Some population ecology...

(There are quite a few equations in here - they look much better with the pdf version).

We’re back to following the text for a while. What follows starts with chapter 5. This will probably take us a while since this (and the next few chapters) are very “dense”, meaning a lot of material is presented in very few pages. (I did warn you we’d be doing math for two or three weeks!).

Life tables.

Life tables are a nice way to get a snapshot of populations. They can provide information on age distribution, growth, mortality, survival, etc.

Since most of you should have had this in ecology, let’s start right in with the example from the text (Himalayan thar introduced into New Zealand - note that this is sometimes called a “static” life table since it takes a snapshot of the population - it doesn’t follow every individual from birth to death).

Table 5.1, page 148. Unfortunately, the authors introduce an annoying rounding error. A slightly revised version is given below:

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>( F_x )</th>
<th>( f_x )</th>
<th>( l_x )</th>
<th>( d_x )</th>
<th>( q_x )</th>
<th>( p_x )</th>
<th>( m_x )</th>
<th>( m_x \times F_x )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>205</td>
<td>1</td>
<td>0.5317</td>
<td>0.5317</td>
<td>0.4683</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>94</td>
<td>96</td>
<td>0.4683</td>
<td>0.0098</td>
<td>0.0208</td>
<td>0.9792</td>
<td>0.005</td>
<td>0.47</td>
</tr>
<tr>
<td>2</td>
<td>97</td>
<td>94</td>
<td>0.4585</td>
<td>0.0244</td>
<td>0.0532</td>
<td>0.9468</td>
<td>0.135</td>
<td>13.095</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>89</td>
<td>0.4341</td>
<td>0.0488</td>
<td>0.1124</td>
<td>0.8876</td>
<td>0.44</td>
<td>47.08</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>79</td>
<td>0.3854</td>
<td>0.0537</td>
<td>0.1392</td>
<td>0.8608</td>
<td>0.42</td>
<td>28.56</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>68</td>
<td>0.3317</td>
<td>0.0634</td>
<td>0.1912</td>
<td>0.8088</td>
<td>0.465</td>
<td>32.55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>55</td>
<td>0.2683</td>
<td>0.0585</td>
<td>0.2182</td>
<td>0.7818</td>
<td>0.425</td>
<td>19.975</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>43</td>
<td>0.2098</td>
<td>0.0537</td>
<td>0.2558</td>
<td>0.7442</td>
<td>0.46</td>
<td>17.02</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>32</td>
<td>0.1561</td>
<td>0.0488</td>
<td>0.3125</td>
<td>0.6875</td>
<td>0.486</td>
<td>17.01</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>22</td>
<td>0.1073</td>
<td>0.0341</td>
<td>0.3182</td>
<td>0.6818</td>
<td>0.5</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>15</td>
<td>0.0732</td>
<td>0.0244</td>
<td>0.3333</td>
<td>0.6667</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>0.0488</td>
<td>0.0195</td>
<td>0.6</td>
<td>0.411</td>
<td>0.411</td>
<td>4.521</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>6</td>
<td>0.0293</td>
<td></td>
<td></td>
<td></td>
<td>0.411</td>
<td>2.466</td>
</tr>
<tr>
<td>&gt;12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.411</td>
<td>4.521</td>
</tr>
</tbody>
</table>

- Column 1 - (x) simply the age (in this case going from 0 to >12)

- Column 2 - \( F_x \) number of individuals found in each age group.
- Column 3 - (fₙ) a modification of column 2. We’ll use it instead of column 2 to generate the rest of the table. We’ll explain how this was generated below. For now it’s a “smoothed” version of Fₙ.

- Column 4 - (lₙ) survivorship. This is the proportion of individuals that survived into the present age. Since we started with 205 individuals at age 0, for age 1 survivorship would be 96/205 = .4683, at age 2, it would be 94/205 = .4585, etc.

- Column 5 - (dₙ) mortality. The proportion in each age group that does not make it into the next age group. Thus, (205-96)/205 = .5317, and this is the proportion of individuals that die at age 0. At age 1, we have 96-94)/205 = .0098 (an easier way - and the usual way - to do this is simply to use l₁ - lₙ₊₁, so for example, at age 1 we have l₁ = .4683, l₂ = .4585, so we have .4683 - .4585 = .0098).

- Column 6 - (qₙ) mortality rate. The proportion at each age interval that doesn’t survive to the next age interval. For example at age 1 we have 96 individuals alive. At age 2, we have 94. 2 individuals died. Thus the proportion of individuals that died is 2/96 = .0208 (or we could use dₙ/lₙ to get the same thing).

- Column 7 - (pₙ) survival rate. Simply 1 - column 6 (the proportion surviving into the next interval).

Some notes on the mysterious column 3:

Note that it doesn’t make sense to talk about proportions larger than one, or similar anomalies.

- raw counts of different age groups will sometimes lead to such anomalies as more individuals alive at age 4 than at age 3. Note that this is obviously possible (e.g. in a declining population).

To avoid this and make sense out of it all, a smooth is applied. The authors use regular least square regression to smooth out the data. To see this, let’s look at the following graph:
Unfortunately, various diagnostics indicate that the regression is not doing a particularly good job (residuals have a curve and funnel - about as bad as things can get). To get a better fit, we transform the variables.

Without going into too many details, a standard thing to do to deal with a funnel is to take a log transform of the y-variable, but in this case more needed to be done, so the authors also included a quadratic term for the x variable (this often gets rid of the curve - in statistical terms, their residual plot didn’t look good until they did this all this).

We’re skipping over a LOT of statistical details here, but it’s not a class in statistics. Incidentally, introductory classes usually don’t cover log transforms or quadratic terms.

If you find yourself in a position were you need to do something like this, make sure you talk to a statistician or take a good regression class.

Note that although we’re not trying to get p-values here, we are trying to do a good job estimating numbers. A regression analysis will do that for us, and if we’re doing that, it probably makes sense to pay attention to the necessary procedures, requirements and assumptions of a regression analysis.
Anyway, the authors wind up with the following (presumably due to rounding errors, it seems impossible to replicate the exact results):

\[ \log_{10} y = 1.9673 + 0.0246x - 0.01036x^2 \]

So to get the numbers in the second column, they simply plug in \( F_x \) for \( x \). For example, for age 3 we get:

\[ \log_{10} y = 1.9673 + 0.0246(3) - 0.01036(3)^2 \]

solving this gets we get \( \log_{10} y = 1.94786 \), and exponentiating this to get our original \( y \), we get \( y = 88.687 \) (the table rounds this off to 89, since "0.687" himalayan thar are kind of silly).

Comment # 1: trying to replicate this gives:

\[ \log_{10} y = 2.10 - 0.0436x - 0.00416x^2 \]

Comment # 2: statisticians usually use natural logs!

Comment # 3: Don’t round anything until you’re ready to print the results.

Comment # 4: It comes out a little closer to the text if we just drop the >12 age category instead of substituting “13” as I did, but the rounding error doesn’t go away.

Important: the number for age = 0 was not derived from the regression equation. There are two good reasons for this:

- we don’t know what’s happening outside the range of our analysis (we have no data at age 0, so how can we know what’s going on there)?

- we can get a better estimate using a fecundity table (more shortly).

Let’s skip of table 5.2 for the moment and look at fecundity (the last two columns in the table above)
- \( m_x \) is the proportion of females giving birth to a daughter during age \( x \). We usually get this information from field data. If we know the proportion of females giving birth at each age category, we can use this to estimate the number of births (simply multiply \( m_x \times F_x \) (or \( f_x \)) at a given time. The last column above gives this figure, and then sums this. This is the number we put in the row for age 0 in the \( f_x \) column (the usual rounding error is present).

- females & daughters are used, since that gives the “per capita” increase (if sons were included, the growth rate would be too high). Since it’s per capita, when we multiply this by the total number of individuals, it all works out.

Rate of increase:

Before we figure out table 5.2, we need to understand this.

Over a year (or reproductive cycle), the increase (or decrease) in a population can be estimated as \( \frac{N_{t+1}}{N_t} \), where \( N \) is population size and \( t = \) time step (e.g. year). This is sometimes given as \( \lambda \) (lambda) and sometimes as \( R \) (depends on the text). But often, instead of either of these, we like to use \( r \), which is given as follows:

\[
    r = \ln(\lambda)
\]

Where \( \ln \) is “natural log”, not \( \log_{10} \). We can estimate \( r \) either as above, or if several years of data are available, we can use a regression and estimate the slope of \( \ln(N) \) on \( t \).

\( r \) is positive if a population is growing, negative if it’s decreasing, and 0 if it’s stable. Not also that it’s symmetric: if \( r = .69 \), the population is doubling, if \( r = -.69 \), then it is halving.

Incidentally, if we try to use life tables to derive \( r \), we could try to use the following equation:

\[
    \sum l_x e^{-r m_x} = 1
\]

this would give an exact number for \( r \) (assuming our life tables are accurate), but is difficult to solve without computer iteration.

Note: this whole subject can get quite complicated quickly, but this is not an ecology class as such, we’re just trying to refresh our memories a bit when it comes to life tables. We’ll be using this a little later to analyze populations.
Stable age distribution:

We also need to be aware that even if the age distribution is stable for a long time, that does not mean the population is not increasing or decreasing.

- e.g., \( l_x \) might stay very constant, but this doesn’t indicate raw numbers.

We use the concept of “stable age distribution” to indicate this. It’s defined as by:

\[
S_x = I_x e^{-rx}
\]

- note that \( S_x \) is essentially the proportion of the population at age \( x \), but only if \( l_x \) and \( m_x \) have remained stable for a some time. The definition as given assumes this (note also that \( r \) depends on \( l_x \) and \( m_x \)).

Table 5.2:

Now we’re ready to look at this one. It incorporates information on population increase (the authors just “give” this) to adjust population figures. Note that there are two things going on here:

1) the \( f_x \) column now indicates the population after “growth”. If you add up the \( Fx \) and \( fx \) columns you get two different numbers (in the previous example, these are the same except for rounding error).

2) The main reason for doing this is to get a better fit (if you thought the statistics for the first example were bad, this one’s much worse). The main objective here was to get good numbers for \( l_x \), \( d_x \), etc.

Essentially, \( f_x \) had to be adjusted in a more complicated way to allow for the rate of increase. Each value of \( F_x \) was multiplied by \( e^{rx} \) (where \( r = .12 \)). The resulting numbers were then smoothed using a probit function (a probit function is a way to do non-linear regression).

Looking just at the \( F_x \) column, superficially it appears that a regular linear regression should gives nice smooth data (it gives nice residuals), but since the author was worried about changing age structures (i.e., the regression equation would become invalid quickly) and comparing several different populations he used this rather more complicated approach.
Briefly, here are the details on table 5.2:

<table>
<thead>
<tr>
<th>Age (x)</th>
<th>F_x</th>
<th>f_x</th>
<th>d_x</th>
<th>q_x</th>
<th>p_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>43</td>
<td>1</td>
<td>0.3721</td>
<td>0.3721</td>
<td>0.6279</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>27</td>
<td>0.6279</td>
<td>0.0233</td>
<td>0.037</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>26</td>
<td>0.6047</td>
<td>0.0233</td>
<td>0.0385</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>25</td>
<td>0.5814</td>
<td>0.0465</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>23</td>
<td>0.5349</td>
<td>0.0233</td>
<td>0.0435</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>22</td>
<td>0.5116</td>
<td>0.0698</td>
<td>0.1364</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>19</td>
<td>0.4419</td>
<td>0.0465</td>
<td>0.1053</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>17</td>
<td>0.3953</td>
<td>0.0698</td>
<td>0.1765</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>14</td>
<td>0.3256</td>
<td>0.0698</td>
<td>0.2143</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>11</td>
<td>0.2558</td>
<td>0.0465</td>
<td>0.1818</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>9</td>
<td>0.2093</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Birth and death rates:**

There are several ways of looking at this, but we’ll stick with the text.

**B - birth rate.** This is the number born/population size (other than newborn). We can calculate it either from field data or from our tables as follows:

\[
B = \frac{1}{\sum S_x - 1}
\]

**e^b - finite birth rate.** Similar to B, but now we ignore death rates, so we get this number by simply by calculating the population size immediately after birth by the population size immediately before birth. It can also be calculated from our tables by:

\[
e^b = \frac{\sum S_x}{\sum S_x - 1}
\]

We can relate B and b (see text, but some simple manipulations of the above should make it obvious)

**D - death rate.** This (and e^d) are defined similarly to the above. D is the proportion of the population that dies over a year:
\[ D = \frac{\sum d_x e^{-rx}}{\sum l_x e^{-rx}} \]

with the needed quantities gotten from the life tables.

\( e^d \) - this is defined as the population size at the end of a time unit (but prior to births), divided by the population at the beginning of the time unit. An easy way to get this is simply \( e^d = 1 - D \).

and \( d \), of course, would be \( \ln(1-D) \).

(The text states \( r = b - d \), but note that \( r \) is in the definition of \( D \), so this is not an easy way to get \( r \)).

Some comments on all the above:

We’re not done yet, though this should be the worst bit.

The authors don’t really differentiate between cohort life tables and static life tables. A cohort life table is one in which a population is followed throughout its entire life cycle (usually difficult to do with larger animals). A static life table takes a “snapshot” of current conditions.

Often the upshot of a lot of this is to get an estimate for \( r \). This can be derived in a number of different ways - the text simply says not to use:

\[ \sum l_x e^{-rx} m_x = 1 \]

and instead to focus on getting two population estimates at different times.

- With the explosion in computer power, it is not unreasonable to simply solve this iteratively (don’t worry, we won’t do it here!).

- There are several other ways of getting at \( r \) using life tables, though most of these are based on estimates. They often also assume you’re using a cohort life table. See a good Ecology text for more explanations.