
Answers to supplemental problems:

1) 7.67/7.84/7.10.8

A one-directional alternative obviously makes sense here.  Why?  Because the 
physiologist is interested in the levels of HBE, which is secreted during stress.  Runners who 
have been jogging regularly would be expected to have relatively normal levels of HBE when 
resting.  Runners who had just started an exercise program might be expected to have higher 
levels of HBE since they'd be more stressed out.  They certainly wouldn't be expected to have 
lower levers of HBE.  So a one sided test makes sense here.

Write out hypotheses:

H0: There is no difference in HBE levels between regular joggers and new joggers (when
       resting).
H1: New joggers will have higher HBE levels when resting than regular joggers.

Re-do in symbols:

H0: μ1 = μ2

H1: μ1 < μ2  

(Note: since we're using the Mann-Whitney U-test we need to assume the shape of the two 
distributions is equal - you should always state that assumption).

Pick α = 0.10 (book's suggestion)

Now calculate U*:

K1 Y1 Y2 K2
9 0

1 13
18 1

2 19
23 2
27 2

4 28
31 3

5 32
5 32

33 5
6.5 37 37 5.5
7 39
7 40
8 41 41 8.5

41 8.5
42 9
47 9
49 9

12 52
54 10
59 10

14 60
70 11

_________________________
71.5 93.5



Now check: 71.5 + 93.5 = 165 = 11 x 15, so we probably did things correctly

Also check: K2 > K1, so this is consistent with the alternative hypothesis (otherwise we 
would stop here).

So U* = max(K1,K2) = 93.5.

Now compare U* to Utable:

n = 15, n' = 11, and we want a one tailed test at α = 0.10:

Utable = 108.  Because 108 > 93.5, we fail to reject the H0.

Write out conclusion:

Because we fail to reject H0, we have no evidence to show that HBE levels vary between 
regular runners and new runners (we might even go so far as to say that we have no evidence 
that physical condition affects HBE levels).

2) 9.2/9.2/8.2.2:

It ought to be obvious that this is a paired design.

(a) The standard error of the mean difference should be really easy, since we just have to worry 
about d (the difference):

Remember that:

SEd =
sd

 n
which implies that SE d =

59.3
9

= 19.77

(b) We don't know anything about the diets, so a non-directional alternative (like the book 
suggests) makes sense here:

Preliminaries:

Hypotheses are:

H0: there is no difference in average steer weight gain with diet.
H1: there is a difference in average steer weight gain with diet.

In symbols:

H0: μ1 = μ2

H1: μ1 ≠ μ2  

We pick α = 0.1 (as suggested in the text)



Now we finally calculate t*:

t *
=

22.9
19.77

= 1.158

Now we get ttable:

t table = t 8,0.10 = 1.860

And because t* < ttable, we fail to reject H0.

Our conclusion is that we have no evidence that diet affects the average weight gain of 
our steers.

(c) This is easy:

22.9 +/- 1.860(19.77) gives us {-13.87, 59.67}

(we just pull in the SE for d̄  from above, and use the ttable from above)

(d) So what does the CI mean?  Simply that we are 90% confident that the true mean lies 
between -13.34 and 59.14.  Because this interval includes 0, we see that there is quite possibly 
no difference in the diets (0 implies there is no difference).

(e) Simply putting this information (the differences, not the original samples) into R should 
yield a Q-Q plot similar to the following (it shows things approximately normal):

(Note - an “S” is not so bad since it indicates short tails).



3) This is very straight forward, but before you do anything, you need to know if you're doing a one or 
two sided test (that's what the question is asking).

For a two sided test and α = .05, with d.f. = 8, ttable gives: 2.306
For a one sided test and α = .05, with d.f. = 8, ttable gives: 1.860

Please make sure you ask questions if you don't understand this!!

4) 7.68/7.85/7.S.1

I'm only giving the details for part (a) (for all four parts), and then the answers for (b) and (c). 
You should be able to figure everything out from what is presented below:

Part (a)

1) Assume unequal variances, and two sided test.

First, set up our hypothesis:

H0: μ1 = μ2 H1:  μ1 ≠ μ2

(note: normally you'd want to write out your hypotheses in words first, but since this is just a 
bunch of numbers we're given, we'll stick with the shortcut formulas).

Second, select α:

Use α = 0.05.

Third, calculate t* (and ν (=d.f.)):

SE
y1− y2

=  s1
2

n1


s2

2

n2

=  9.62

12


10.22

13
= 3.96

and so:

t∗=
42−47

3.96
=−1.26

ν is a bit of a pain (as usual, when we assume unequal variances):

first, let's get the SE's of the averages:

SE
y1
=

9.6

12
= 2.77   and  SE

y2
=

10.2

13
= 2.83

so ν becomes:

 =
SE1

2
SE2

2


SE1
4

n1−1


SE2
4

n2−1

=
2.772

2.832


2

2.774

11


2.834

12

=
245.92

5.355.35
= 22.99



(Yes, very slight rounding would get us to 23.  In fact, it's so close, most people wouldn't 
say anything, but let's stick with rounding down to 22).

Fourth, we can finally do our comparison:

|t*| = |-1.26| < ttable 22,0.05 = 2.074 so we fail to reject H0 and conclude that we have
no evidence to show a difference in the means.

And let's not forget our assumptions:

Normally distributed data for both samples.
Unequal variances.
Random samples both within each sample and between the samples.

A lot of work to get this far.  Part (2) will still be a little messy, but 3 & 4 will be very easy.

2) Assume equal variances, and two sided test:

The first two parts are identical to above:

First, set up our hypothesis:

H0: μ1 = μ2 H1:  μ1 ≠ μ2

(note: normally you'd want to write out your hypotheses in words first, but since this is just a 
bunch of numbers we're given, we'll stick with the shortcut formulas).

Second, select α:

Use α = 0.05.

Third, calculate t* (and ν (d.f.)):

This is now different:

SE
y1−y 2 = SE pooled =  s pooled

2  1
n1


1
n2

 where s pooled
2 =

n1−1 s1
2n2−1 s2

2

n1n2−2

so 

s pooled
2

=
119.62

1210.22


1213−2
=

116.04
23

= 98.36

and

SE pooled = 98.36 1
12


1
13 = 3.97



so we get t*:

t *
=

42−47
3.97

=
−5
3.97

=−1.26

and finally, ν (which is really easy this time):

  ν = 12 + 13 - 2 = 23

Fourth, we do our comparison:

t* = 1.26 < ttable 23,0.05 = 2.069 so again we fail to reject H0 and conclude that we
can't tell if the means are different

Comment: notice we did a lot of work and wound up with almost the same numbers as with the 
unpooled test.  This shouldn't be a surprise - the ni's are almost the same (12 and 13), and the si's 
are also very close (9.6 and 10.2).  In this situation the two procedures will be very similar.  For 
the other examples (parts (b) and (c) of this exercise), the two procedures do come out with 
more of a difference.

Oh - and our assumptions are the same as in part (1), except that we're assuming equal 
variances.

3) Assume unequal variances, and one sided test:

First, set up our hypothesis:

(this is a bit different now, since it's one sided):

H0: μ1 = μ2 H1:  μ1 < μ2

(note: normally you'd want to write out your hypotheses in words first, but since this is just a 
bunch of numbers we're given, we'll stick with the shortcut formulas).

Second, select α:

Use α = 0.05.

Third, verify that ȳ1< ȳ2  (i.e., our data matches our H1):

ȳ1 = 42, ȳ2 = 47 , so yes, this matches our alternative hypothesis

Fourth, calculate t* (and ν (d.f.)):

This is now identical to what we did under part (1):

|t*| = |-1.26| = 1.26 and  ν = 22.99, rounding down to 22



Fifth, we do our comparison:

We compare our t* with ttable ,making sure we use the top row now instead of the bottom.

t* = 1.26 < ttable 22,0.5 = 1.717 again we fail to reject H0 and conclude that we have
no evidence to show the μ1 is less than μ2.

Assumptions are as in part (1)

4) Assume equal variances, and one sided test:

(again, this is one sided):

H0: μ1 = μ2 H1:  μ1 > μ2

(note: normally you'd want to write out your hypotheses in words first, but since this is just a 
bunch of numbers we're given, we'll stick with the shortcut formulas).

Second, select α:

Use α = 0.05.

Third, verify that ȳ1> ȳ2  (i.e., our data matches our H1):

ȳ1 = 42, ȳ2 = 47 , so no, this DOES NOT match our alternative hypothesis.

We stop here since we would automatically fail to reject.  No need to calculate anything!!

Comment: if ȳ1> ȳ2  had been true, you could have continued - in this case you'd use 
the pooled variance and pooled d.f. from above, making sure you use the top row in the 
t-tables  (all your answers would have been to same as (2), except you'd need a different 
ttable).

Assumptions are as in part (2).

Part (b)

I'm just giving you the answers - using α  = 0.05, you can follow the outline above for part (a):

SE1 = 0.58 SE2 = 0.44 SE(ybar1 - ybar2) = 0.72 t* = -19.38  ν = 37 (use 30)

s2
pooled = 5.59 SEpooled = 0.74 t*pooled = -18.90  νpooled = 39 (use 30)

ttable two sided unpooled = 2.042 ttable two sided pooled = 2.042

ttable one sided unpooled = 1.697 ttable one sided pooled = 1.697

(Note: you should reject the H0 in all four cases; also note that for the case of H1: μ1 > μ2, you 
can stop and not do any more math)



Part (c)

Again, I'm just giving you the answers at α  = 0.05 , you can follow the outline above for part 
(a):

SE1 = 0.54 SE2 = 0.53 SE(ybar1 - ybar2) = 0.75 t* = -2.65  ν = 9

s2
pooled = 1.75 SEpooled = 0.78 t*pooled = -2.58  νpooled = 10

ttable two sided unpooled = 2.262 ttable two sided pooled = 2.228

ttable one sided unpooled = 1.833 ttable one sided pooled = 1.812

(Note: again, you should reject the H0 in all four cases.  Also, note that again for the case of H1: 
μ1 > μ2, you can stop and not do any more math). 


