(x)dµ(x) = lim
d→∞

∫

c0

f2
d (x)dµ(x) = lim

d→∞

d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev). (5.21)

Since supi≥1E(ξ2n,i,j) ≤ cn,j/kn,j, we have from (2.47), (2.44)-(2.46), and Cauchy-Schwarz that

sup
j1,j2≥1

|Γ(1, j1, j2)| < ∞.

Now c∗0 = `1, and hence the dominated convergence theorem easily implies µ is a centered Gaussian
measure on c0 with covariance given by Γ(1, ·, ·). Moreover, for each f∗ ∈ c0 we have

∫

c0

f2(x)dµ(x) =
∞∑

u=1

∞∑

v=1

Γ(1, u, v)f(eu)f(ev).

Hence when Vn,j is random, the centered Gaussian measure γ1 exists as indicated, i.e. its covariance
is Γ(1, ·, ·), and µ = γ1. Similarly, when the V 1/2

n,j are replaced by n1/2, then γ2 exists as indicated,
and µ = γ2. This last fact is easy to check by immediate simplifications of what we have done when
V

1/2
n,j is random, and the details are left to the reader. Hence for each choice of normalizers, there is

a unique limiting Gaussian measure, and its finite dimensional distributions are centered Gaussian
measures determined by the appropriate covariance function. Therefore the lemma is proved, and
Theorem 6 is established.
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5.2 Proof of Theorem 7

The proof parallels that for Theorem 6. We present the details for random Vn,j, and when the V 1/2
n,j

are replaced by n1/2 in S̃n,n or T̃ n,n we leave most of the details to the reader.
Our first task is to show that we have tightness in `ρ, and that T̃ n,n converges to zero in

probability there. This is given in our next lemma.

Lemma 11. Under the conditions (2.51) and (2.52) of Theorem 7 we have

{L(S̃n,n) : n ≥ 1} is tight in `ρ. (5.22)

In addition, if for each j ≥ 1 we have limn→∞P (Nn,1 < j) = 0, then T̃ n,n converges in probability
to zero in `ρ.

Proof. We first establish the uniform tightness for random Vn,j . The tightness when the V 1/2
n,j

are replaced by n1/2 then follows by an immediate simplification of this argument.
If θn,i,j = I(j ≤ Nn,i)Rn,i,j as indicated, then P (θn,i,j = 1) = pn,jp, where pn,j = P (j ≤ Nn,i)

for n ≥ 1, j ≥ 1, and for k = 0, 1, · · · , n we define the events

Ek,n,j = ∪I∈Ik,n,jFI , (5.23)

where Ik,n,j denotes all subsets I = {i1, · · · , ik} of size k in {1, · · · , n} and

FI = {θn,i,j = 1 for all i ∈ I and θn,i,j = 0 for i ∈ {1, · · · , n} ∩ Ic}.

Note that FI depends on n and j, but we suppress that in our notation.
Let Qd(x) =

∑
j≥d+1 xjej for x ∈ R∞, and d ≥ 0, and recall Vn,j = max{1,

∑n
i=1 θn,i,j}.

Therefore, since
∑n

i=1 ξn,i,jθn,i,j = 0 on E0,n,j, we have for each δ > 0, n ≥ 1, and d ≥ 0 that

P (||Qd(S̃n,n)||ρ ≥ δ) ≤ δ−ρ
∑

j≥d+1

n∑

k=1

E((
|
∑n
i=1 ξn,i,jθn,i,j|
V

1/2
n,j

)ρIEk,n,j ).

Now

E((
|
∑n

i=1 ξn,i,jθn,i,j|
V

1/2
n,j

)ρIEk,n,j ) =
∑

I∈Ik,n,j

E((
|
∑k

l=1 ξn,il,j|
k1/2

)ρIFI ), I = {i1, · · · , ik}),

and letting

An,d =
∑

j≥d+1

n∑

k=1

E((
|
∑n

i=1 ξn,i,jθn,i,j|
V

1/2
n,j

)ρIEk,n,j )

we have by using the independence of the various sequences of random variables involved that

An,d =
∑

j≥d+1

n∑

k=1

∑

I∈Ik.n,j

E((
|
∑k
l=1 ξn,il,j |
k1/2

)ρ)P (FI , I = {i1, . . . , ik}).

Since we are assuming (2.1) with r=2, for each integer b ≥ 1 we have from Lemma 1 that

E((
|
∑b
l=1 ξn,il,j |
b1/2

)ρ) =
∫ ∞

0

P ((
|
∑b
l=1 ξn,il,j|
b1/2

) > x1/ρ)dx ≤ 2
∫ ∞

0

exp{− kn,j
16cn,j

x2/ρ}dx.
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Now ∫ ∞

0

exp{− kn,j
16cn,j

x2/ρ}dx = (
16cn,j
kn,j

)ρ/2η(ρ),

where
η(ρ) =

ρ

2

∫ ∞

0

u
ρ
2−1 exp{−u}du.

Since 2 ≤ ρ < ∞, η(ρ) < ∞, and for each integer b ≥ 1 we have

E((
|
∑b

l=1 ξn,il,j|
b1/2

)ρ) ≤ 2(
16cn,j
kn,j

)ρ/2η(ρ).

Hence
An,d ≤ 2η(ρ)

∑

j≥d+1

(
16cn,j
kn,j

)ρ/2,

which implies

P (||Qd(S̃n,n)||∞ ≥ δ) ≤ 2δ−ρη(ρ)
∑

j≥d+1

(
16cn,j
kn,j

)ρ/2.

Applying (2.52) we therefore have for all δ > 0 that

lim
d→∞

sup
n≥1

P (||Qd(S̃n,n)||∞ > δ) = 0. (5.24)

Now (2.1) with r=2 easily implies
E(ξ2n,i,j) ≤ cn,j/kn,j,

and, arguing as in the proof of Lemma 5, we then see that (2.51), (5.24) with δ > 0 arbitrary, and
an application of the remark on page 49 of [19] proves the tightness in (5.22) for general Vn,j.

Since the random variables {ξn,i,jθn,i,j : n ≥ 1, i ≥ 1, j ≥ 1} also satisfy (2.1) with r=2, when
the V 1/2

n,j are replaced by n1/2 the proof of (5.22) is immediate from a simplification of the previous
argument.

To prove T̃ n,n converges in probability to zero in `ρ follows from what we just proved adapted
to the argument for the analogue of this in Lemma 5. Thus the lemma is proven.

Now that we have tightness of {L(S̃n,n) : n ≥ 1} in `ρ, the next step of the proof is to show that
the finite dimensional distributions induced by ∪d≥1`

∗
ρ,d are the same for every limiting measure of

{L(S̃n,n) : n ≥ 1}. Here `∗ρ denotes the continuous linear functionals on `ρ and

`∗ρ,d = {f ∈ `∗ρ : f(Qd(x)) = 0 for all x ∈ `ρ}. (5.25)

We start by showing that the limiting covariance functions Γ(k, ·, ·) given in (2.44)-(2.46) de-
termine the limiting variance of f(S̃n,n) for each d ≥ 1 and f ∈ `∗ρ,d. This follows from our next
lemma.

Lemma 12. If (2.44)-(2.46) hold and P (min1≤i≤nNn,i < d) = o(1/n2) as n tends to infinity, then
for all d ≥ 1 and f ∈ `∗ρ,d we have

lim
n→∞

E(f2(S̃n,n)) =
d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev). (5.26)

If the V 1/2
n,j are replaced by n1/2 in S̃n,n, then (5.26) holds with Γ(1, u, v) replaced by Γ(2, u, v) in

the right hand term.
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The proof of this lemma is exactly as that of Lemma 6 in the proof of Theorem 6. Hence we
immediately turn to our next task, which is to show for all d ≥ 1 and f ∈ `∗ρ,d that all limit laws of
{L(f(S̃n,n));n ≥ 1} are centered Gaussian random variables with variance given by

σ2(f) =
d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev). (5.27)

Of course, when the V 1/2
n,j are replaced by n1/2 in S̃n,n, then (5.27) holds with Γ(1, u, v) replaced by

Γ(2, u, v).
To verify this step of the proof, we first prove a lemma which will put us in position to allow an

application of Lyapunov’s central limit theorem.

Lemma 13. For each integer d ≥ 1 and x ∈ `ρ, let

Πd(x) =
d∑

j=1

xjej.

Under the conditions of the theorem we have for each d ≥ 1 that

lim
n→∞

n∑

i=1

E(||Πd(X̃n,i)||4ρ) = 0, (5.28)

where
X̃n,i =

∑

j≥1

ξn,i,jθn,i,j

V
1/2
n,j

ej .

The proof of this lemma is an immediate consequence of Lemma 9 since ||Πd(x)||ρ ≤ d||Πd(x)||∞
for all x ∈ `ρ. Hence the proof of Theorem 7 will be complete once we have the following lemma.

Lemma 14. The functions Γ(k, ·, ·) defined for k = 1, 2 by (2.44)-(2.46) are covariances of centered
Gaussian measures γ1 and γ2, respectively, on `ρ. Furthermore, if the Vn,j are random, then S̃n,n
converges weakly to γ1 on `ρ, and if the V 1/2

n,j are replaced by n1/2, then S̃n,n converges weakly to γ2

on `ρ. In addition, for each f ∈ `∗ρ and k = 1, 2 we have

∫

`ρ

f2(x)dγk(x) =
∞∑

u=1

∞∑

v=1

Γ(k, u, v)f(eu)f(ev).

Proof. First we consider random Vn,j. Applying Lemmas 12 and 13, and Lyapunov’s central
limit theorem, the proof of Lemma 14 follows similarly as in the proof of Lemma 10. That is,
arguing as in Lemma 10 we have L(S̃n,n) converging weakly to a mean zero Gaussian measure µ on
`ρ. Furthermore, if f ∈ `∗ρ,d, then

∫

`ρ

f2(x)dµ(x) =
d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev), (5.29)

and for f ∈ `∗ρ we have

∫

`ρ

f2(x)dµ(x) = lim
d→∞

d∑

u=1

d∑

v=1

Γ(1, u, v)f(eu)f(ev). (5.30)
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To show the previous limit equals

∞∑

u=1

∞∑

v=1

Γ(1, u, v)f(eu)f(ev),

and that γ1 = µ as indicated on `ρ, we let f(x) = xu + xv and g(x) = xu − xv for x =
∑
j≥1 xjej .

Then f, g ∈ `∗ρ,d for d ≥ max{u, v}, and applying (5.29) we have

4
∫

`ρ

xuxvdµ(x) =
∫

`ρ

(xu + xv)2dµ(x) −
∫

`ρ

(xu − xv)2dµ(x)

=
∫

`ρ

f2(x)dµ(x) −
∫

`ρ

g2(x)dµ(x)

= 4Γ(1, u, v).

Therefore the Gaussian measure γ1 exists on `p as indicated, and it equals µ. In addition we will
see ∫

`ρ

f2(x)dµ(x) =
∞∑

u=1

∞∑

v=1

Γ(1, u, v)f(eu)f(ev) (5.31)

for each f ∈ `ρ. To verify (5.31) we recall that since γ1 is a centered Gaussian measure on `ρ, it is
known that ∑

u≥1

(Γ(1, u, u))ρ/2 < ∞.

Now Γ(1, u, v) ≤ Γ(1, u, u)1/2Γ(1, v, v)1/2 and hence we have

∞∑

u=1

∞∑

v=1

|Γ(1, u, v)f(eu)f(ev)| ≤ (
∞∑

u=1

Γ(1, u, u)1/2|f(eu)|)2

≤ (
∞∑

u=1

Γ(1, u, u)ρ/2)1/ρ(
∞∑

u=1

|f(eu)|q)1/q)2,

where 1/q + 1/ρ = 1. Now f ∈ `∗ρ = `q , so (5.30) and the dominated convergence theorem now
implies (5.31) for all f ∈ `∗ρ.

Hence the limiting mean zero Gaussian measure γ1 exists on `ρ, and has covariance Γ(1, ·, ·) with
(5.31) holding. If the V 1/2

n,j are replaced by n1/2, the argument is similar. Thus Theorem 7 is proven.

5.3 Verifying Remark 11

The proof of Remark 11 parallels the proof of Theorem 7. Hence we only provide an outline.
As in the proof of Theorem 7, our first task is to verify tightness of {L(Sn,n

n1/2 ) : n ≥ 1} in `ρ.

This follows since for each d ≥ 0 we have

P (||Qd(Sn,n)||ρ ≥ δ) ≤ Aρδ
−ρ

n∑

i=1

E(||Qd(Xn,i)||2ρ) = Aρδ
−ρ

n∑

i=1

E((
∑

j≥d+1

|ξn,i,jθn,i,j|ρ)2/ρ),

where the inequality holds since `ρ is a type-2 Banach space for 2 ≤ ρ < ∞, see [2], page 157. Now

E((
∑

j≥d+1

|ξn,i,jθn,i,j|ρ)2/ρ) ≤ (
∑

j≥d+1

E(|ξn,i,jθn,i,j|ρ))2/ρ ≤ (
∑

j≥d+1

E(|ξn,i,j|ρ))2/ρ,
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where the first inequality is due to Jensen’s inequality, and the second because |θn,i,j| ≤ 1. Finally,
since 2/ρ ≤ 1 we have

(
∑

j≥d+1

E(|ξn,i,j|ρ))2/ρ ≤
∑

j≥d+1

(E(|ξn,i,j|ρ)2/ρ,

which combined with the previous inequalities implies

P (||Qd(Sn,n)||ρ ≥ δn1/2) ≤ Aρδ
−ρn−1

n∑

i=1

∑

j≥d+1

(E(|ξn,i,j|ρ)2/ρ.

Hence, as in the final step of Lemma 11, we see that (2.55) and (2.56) combine to imply the tightness

of {L(Sn,n

n1/2 ) : n ≥ 1} in `ρ.

Now that we have tightness of {L(Sn,n

n1/2 ) : n ≥ 1} in `ρ, the next step of the proof is to show that
the finite dimensional distributions induced by ∪d≥1`

∗
ρ,d are the same for every limiting measure of

{L(Sn,n

n1/2 ) : n ≥ 1} We start by showing that the limiting covariance function Γ(2, ·, ·) determined
as in (2.44)-(2.46) gives the limiting variance of f(Sn,n

n1/2 ) for each d ≥ 1 and f ∈ `∗ρ,d. This follows
from our next lemma.

Lemma 15. If (2.44)-(2.46) hold and P (min1≤i≤nNn,i < d) = o(1) as n tends to infinity, then for
all d ≥ 1 and f ∈ `∗ρ,d we have

lim
n→∞

E(f2(Sn,n/n
1/2)) =

d∑

u=1

d∑

v=1

Γ(2, u, v)f(eu)f(ev). (5.32)

The proof of this lemma is a simplification of the proof of Lemma 6. Hence we immediately turn
to our next task, which is to show for all d ≥ 1 and f ∈ `∗ρ,d that all limit laws of {L(f(Sn,n)/n1/2) :
n ≥ 1} are centered Gaussian random variables with variance given by

σ2(f) =
d∑

u=1

d∑

v=1

Γ(2, u, v)f(eu)f(ev). (5.33)

To verify this step of the proof, we first indicate a lemma which will put us in position to allow
an application of Lyapunov’s central limit theorem. Its proof is sketched below.

Lemma 16. For each integer d ≥ 1 and x ∈ `ρ, let

Πd(x) =
d∑

j=1

xjej.

Under the conditions of the theorem we have for each d ≥ 1 and some β > 0 that

lim
n→∞

n∑

i=1

E(||Πd(Xn,i/n
1/2)||2+β

ρ ) = 0. (5.34)

If 2 < ρ < ∞ and we take β > 0 sufficiently small that 2 + β < ρ and β < δ where δ > 0 is as in
(2.55), then we have

||Πd(Xn,i)/n1/2||2+β
ρ = n−(2+β)/2(

d∑

j=1

|ξn,i,j|ρ)
2+β

ρ ≤ n−(2+β)/2
d∑

j=1

|ξn,i,j|2+β, (5.35)

39



where the inequality holds since 2 + β ≤ ρ. Hence (2.55) implies (5.34) holds, and the lemma is
proven when 2 < ρ < ∞. If ρ = 2 and we take δ > 0 as in (2.55), then

||Πd(Xn,i)/n1/2||2+δ
2 = n−(2+δ)/2(

d∑

j=1

|ξn,i,j|2)
2+δ
2 ≤ n−(2+δ)/22(d−1)δ/2

d∑

j=1

|ξn,i,j|2+δ, (5.36)

where the inequality follows since (a + b)c ≤ 2c−1(ac + bc) for a, b ≥ 0, c ≥ 1, and we iterate this
d− 1 times. Hence (2.55) implies (5.34) holds, and the lemma is proven.

The proof of Remark 11 now follows once we establish the following lemma.

Lemma 17. The function Γ(2, ·, ·) defined by (2.44)-(2.46) is the covariance of a centered Gaussian
measure γ2 on `ρ, and Sn,n

n1/2 converges weakly to γ2 on `ρ. In addition,

∫

`ρ

f2(x)dγ2(x) =
∞∑

u=1

∞∑

v=1

Γ(2, u, v)f(eu)f(ev)

for all f ∈ `∗ρ.

Applying Lemmas 15 and 16, and Lyapunov’s central limit theorem, the proof of Lemma 17
follows exactly as in the proof of Lemmas 10 and 14 above. Hence the remark is established.

6 Applications

6.1 One-Sample Problem

In this section we apply the results from previous sections to test that the “mean vector” equals a
specified vector. More precisely, consider testing the null hypothesis H0 : µn = 0 , where µn is an
infinite dimensional vector whose components are µn,j. The quantity S̃n,n, defined by (1.7), namely

S̃n,n =
n∑

i=1

∑

j≥1

ξn,i,jθn,i,j

V
1/2
n,j

ej ≡
n∑

i=1

Nn,i∑

j=1

ξn,i,jRn,i,j

V
1/2
n,j

ej, (6.1)

can be used for developing a test of H0. To this end, let us denote the data vectors by ~Xn =
{Xn,1, · · ·Xn,n}. One can use the lρ norm for ρ ≥ 2 and the c0 norm to define various non-
randomized test functions φρ( ~Xn) as follows:

φρ( ~Xn) =

{
1 if ||S̃n,n||ρ > c

0 otherwise,
(6.2)

where c = cρ is so chosen that E(φρ( ~Xn)|H0) ≤ α. The test statistics based on c0 norm is given by

φ∞( ~Xn) =

{
1 if ||S̃n,n||∞ > c

0 otherwise,
(6.3)

where c = c∞ is so chosen that E(φρ( ~Xn)|H0) ≤ α. Thus to perform the test one needs the
distribution of ||S̃n,n||ρ and ||S̃n,n||∞. Their asymptotic distribution can be obtained as a corollary
of Theorems 6, 7, and Remark 11 as in the following proposition.
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Proposition 1. If the null hypothesis holds, then Theorem 6 implies that P (||S̃n,n||∞ > c) con-
verges to P (||G||∞ > c) for all c > 0, where L(G) = γ and γ is the Gaussian measure identified
there. Furthermore, under the conditions of Theorem 7, when the null hypothesis is true, then the
P (||S̃n,n||ρ > c) converges to P (||G||ρ > c) for all c > 0 and 2 ≤ ρ < ∞, where L(G) = γ and
γ is the Gaussian measure identified in Theorem 7. A similar result holds for Sn,n/n1/2 under the
conditions of Remark 11, when the null hypothesis is true.

We omit the proof of the proposition as it is an immediate consequence of our central limit
theorems, the continuous mapping theorem, and the fact that the norm of a Gaussian random
vector with values in a separable Banach space has a continuous distribution function.

When ρ = 2, our test function is similar to the test function derived using Hotelling’s T 2 statistic.
The main difference, however, is that in our case the vectors are not finite dimensional, and we
typically do not have uncorrelated coordinates variables {ξn,i,j} with unit variances. In fact, in
most infinite dimensional examples where a central limit theorem is to be expected, having non-zero
constant variances for the coordinate variables is impossible. A hybrid result when P (Nn,i = b(n)) =
1, p = 1, E(ξ2n,i,j) = 1 for n, i, j ≥ 1, and E(ξn,i,uξn,i,v) = 0 for u 6= v is given in Portnoy [26] under
a few additional moment and regularity conditions. Under these assumptions S̃n,n = Sn,n/n1/2,
and when b(n)/n tends to zero as n tends to infinity, Portnoy shows

Wn ≡ ||S̃n,n||22 − b(n)√
2b(n)

⇒ G, (6.4)

where G is a normal random variable with mean 0 and variance 1. To contrast the above result
to those of Proposition 1, note that the key assumption concerning the summability of variances
is violated. That is, under the assumptions in [26] the sum of the variances diverges if b(n) →
∞, while our Theorem 7 and the results in Remark 11 require the sum of variances converges
when ρ = 2. Hence a natural question to ask is whether one has an analogue of Portnoy’s result
under the conditions above when the identity covariance condition is replaced by simply asking
the coordinates of S̃n,n have variances that sum to infinity. The following example, with highly
dependent coordinates, shows that the limit distribution in this case could be non-Gaussian. Of
course, many other examples can be obtained in a similar way, and all fail to satisfy an analogue of
Portnoy’s result as they have highly correlated coordinates.

Example 1. Let {ηi : i ≥ 1} be a collection of i.i.d. random variables with E(ηi) = 0 and E(η2
i ) = 1.

Let {aj : j ≥ 1} be a sequence of constants converging to 0 such that such that
∑

j≥1 a
2
j = ∞. Set

ξn,i,j = ηiaj. Then,

Sn,n√
n

=
n∑

i=1

ηi√
n

∑

j≥1

ajej (6.5)

⇒ G
∑

j≥1

ajej, (6.6)

where G is a normal random variable with mean 0 and variance 1. Furthermore, the limit does not
live in the space l2, and

Wn ≡
b(n)∑

j=1

{(
∑n

i=1 ηi√
n

)2a2
j − a2

j}. (6.7)
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Then, by the central limit theorem, it follows that

Wn∑b(n)
j=1 a

2
j

⇒ G2 − 1, (6.8)

and no constant normalizations lead to a limiting normal law.

The above example is a situation where the gene expressions would be “highly correlated,”
and serves to show that the identity covariance matrix assumption used in [26] represents a special
situation. As far as we know it is an open problem to see what happens in the middle ground between
Portnoy’s assumptions and the highly correlated situation in Example 1, but that is something we
leave unsettled here. Of course, both of these extremes are quite restrictive, and tend not to hold in
practice, but perhaps more important is that simulation results provided in the section below (see
the paragraph before (6.19)) show that the Type I error rates of tests developed using (6.4), which
assumes identity covariance matrix, behave poorly compared to the nominal level when correlations
are actually present.

6.2 Simulation Results

In this section we evaluate our methodology, using simulations, when the number of replications is
small, but the number of variables is large. The number of replications n is fixed at 10 throughout
section 6.2, but various choices of the dimension of the random vectors b(n) are considered, and
all our simulation results are based on 5000 independent trials of 10 replications of the various
experiments being discussed. We purposely chose n small to reflect many real applications.

As a first step we need to “approximate” the limiting distribution of the random variables
appearing in Proposition 1. We will work with the case Nn,i = b(n) and assume that Xn,1 · · ·Xn,n

are n i.i.d. b(n) dimensional vectors with distribution Gn(.) whose tails satisfy the sub-Gaussian
property. Let Σ̂n denote an estimate of the covariance matrix Σn = ((σn,u,v)), where Σn is a
b(n) × b(n) matrix given by

σn,u,v = E(ξn,1,u − µn,u,0)(ξn,1,v − µn,v,0). (6.9)

In the above definition, µn,u,0 and µn,v,0 are the specified values under the null hypothesis. Note
that Σ̂n is a function of the data vector ~Xn,n. One choice for Σ̂n is the sample covariance matrix.
In fact, better options are available, and we will explain them later below. If Σ̂n is positive definite,
then given ~Xn,n, we generate t i.i.d. random vectors Y n,i of dimension b(n) whose distribution is
Gaussian with mean vector 0 and covariance matrix Σ̂n; that is

Y n,i| ~Xn ∼ Nb(n)(0, Σ̂n) a.s., 1 ≤ i ≤ t. (6.10)

We will call Y n,i the monte-carlo (MC) samples, and throughout the simulations t = 2000. We
will use || · || to denote the lρ norm (ρ ≥ 2) or the c0 norm depending on the space being used.
Let ||Y n,1||, · · · , ||Y n,n|| denote the norms of the MC samples. Furthermore, consider the following
non-parametric density estimator; namely, for x ∈ R,

ht(x) =
1
tct

t∑

i=1

K(
x − ||Y n,i||

ct
), (6.11)
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where ct is a sequence of positive constants converging to 0 such that tct → ∞, and K(.) is a density
function with

∫
R
tK(t)dt = 0. In the above we have suppressed the dependence on n and on ω since

n and ω will be held fixed in this discussion. It follows from Devroye [5] that as t → ∞, that for
every ω ∈ Ω, ht(x) converges almost everywhere with respect to Lebesgue measure and in L1 to the
probability density of the random variable ||N (0, Σ̂n)||. In all our numerical experiments we will
take K(.) to be a standard normal density, t = 2000, and fix the window width ct at 0.7. Figure 1
(a) presents the graph of the density function for the 2-norm, the 10-norm, and the sup-norm.
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Figure 1: Kernel density estimates of the norms of statistics and the Histogram of p-values under
the sup norm.

We use these densities to “approximate” the tail probabilities of the norms of the limiting Gaus-
sian appearing in Proposition 1. Figure 1 (b) shows that the p-values from these hypothesis tests are
uniformly distributed when we use the sup-norm. This histogram was generated using compound
symmetric covariance structure, the details of which are explained later in this section. We now
present various numerical experiments that describe various properties of our methodology. The
nominal Type I error rate is taken to be 5% in all of our experiments.

Our first experiment studies the behavior of the Type I error rate for the testing problem H0 :
µn = µn,0, where µn,0 = {µn,j,0 : j ≥ 1}. As indicated, the sample size, or number of replications,
is taken to be 10. Here the dimension of the sample vectors is taken to be 100, and the data are
generated from a 100 dimensional normal distribution with mean µn and covariance matrix Σn.
The entries of the mean vector are all the same random constant obtained at the beginning of each
particular experiment by randomly selecting this constant from the uniform distribution on (0,1),
and then holding it fixed throughout the remainder of that experiment. Four different Σn matrices
are considered. The first choice is Σn = In, where In is a 100 × 100 identity matrix. The second
choice is Σn has an autoregressive structure; that is Σn = ((σu,v)), where

σu,v = σ2r|u−v|. (6.12)

We will use the terminology of AR(1) structures to describe this covariance matrix. In the experi-
ments that yielded the data in Table 1, we chose σ2 = 3 and r = 0.8. The third choice for Σn has
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Σ = I AR(1) CS UN
Test 1 0.002 0.004 0.0078 0.0022
Test 2 0.0448 0.8478 0.9998 0.1194
Test 3 0.0442 0.0486 0.047 0.0512
Test 4 0.0458 0.0428 0.0404 0.048

Table 1: Type I error rates for the four tests under various population covariance structures.

the property that

σu,v =




σ2

1 + σ2 if u = v,

ρ? if u 6= v.
(6.13)

Covariance matrices with this property are said to compound symmetric (CS) and we will use this
terminology when convenient. While in general it is not necessary for ρ? to be positive, in several
applications it turns out to be positive and in the so-called random effects models ρ? = σ2. In all our
simulations with the CS structure we assume that ρ? = σ2 > 0. In particular, we take σ2 = 3 and
σ2

1 = 4, although other choices could also be employed. The fourth choice for Σn is an unstructured
(UN) symmetric positive definite 100×100 matrix. This matrix is randomly chosen at the beginning
of the experiment and held fixed. We consider four different types of tests. Test 1 and Test 3 are
based on our methodology described in this paper. In Test 1 we estimate the covariance matrix by
the method of moments while in Test 3, we use the true covariance matrix. In Test 2 we assume
that the covariance matrix is the ident! ity matrix, and when the sup-norm is used the Type I error
rate determined in Proposition 1 is then equivalent to performing 100 univariate tests and rejecting
the hypothesis if at least one of the 100 tests rejects the relevant one dimensional null hypothesis.
Test 4 is based on a Bonferonni correction to Test 2. As explained before, to carry out the test
one requires estimation of the covariance matrix. We estimate the covariance matrix by the sample
covariance matrix Σ̂n = ((σ̂n,u,v)) using the formula

Σ̂n =
1

n− 1

n∑

i=1

(Xn,i − µn,0)(Xn,i − µn,0)
′, (6.14)

where µn,0 is value of the mean vector under the null hypothesis and the prime denotes the transpose.
Table 1 provides the observed Type I error rates when the sup-norm is used.

The primary purpose of Table 1 is to describe the basic problems that arise in statistical analyses
of data sets using our methodology. It is clear from Table 1 that our methodology works, in the
sense of yielding Type I error rates which are closer to the nominal error rates, if the covariance
matrix is known. It is not surprising that Test 1 does poorly since one is estimating 5050 parameters
from 10 data vectors, each of dimension 100. However, an important observation is that in Test 2,
when the true covariance matrix Σ is not the identity matrix, assuming independence or “by-gene”
analysis yields substantially inflated Type I error rates. This raises three important questions: (i)
suppose one were to model the covariance structure correctly, can one improve the Type I error
rate? (ii) What are the consequences of mis-modeling the covariance structure?, and (iii) is there an
alternate way to estimate the covariance matrix without making any structural assumptions? Our
next simulations address these questions.
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ρ = 2 ρ = 4 ρ = ∞
Case 1 0.0488 0.0482 0.0462
Case 2 0.0838 0.0806 0.0626
Case 3 0.2752 0.2558 0.1474

Table 2: Comparison of Type I error rates for various norms under different information concerning
the covariance matrix.

We begin with an experiment addressing questions (i) and (ii). In this experiment we assume the
population covariance to have AR(1) structure, as in (6.12), with parameters σ2 = 3 and r = 0.8.
We consider three cases. Case 1 corresponds to the situation that the user knows the true Σn.
Case 2 corresponds to the case that the user correctly models the structure to be AR(1), while
Case 3 corresponds to the situation where the user incorrectly models the structure to be compound
symmetric while the true structure is autoregressive. If the covariance matrix is modeled to be
compound symmetric, we estimate the covariance parameter using the formula

ρ̂? =
2

b(n)(b(n) − 1)

b(n)∑

u=1

b(n)∑

v>u

σ̂n,u,v, (6.15)

while the common variance is estimated using the formula

σ̂2
n =

1
nb(n) − 1

n∑

i=1

(Xn,i − µn,0)
′(Xn,i − µn,0). (6.16)

If the covariance matrix is modeled using the autoregressive structure, then the autoregressive pa-
rameter r is estimated using the formula,

r̂n =
1
n

n∑

i=1

r̂i, (6.17)

where

r̂i =

∑b(n)−1
j=1 (ξn,i,j − µn,j,0)(ξn,i,j+1 − µn,j+1,0)

∑b(n)
j=1 (ξn,i,j − µn,j,0)2

. (6.18)

The variance parameter is estimated using the formula (6.16). In this experiment we also consider
the role of the norm being used by studying the 2-norm, the 4-norm, and the sup-norm. Of course,
we still have n = 10 and b(n) = 100. Table 2 gives the Type I error rates in this situation. We
notice that the Type I error when the infinity norm is used is much closer to the nominal 5% rate
compared to the results of Table 1 for Test 1 and Test 2 for the AR(1) column. Table 2 suggests
that the effect of the norm is pronounced when the covariance matrix is estimated; furthermore,
the error rates seem to get closer to the nominal values as the norm approaches infinity. When the
covariance matrix is modeled incorrectly, the error rate increases substantially.

To understand the effect of the norm (used for constructing the test statistic) on the Type I
error rate, we performed another numerical experiment with the compound symmetric covariance
structure with σ2 = 2 and σ2

1 = 1.5. We studied several norms starting from ρ = 2 to ρ = 200 with
increments of 1 and the final data point corresponds to ρ = ∞. The dimension of the data vectors
used in this experiment were b(n) = 100, b(n) = 500 and b(n) = 1000. The value of n remained at
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10. The variance and the covariance parameters were estimated using the formulae (6.16) and (6.15),
respectively. Figure 2 gives Type I error rates for different norms for different data dimensions. The
X-axis is ρ and the Y -axis is the observed Type I error rates for the tests.
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Figure 2: Type I error rates as a function of the norm for various dimensions of the parameter space.

The graphs show that as ρ increases, the observed Type I error rates seem to get closer to the
nominal value, even though the nominal rate is not achieved. Additional analysis is required to
understand this phenomenon. Moreover, if one assumed that the covariance matrix is diagonal, that
is, assuming incorrectly that the covariances are zero, then the test constructed using (6.4) yields
an error rate of 0.7292 which is substantially larger than described in Figure 2. This shows that
ignoring the correlations when they are actually present, yields a biased methodology as described
in the last paragraph of the previous section.

We now move on to describe the interaction between the number of parameters in the covariance
matrix, the dimension of the data-vectors, the effect of norms, and incorrect modeling by over
specification of the parameters. For this reason we need to introduce yet another covariance structure
called the heterogeneous covariance structure (HCS). This structure imposes the following conditions
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Data generated using HCS covariance structure
b(n) = 100 b(n) = 500 b(n) = 1000

ρ = 2 0.0986 0.1016 0.1042
ρ = 4 0.1774 0.4732 0.695
ρ = ∞ 0.1602 0.2748 0.367

Data generated using CS covariance structure
b(n) = 100 b(n) = 500 b(n) = 1000

ρ = 2 0.0764 0.0936 0.1042
ρ = 4 0.1344 0.302 0.3582
ρ = ∞ 0.1324 0.3582 0.449

Table 3: Type I error rates under model mis-specifications.

on the covariance matrix, namely

σu,v =




σ2
u + σ2 if u = v,

ρ? if u 6= v.
(6.19)

Again, while it is not necessary that ρ? > 0, as mentioned previously, we will take it to be positive
and equal to σ2. Note that the number of parameters in this case is b(n)+1. We consider two cases.
In the first case, the true Σn is HCS with σ2 = 2 and σ2

u = u, but the user fits CS. The parameters
in this case are estimated as described before. In the second case, the true Σn is CS with σ2 = 2
and σ2

1 = 1.5, but the user fits HCS. In this case, the variance parameters are estimated using the
sample variances for each component. Table 3 provides the observed Type I error rates of the tests
in these cases. Note that as the number of parameters in the covariance matrix increase, smaller
values of ρ yield values closer to the nominal values. In particular, this contrasts with the results
in Figure 2, where the number of parameters in each graph is constant, and then large values of ρ
typically yield observed rates closer to the nominal rate of 0.05. However, also observe that in this
current experiment even if the dimension of the data vector is 1000 and n = 10, the increase in the
Type I error does not exceed 0.0542 when ρ = 2. This shows that our methodology is fairly stable
under various perturbations of the true model. We now move on to study the power associated with
our test procedure.

To study the power we choose µn,0 to be a b(n) dimensional vector all of whose components are
equal to one. The covariance structure is taken to be compound symmetric with σ2 = 2 and σ2

1 = 1.5
There are several alternative hypotheses but we consider the situation where µ = (a, a, · · ·a) for
values of a ranging from 1.25 to 3. As before, we study various data dimensions namely, b(n) = 100,
b(n) = 500 and b(n) = 1000 for ρ = 2, ρ = 4, and ρ = 1000. In Figure 3 the X-axis represents the
values of a while the Y -axis represents the observed power. The graphs clearly show that even with
a sample size of 10 there is reasonable power to detect small differences. It is also clear, expectedly,
that the power to detect small changes decreases as the data-dimension increases. Furthermore,
the power to detect departures from the null hypothesis using the sup-norm based statistic is less
than the statistics with ρ = 2 and ρ = 4. However, the size of the test is closer to nominal for
the sup-norm statistic. This suggests that perhaps there is a very large value of ρ that would yield
a nominal Type I error rate and substantial power to detect departures from the null hypothesis.
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Figure 3: Interaction between the power and the dimension for different norms.

As one would expect, this choice may depend on the variance and the underlying data-distribution.
Evaluating such a value of ρ as a function of the variance is outside the scope of this paper. However,
our simulation results in the next two sections shed some light on this scenario.

Thus what is left to understand is whether it is possible to develop optimal procedures based on
the techniques in this paper without making any structural assumptions concerning the covariance
matrix. This is question (iii) described previously. Indeed, this is the one of the points of [11], where
their techniques do not take into account the structure of the dependencies between the variables.
We address this issue in the next subsection.

6.3 Unstructured Covariance Estimation and Shrinkage

It is well-documented in the statistical literature that estimation of the covariance matrix is a
difficult problem. It is known that the traditional method of moments estimator is the same as the
maximum likelihood estimator when the data distribution is multivariate normal. When the number
of variables is larger than the sample size [14] and [28] amongst others have clearly demonstrated
that the sample covariance matrix behaves poorly in terms of the mean square error. Borrowing the
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Unstructured with Shrinkage
n ρ = 2 ρ = 4 ρ = ∞ mean λ var λ
10 0.0358 0.0342 0.0520 0.8886 0.0002416
20 0.0504 0.0330 0.0464 0.9448 0.0003191
30 0.0476 0.0390 0.0374 0.9621 0.0003333
40 0.0498 0.0428 0.0436 0.9694 0.0003322
50 0.0456 0.0404 0.0434 0.9732 0.0003223
60 0.0548 0.0472 0.0408 0.9743 0.0003018
70 0.0504 0.0426 0.0424 0.9762 0.0003073
80 0.0534 0.0444 0.0390 0.9756 0.0003008
90 0.0498 0.0486 0.0504 0.9762 0.000306
100 0.0458 0.0402 0.0438 0.9767 0.0003047

Table 4: Type I error rates with unstructured covariance matrix and Shrinkage

idea from shrinkage estimation, [14] developed an alternative estimator of Σn by taking a convex
combination of the unstructured sample covariance matrix and a structured covariance matrix. Their
estimator is given by

Σ?n = (1 − λ)Σ̂n + λΣ̃n, (6.20)

where Σ̂n is the method of moments estimator and Σ̃n is an estimator assuming a particular structure
for the covariance matrix. The parameter λ can be estimated from the data and has a closed form
expression when Σ̃n is taken to be an identity matrix, compound symmetric structure, heterogeneous
compound symmetry structure and many other structures. The estimator Σ?n possesses the following
properties: it (i) minimize the quadratic loss, (ii) has minimal asymptotic risk in a certain class, (iii)
is orthogonally invariant and invertible, and (iv) is consistent in a general asymptotic framework
based on what is referred to as Kolmogorov asymptotics. These properties makes attractive for use
in inference.

In this section, we describe a numerical experiment to evaluate if some of the difficulties de-
scribed in the previous subsection due to covariance matrix estimation can be minimized by using
the shrinkage method for estimating the covariance matrix. For this reason, we first generate a
random population covariance matrix Σn and fix this matrix. We now generate data from a normal
population with mean µn and covariance matrix Σn. In our simulations we chose for Σ̃n, a diagonal
matrix ( which is referred to as Target D in [28]), namely a heterogeneous compound symmetry
structure with covariances equal to 0. As explained in [28] this choice also yields a positive definite
Σ?n. In our numerical experiment we study the performance of our methodology when choosing this
aforementioned shrinkage estimator. We also look at the role of the norms and the sample sizes.
The dimension of the parameter space is fixed at b(n) = 1!00, and again n = 10. Table 4 shows the
Type I error rates, the mean amount of shrinkage, and the variance in the shrinkage. It is clear that
as the sample size increases, the mean of the shrinkage parameter increases to 1 thereby suggesting
that the estimate gets closer to the structured matrix. We also observe from Table 4 that as n
increases, small values of ρ yield Type I error rates that are closer to the nominal 5% level, while
for small values of n , ρ = ∞ yields error rates that are closer to the 5% level. Thus, the results of
this numerical experiment suggest that our methodology combined with a shrinkage estimation of
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ρ = 2 ρ = 4 ρ = ∞ mean λ var λ mean λv var λv
p = 100 0.1312 0.0838 0.0686 0.8361 0.0009 0.2617 0.0029
p = 500 0.1914 0.0874 0.057 0.8555 0.0002 0.2485 0.0009
p = 1000 0.237 0.1042 0.0526 0.8493 0.0002 0.2402 0.0005

Table 5: Type I error rates for using information from leukemia data set shrinking both the variances
and covariances.

the covariance matrix could yield a sound technique for data analyses. We pursue this aspect in the
subsections below.

6.4 Numerical Experiment using Information from Leukemia Data

To illustrate the methodology, we now use information in a publically avaibale data set called the
leukemia data set described in [7]. This data set contains the gene expression values for two types of
leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). We use the same
pre-processing step as described in Section 3.1 of [8], We retain 3571 genes from 72 patients, 38 from
ALL group and 25 from AML group. On the remaining 3571 genes, we apply the standardization
technique described in Section 3.3 of [8].

In this simulation study we only use the information from the AML group. We consider
b(n) = 100, 500, 1000 dimensions. The simulation experiments are based on data generated from
Nb(n) (µn,Σn) for a sample of size n = 10. We now describe how µn and Σn are obtained from the
data.

1. Fix b(n) (e.g. b(n) = 100).

2. Randomly select b(n) genes (without replacement) from the 3571 genes in the data set.

3. From the 25 AML patients estimate the mean from these b(n) genes. Call the resulting estimate
µn.

4. From the 25 AML patients estimate the covariance matrix, shrinking the covariances, from
these b(n) genes. Call the resulting estimate Σn.

Now, for a fixed b(n), we use the same µn and Σn in all 5000 simulations.
We shrunk the variances as well as the covariances; λ denotes the optimal covariance shrinkage

factor where λv denotes the optimal variance shrinkage factor. Table 5 provides the Type I error
rates for this one-sample problem.

6.5 Mixture distributions and the role of variances

Motivated by the results of the previous section, in this section we present numerical experiments
that bear similarities with real data sets. For this reason, we study situations when data are from
normal or mixtures of normal populations. To make our results comparable and provide insight into
various phenomenon, it is necessary to understand the variances and covariances especially when
the covariance matrix is assumed to be unstructured. We begin with a scenario when the data
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Σ Known
(n, b(n)) ρ = 2 ρ = 4 ρ = ∞
(10, 100) 0.1714 0.1014 0.0596
(20, 200) 0.1856 0.096 0.0456
(30, 300) 0.213 0.1048 0.0454
(40, 400) 0.2608 0.1304 0.0456
(50, 500) 0.277 0.15 0.045

Σ Unknown
(n, b(n)) ρ = 2 ρ = 4 ρ = ∞ mean λ var λ
(10, 100) 0.0532 0.043 0.0600 0.8489 5.33E-04
(20, 200) 0.0948 0.073 0.0724 0.8712 3.80E-04
(30, 300) 0.1242 0.089 0.073 0.8354 4.00E-04
(40, 400) 0.1314 0.1018 0.0782 0.7662 4.41E-04
(50, 500) 0.143 0.105 0.0714 0.7335 4.14E-04

Table 6: Type I error rates for known and unknown Σ as a function of ρ and the dimension.

are generated from a mixture of normal populations. That is, let X be a generic b(n) dimensional
random variable with distribution given by

X ∼




N (µn,Σ

a
n) with probability p

N (µn,Σbn) with probability q = 1 − p.
(6.21)

In the above, p is called the mixing proportion and was taken to be 0.5 in all our simulations. µ is
the mean of the distribution and was randomly chosen from the uniform distribution and held fixed,
as described previously. The covariances matrices, of order b(n) × b(n), are given by

σau,v =





1 if u = v = 1,
1

log(u+1)
if 2 ≤ u = v ≤ b(n),

.01 if 1 ≤ u 6= v ≤ b(n).

σbu,v =





3 if u = v = 1,
3

log(u+1) if 2 ≤ u = v ≤ b(n),

.008 if 1 ≤ u 6= v ≤ b(n).

These covariance matrices were chosen so that there was ease in computation, and that the conditions
are close to those required in Theorem 6. The dimension of the data vectors are chosen to be
b(n) = 10n. Type I error rates are given in the Table 6. The covariance matrix is estimated using
the shrinkage method described previously. The results show that, if Σn is known and satisfies the
conditions indicated above, then the error rates are close to nominal; if Σn is unknown, then using
the shrinkage technique of estimation, error rates are closer to nominal even though there is a small
inflation in the error rates. The general trend again seems to suggest that large values of ρ yield
results closer to the nominal value. However, since the data were generated to satisfy conditions
close to those required in Theorem 6, perhaps other situations would emerge under parameter choices
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Case 1: Small variances
b(n) = 100 b(n) = 500 b(n) = 1000

1
b(n)

∑b(n)
u=1 σ

?
u,u 2.3304 2.3238 2.328

minσ?u,u 1.8154 1.8377 1.8356
maxσ?u,u 2.8074 2.8443 2.8359

2
b2(n)−b(n)

∑
v>u σ

?
u,v -0.001 -0.0003 -0.0001

minu 6=v σ?u,v -0.0353 -0.0189 -0.0137
maxu 6=v σ?u,v 0.0336 0.0201 0.0141
2

b2(n)−b(n)

∑
v>u |σ?u,v| 0.0078 0.0035 0.0024

Case 2: Large variances
b(n) = 100 b(n) = 500 b(n) = 1000

1
b(n)

∑b(n)
u=1 σ

?
u,u 10.6312 51.9486 101.156

minσ?u,u 8.8822 47.0884 93.5997
maxσ?u,u 12.1996 56.5424 107.4229

2
b2(n)−b(n)

∑
v>u σ

?
u,v -0.0161 -0.0076 -0.0051

minu 6=v σ?u,v -0.5056 -0.571 -0.5793
maxu 6=v σ?u,v 0.5278 0.5456 0.6362
2

b2(n)−b(n)

∑
v>u |σ?u,v| 0.1073 0.1041 0.1012

Table 7: Properties of the covariance matrix with “small” and “large” variances.

more in line with the conditions required for the asymptotic normality results in Theorem 7 and
Remark 11.

We now move on to consider the variance issue. In the previous sections, our results indicated
that under mis-specifications the error rates start deviating from the nominal values. Furthermore,
there were differences between the error rates for UN, HCS and CS structures (see for instance Table
1 and Table 3). It is not immediately clear if these results are comparable since the construction of
the test statistic did not involve the covariance matrix, as is the case in most traditional statistical
problems. However, the test performed did involve the covariance matrix. In particular since the
covariance matrices used in the simulations were chosen at random and kept fixed for simulations,
(especially for covariance matrices which are unstructured and with HCS structure) one cannot
conclude, without further evidence, that the results “depend only on the number of parameters
involved and not on the actual values of variances and covariances in a covariance matrix”. Our
next numerical experiment addresses this issue, and in the process illustrates that our methodology
possesses these invariance properties normally prevalent in traditional t-type statistics.

We now describe the experiment that sets the variances and covariances on a comparable scale.
For this experiment, we resort to data from the normal distribution. We consider three situations:
(i) the population covariance matrix is unstructured; (ii) the population covariance matrix has CS
structure; and (iii) the population covariance matrix has HCS structure. In Table 7, we describe
properties of the unstructured covariance matrix Σn = ((σ?u,v)) with “small” and “large” variances.
We use this matrix to construct covariance matrices with CS and HCS structure as described below.

To allow comparisons between results, we set the variance parameter σ2
1 of the covariance
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UN
ρ = 2 ρ = 4 ρ = ∞ mean λ var λ

b(n) = 100 0.0326 0.0314 0.0486 0.8889 2.29E-04
b(n) = 500 0.0128 0.0676 0.1698 0.8888 9.30E-06
b(n) = 1000 0.003 0.11 0.2732 0.8888 2.36E-06

CS
ρ = 2 ρ = 4 ρ = ∞ mean λ var λ

b(n) = 100 0.0374 0.0384 0.0414 0.8889 2.35E-04
b(n) = 500 0.04 0.0404 0.0488 0.8889 8.98E-06
b(n) = 1000 0.044 0.0458 0.0432 0.8889 2.39E-06

HCS
ρ = 2 ρ = 4 ρ = ∞ mean λ var λ

b(n) = 100 0.0452 0.0416 0.06 0.889 2.30E-04
b(n) = 500 0.0368 0.11 0.18 0.8889 9.19E-06
b(n) = 1000 0.036 0.2488 0.3018 0.8889 2.34E-06

Table 8: Type I error rates for normal model using various covariance structures-the case of small
variances

matrix with CS structure to be 1
b(n)

∑b(n)
i=1 σ

?
u,u; we also set the covariance parameter σ2 to be

2
b2(n)−b(n)

∑
v>u |σ?u,v|. In the context of HCS, the parameters are taken as follows:

σu,v =





2
b2(n)−b(n)

∑
v>u |σ?u,v| if u 6= v

σ?u,u + 2
b2(n)−b(n)

∑
v>u |σ?u,v| if u = v.

(6.22)

Of course, the sum
∑

v>u is actually
∑

b(n)≥v>u≥1, but we suppress that to simplify our notation.
We consider three cases: (i) when the statistician models the data as unstructured and uses

the shrinkage algorithm to estimate the covariance matrix; (ii) The statistician models the data
correctly as CS ; and (iii) the statistician models the data correctly as HCS. In cases (ii) and (iii)
the variance and covariance parameters are estimated using the appropriate formulae described in
the earlier sub-sections of this section. Table 8 provides error rates for the three cases when the
variance is “small” while Table 9 provides the error rates when the variance is “large”.

It is clear from these tables that as the number of parameters increase, and if the variances do
not decay, both UN and HCS structures yield error rates that are different from the nominal values
(compare Table 6). However, with CS structure the method yields error rates that are close to the
nominal values, even for large dimensions, since such a structure requires estimation of only two
parameters. This phenomenon seems to be consistent for both small and large variances in the data
set.

Finally, we study the behavior of shrinkage methods when the distribution is a mixture distribu-
tion and no structure is assumed. The two covariance matrices are taken to be the Case 1 of Table 7
and the compound symmetry structure derived from Case 1, Table 7, as explained previously. The
error rates are summarized in Table 10.

Our results clearly show that for smaller values of the dimension, larger ρ yields results closer to
the nominal value while smaller values of ρ yield optimal results for larger dimension. The simulation
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UN
ρ = 2 ρ = 4 ρ = ∞ mean λ var λ

b(n) = 100 0.0378 0.0344 0.055 0.8883 2.30E-04
b(n) = 500 0.0082 0.0718 0.1762 0.8888 9.39E-06
b(n) = 1000 0.0036 0.1068 0.2866 0.8889 2.40E-06

CS
ρ = 2 ρ = 4 ρ = ∞ mean λ var λ

b(n) = 100 0.0432 0.0454 0.0462 0.8888 2.35E-04
b(n) = 500 0.0414 0.0434 0.0488 0.8889 9.20E-06
b(n) = 1000 0.0394 0.039 0.046 0.8889 2.36E-06

HCS
ρ = 2 ρ = 4 ρ = ∞ mean λ var λ

b(n) = 100 0.0394 0.0352 0.0574 0.8883 2.33E-04
b(n) = 500 0.037 0.118 0.199 0.8889 9.12E-06
b(n) = 1000 0.0432 0.2578 0.3214 0.8889 2.35E-06

Table 9: Type I error rates for a normal model using various covariance structures-the case of large
variances

ρ = 2 ρ = 4 ρ = ∞ mean λ var λ
b(n) = 100 0.0324 0.0332 0.0574 0.8876 2.55E-04
b(n) = 500 0.0178 0.0778 0.1786 0.8874 1.21E-05
b(n) = 1000 0.0114 0.1336 0.302 0.8873 3.93E-06

Table 10: Type I error rates for mixture model with covariance matrix estimated using the shrinkage
algorithm
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results are suggestive that this phenomenon is independent of the variances and covariances and the
choice of the data distributions.

Thus based on our simulation results contained in Tables 1 through 10 and theoretical results,
it is reasonable to draw the following conclusions: the methodology proposed in Section 6 combined
with shrinkage estimation of covariance matrix works well (in the sense of yielding nominal Type
I error rates) with small sample size and reasonably large dimension under no assumptions on the
structure of the covariance matrix. If the covariance matrix is assumed to be structured with few
parameters, then the methodology works even when the data dimension is very large. However, if
the number of parameters in the structured matrix also is large, then the data dimension needs to
be reasonable for valid inference. Furthermore, mis-modeling the covariance structure would yield
substantially biased inference, the worst case being assuming the covariance structure to be the
identity (Table 1). All these phenomenon hold when the sup-norm is used for constructing the test
statistic. Also, since the conditions for asymptotic normality hold more generally for the sup-norm
case, this norm is convenient to use for data analyses. In addition, if the conditions for the sup-norm
are satisfied and the data dimension is very large relative to the sample size, use of the 2-norm for
data analyses may yield more accurate results (Table 8 and Table 9). Further simulation results
using structured covariances that arise in these problems are available in [13].

7 Identifying Differentially Expressed Genes

In micro array analyses, it is often the case that a scientist is concerned with identifying if two sets
of genes are differentially expressed. Methods like cluster analysis are not confirmatory but does
provide some insight into identifying a set of differentially expressed genes. The confirmatory tool
currently in popular use, typically involves methods like t−test and FDR. In this section, we describe
how methods of this paper can be adopted to identifying the differentially expressed genes. Since
identifying differentially expressed genes relates to the mean expression profiles of two populations,
it is two-sample problem. We now describe how to adopt the methodology from Section 6.1 to
handle a particular case of a two-sample problem related to our data analysis. Since we have two
populations we will use the superscript (i) to denote the appropriate population. For instance, N (j)

n,i

will represent the number of genes from population j. We deal with the case N (1)
n,i = N

(2)
n,i = b(n)

and that Rn,i,j ≡ 1. Under this model assumption, let µ
(j)
n = E( ~X

(j)

n ). The null hypothesis for
the two-sample problem is µ

(1)
n = µ

(2)
n . Now, let n1 and n2 denote the number of replicates from

each group. Then, we use the quantity ||S(1)
n,n1n

−1/2
1 −S(2)

n,n2n
−1/2
2 ||ρ = ||T̃ (1)

n,n1
− T̃

(2)

n,n2
||ρ as the test

statistic and compare it to its distribution obtained via monte carlo methods.
We now apply this methgodology to the leukemia data set described in [7], which we also used

in the previous section. We analyzed the sixteen genes given in Table 2 of [31]. The value of the
test statistics, using our methods, were determined to be 4.4992, 2.7396, and 2.0250 for 2-norm,
4-norm, and sup-norm respectively. The corresponding p-values were all less than 10−6 showing
that the genes are differentially expressed. The same conclusion was also obtained by Xiting et. al.
([31]) using different methods. More importantly, as explained in [31], these genes have biological
significance and the three existing statistical methods in popular use did not identify them to be
differentially expressed.
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8 Concluding Remarks

In this paper we developed results concerning the joint consistency and joint asymptotic normality of
estimators of parameters of several variables whose dimension increases as the sample size increases
by viewing it as an infinite dimensional problem. We used these results to develop test statistics
and their asymptotic limit distributions. In particular, existence of the limiting infinite dimensional
Gaussian distributions justifies the methodology described in Section 6. Our simulation results
bring out the importance of estimating the covariance matrix well. Furthermore, although our
central limit theorems require technical conditions, when applied to i.i.d. random vectors in the
various settings, some of these conditions are extremely close to being optimal. It is also important
to note that our simulations suggest they yield useful results under a variety of simplifications of
the precise assumptions of these results. Indeed, apart from establishing the infinite dime! nsional
results under various missing mechanisms, our results help develop procedures for joint inference in
multivariate problems where the dimension of the parameter space increases with the sample size. In
particular, our results provide asymptotic justification of the joint marginal inference in a one-way
random effects model with incomplete data and when the number of parameters increase with the
sample size. Extensions of our methodology to more general models and related questions are under
consideration.
Acknowledgements: Authors would like to thank Mr. Bret Hanlon for help with simulations. Mr.
Hanlon is a student of the second author.
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[2] Araujo, A. and Giné, E. (1980). The central limit theorem for real and banach valued random
variables, John Wiley & Sons, New York.

[3] Buldygin, V.V. and Donc̆enko, V.S.(1977). Convergence to zero of Gaussian sequences, Mat.
Zemetki, 21, 531-538.

[4] Chung, K. L. (1974) A Course in Probability Theory, 2nd edition, Academic Press, New York.

[5] Devroye, L. and Gyorfi, L. (1985). Nonparametric density estimation: The L1 view, John Wiley
& Sons, New York.

[6] Feller, W. (1966). An introduction to probability theory and its applications, John Wiley & Sons,
New York.

[7] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,Mesirov, J. P., Coller,
H., Loh, M., Downing, J. R., Caligiuri, M.A., Bloomfield, C. D., and Lander, E. S. (1999).
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression
Monitoring, Science, 286, 531-537.

[8] Dudoit, Sandrine, Fridlyand, Jane, and Speed, Terence P. (2002).Comparison of discrimination
methods for the classification of tumors using gene expression data, J. Amer. Statist. Assoc.,
97, 77–87.

[9] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables, Journal
of American Statistical Association, 58, 13-30.

[10] Huber, P.(1973). Robust regression:asymptotics, conjectures and Monte Carlo, The Annals of
Statistics, 1, 799-821.

[11] Kosorok, M. and Ma, S. (2007). Marginal asymptotics for the large p, small n paradigm: With
application to Microarray data, The Annals of Statistics, 35, 1456-1486.

[12] Kuelbs, J. (1978). Some exponential moments of sums of independent random variables, Trans-
actions of the American Mathematical society, 240, 145-162.

[13] Kuelbs, J. and Vidyashankar, A.N. (2008). Simulation Report using Structured Covari-
ances, Preprint.

[14] Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large dimensional covariance
matrices, Journal of Multivariate Analysis, 88, 365-411.

[15] Lu, Yan, Liu, Peng-Yuan, Xiao, Peng, and Deng, Hong-Wen. (2005). Hotelling’s T2 multivariate
profiling for detecting differential expression in microarrays, Bioinformatics, 21, 3105-3113.

[16] Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, The An-
nals of Probability, 3, 1269-1283.

57



[17] Muirhead, R.J. (1982).Aspects of multivariate statistical theory, John Wiley & Sons, New Jersey.

[18] Okamato, Masashi(1958). Some inequalities relating to the partial sum of binomial probabilities,
Annals of the Institute of Statistical Mathematics, 10, 29-35.

[19] Parthasarathy, K. R. (1967). Probability measures on metric spaces, Academic Press, New York.

[20] Paulauskas, V. (1984). On the central limit theorem in c0, Probability and Mathematical Statis-
tics, 3, 127-141.

[21] Paulauskas, V., Rackauskas, A., Sakalauskas, V. (1983). Central limit theorems in the space of
sequences converging to zero, Litovskii Matematicheskii Sbornik, 23, 163-174.

[22] Portnoy, S. (1984). Asymptotic behavior of M-estimators of p regression parameters when p2

n

is large. I. Consistency, The Annals of Statistics, 12, 1298-1309.

[23] Portnoy, S. (1985). Asymptotic behavior of M-estimators of p regression parameters when p2

n

is large. II. Normal Approximation, The Annals of Statistics, 12, 1298-1309.

[24] Portnoy, S. (1986). On the central limit theorem in Rp when p → ∞, Probability Theory and
Related Fields, 4, 571-583.

[25] Portnoy, S. (1987). A central limit theorem applicable to robust regression estimators, Journal
of Multivariate Analysis, 1, 24-50.

[26] Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when
the number of parameters tends to infinity, The Annals of Statistics, 15, 356-366.

[27] Ross, Sheldon (2006). A First Course in Probability, 7th edition, Pearson Prentice Hall, New
Jersey.

[28] Schaffer, J. and Strimmer, K.(2005). A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics, Statistical Applications in Genetics and
Molecular Biology, 4, 1-30.

[29] van der Lann, M.J., and Bryan, J. (2001). Gene expression analysis with parametric bootstrap,
Biostatistics, 2, 445-461.

[30] van der Vaart, A. W., and Wellner, J.A. (1996). Weak Convergence and Empirical Processes,
Springer, New York.

[31] Xiting Yana, Minghua Denga, Wing K. Fungb and Minping Qian (2005). Detecting differentially
expressed genes by relative entropy, Journal of Theoretical Biology, Volume 234, Issue 3, Pages
395-402.

58


