
Probability

Why do we need to look at probability? Because probability is fundamental to statistics.
Okay, so that doesn’t explain things, but it is true.

We use statistics to figure out how “probable” something is. Let’s suppose we observe
the following data:

Placebo Medicine
156 147
186 163
145 162
168 143
149 147

ȳ 164.4 152.4

What is the probability that the observed change in blood pressure is due to chance? After
all, we could have randomly picked 5 people who just happened to have a lower average
blood pressure - the medicine could be irrelevant (not doing anything).

In other words, if we observe something (an event of some kind), we then figure out what
the probability of that event. In this case, what’s the probability that the medicine works
(more accurately, we figure out the probability that the medicine does not work).

Another way of looking at this is to say, what is the probability of getting the above
result completely due to chance? If this probability is really low, we say the medicine must
be the cause. If the probability is high, then the medicine (probably) isn’t working.

Obviously, we need to understand something about probability before we can answer this
question.

Let’s try another, non-biological, example:

We flip a coin 10 times. There are 11 possible results:

1



Probability 2

Number of heads Number of tails
0 10
1 9
2 8
3 7
4 6
5 5
6 4
7 3
8 2
9 1
10 0

For which of these results would you think that the coin is unfair?

Most likely if you got one of the results near the top or bottom of these columns you’d
think the coin is unfair.

Not convinced? Suppose I give you a dollar for every head, and you give me a dollar
for every tail, and we flip the coin 10 times (my coin!) and we get 0 heads and 10 tails. Do
you really think I’m being honest??

Although it’s not a biological example, when we can figure out the probability of get-
ting 8 tails and 2 heads, we will be done with basic probability.

So, to summarize, we need probability to answer questions about our data: what is the
probability our results are due to chance?

Let’s do some very basic probability. We won’t learn a lot of probability here (prob-
ability is it’s own mathematical discipline!), but we’ll learn enough so we can understand
what some of the statistical procedures we will learn are doing.

So let’s define probability:

Probability is a number that describes the chance of an event happening. We note proba-
bility by:

Pr{E}, or sometimes just P{E}.

This means the probability of the event E.

So what is E? Here are some examples:
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Probability 3

E1: Heads, when tossing a coin.

E2: the # 6, when rolling a dice.

E3: the # 7, when rolling two dice.

E4: the Orioles winning the World Series.

Let’s look at the answers, and then we’ll explain how we got them:

Pr{E1} = 1/2

Pr{E2} = 1/6

Pr{E3} = 1/6

Pr{E4} = ??

Before we go on, we need to make sure of a few things. Notice that any probability must
always be between 0 and 1 (inclusive). More formally we say:

0 ≤ Pr{E} ≤ 1

If you ever calculate a probability outside this range, you have made a mistake!!

Let’s finally define probability. We’ll use a somewhat more old fashioned definition of
probability, but it’s still valid and is easier to understand:

Pr{E} =
the number of ways the event (E) can occur

the number of possible outcomes

So let’s apply this to the probabilities we calculated above:

Pr{E1} = 1/2

Because there is only one way of getting a head, but two possible outcomes.

Pr{E2} = 1/6

Again, because there is only one way of getting a six, but there are six possible
outcomes (the numbers 1 through 6).

Pr{E3} = 1/6

This one is trickier. First we need to figure out how many different ways you
can get a 7:
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Probability 4

dice # 1 dice # 2 sum
1 6 7
2 5 7
3 4 7
4 3 7
5 2 7
6 1 7

In other words, there are six different ways of getting a 7.

How many possible outcomes are there? Each dice has six possibilities, so we
multiply (more below). We have 6× 6 = 36 different possible outcomes.

So we have 6/36 = 1/6.

Pr{E4} =??

This one’s actually quite difficult, and we won’t illustrate this. But we can make
a few comments. For many years the Orioles were one of the worst teams in
baseball, in which case we could assume the numerator is essentially 0, and we
don’t care about the denominator. In those years in which they’re playing well,
the numerator isn’t 0, and the calculation would be rather more difficult.

A totally naive way would be to assume that every team is doing equally well.
Since there are 30 teams in baseball (in 2015) we could just do 1/30 (assum-
ing each team is doing equally well, which is absurd). This is a rather stupid
way do do things, and there’s a reason that professional sports statistics are so
complicated.

Let’s do another example and introduce some new/different notation:

For a single dice, what is the probability of getting a 2, 3, or 4? Let Y = our result and
remember that Y is our random variable. Now we can write our event as follows:

E = 2 ≤ Y ≤ 4

(Note the ≤ symbol, which is not the same as <)

There are three possible ways to get what we want (2, 3, or 4). We have six possible
outcomes (the numbers 1-6), so we can write our probability as follows::

Pr{E} = Pr{2 ≤ Y ≤ 4} = 3/6 = 1/2

We’ll use this kind of notation involving Y a lot.

What if we want to combine the probabilities of different events? Again, we’re just in-
troducing the basics, so let’s do an example.
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Probability 5

Suppose you wanted to figure out the probability of getting a 6 with a dice and heads
with a coin.

You can count up all the possible outcomes, and do it that way, or you can multiply
some probabilities (but see note below about independence).

For instance:

Let Y1 = roll with dice.

Let Y2 = outcome with coin.

Then we have:

Pr{Y1 = 6} = 1/6

Pr{Y2 = heads} = 1/2

So, assuming Y1 and Y2 are independent we have:

Pr{Y1 = 6 and Y2 = heads} = 1/6× 1/2 = 1/12

Let’s discuss the idea of independence for a moment. We assumed our events (dice and coin)
do not influence each other. What I roll on my dice has no effect on what I get on my coin
(and vice-versa). This is important - if the events are not independent, then we can’t multi-
ply to get our probabilities. There are ways to figure this out, but we won’t learn them here.

To be sure we understand independence, let’s assume for a minute that we can connect the
dice to the coin in such a way so that when you roll a 6, you always get heads. Obviously the
multiplication rule is no longer valid (you should make sure you understand the probability
is now 1/6, and not 1/12). The multiplication rule only works if the events are independent.

Many textbooks use “probability trees” to combine probabilities, which are very conve-
nient when you don’t have a lot of outcomes, but can get out of hand very fast otherwise
(as in our example):
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Probability 6
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But sometimes probability trees can be really useful for understanding what’s happening.
Let’s use them to figure out the overall probability of lung cancer. This is obviously differ-
ent in smokers versus nonsmokers.

In Europe, (the U.S. figures are a pain to find), about 28% of people smoke. Smokers
have a 12.7% chance of getting lung cancer, while non-smokers have a 0.3% chance of get-
ting lung cancer. So what’s the overall percentage of people who get lung cancer (smokers
and non smokers)? We can use a probability tree to find out:

Smoke

Do not smoke

0.28

0.72

lung cancer       =  0.03556

no lung cancer  = 0.24444  

 lung cancer       = 0.00216   

 no lung cancer  = 0.71784

0.127

0.873

0.003

0.997
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Probability 7

Let’s talk about conditional probability for a bit. In conditional probability what we’re
interested in is “what is the probability that Event A happens GIVEN that Event B has
happened”.

For example:

Pr{rolling an 8 with 2 dice GIV EN that the first dice shows a 3}

We usually write this as:

Pr{rolling an 8 with 2 dice | that the first dice shows a 3}

where the vertical bar ( | ) means given.

So lets solve the above problem:

One die shows a 3

This implies the other die MUST come up 5.

So what is Pr{rolling a 5}? Easy, just 1/6.

But notice the following (one way of looking at independence):

Pr{rolling an 8 with 2 dice } = 5/36

(You can do the math yourself, just add up all the possible ways of getting an 8 with
2 dice and divide by 36).

This is not the same answer we got above, which incidentally tells us that the events “rolling
an 8 with 2 dice” and “the first dice shows a 3” are not independent.

A good way of thinking about conditional probability is to redefine your universe:

For example, in the above dice rolling experiment, we are no longer interested in all
possible outcomes with two dice, just those in which the first dice you’ve rolled shows
a 3.

So you only look at the results where the first dice showed a 3, and ignore all others
example, you’re not interested in anything if the first die is a 2.

We should mention that we’re being very informal here. There is a much more formal (and
rigorous) approach to conditional probability. If you’re really interested, a good place to
look would be Wikipedia.
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Probability 8

Let’s do an example involving medical testing and Lyme disease. The screening test
for Lyme disease is pretty atrocious and only catches 64% of patients who actually have
Lyme disease. On the other hand, if someone doesn’t have Lyme disease, then the test is
accurate 99% of the time.

Before we can analyze this, we need to know how many people with symptoms similar
to Lyme disease actually have Lyme disease. It turns out those figures are hard to find on
a simple web search. So let’s unrealistically(?) assume about 5% of the people who have
similar symptoms actually have Lyme disease. Then we can then answer the following
question:

Suppose you go to the doctor and the screening test is positive. What is the proba-
bility of actually having Lyme disease?

Let’s see if we can figure it out. First let’s put our probability tree together:

Lyme disease

No Lyme disease

0.05

0.95

(+) test  (true positive)  =   0.032

(-) test  (false negative) = 0.018 

(+) test (false positive)  =  0.0095

(-) test (true negative)  =   0.9405

0.64

0.36

0.01

0.99

Now what we want is the following:

Pr{disease|(+)test}

To do this, we need to look at all positive outcomes (that’s our new ”universe”). All
positive outcomes are given on the probability tree above:

Pr{(+)test} = 0.032 + .0095 = .0415

And out of this, we’re interested in true positives:

Pr{disease|(+)test} =
0.032

.0415
= 0.77

Which is pretty awful, when you think about it.

On the other hand, if the test comes back negative, what’s the probability you don’t
have the disease? In other words, this time we want:

Pr{no disease|(−)test}
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Probability 9

Now we need only at negative outcomes:

Pr{(−)test} = 0.018 + .9405 = .9585

And this time we’re interested in true negatives:

Pr{no disease|(−)test} =
0.9405

.9585
= 0.98

That’s much better. So if the test comes back negative, you have a 98% chance of not
having Lyme disease.

So let’s finally get back to coins and figure out the probability of getting 8 tails in 10 tosses.
Let’s try a totally naive approach and use the definition of probability.

Let’s figure out the number of possible outcomes:

All possible ways of getting 0 tails:

HHHHHHHHHH

All possible ways of getting 1 tail:

THHHHHHHHH

HTHHHHHHHH

HHTHHHHHHH

etc.

All possilbe ways of getting 2 tails:

TTHHHHHHHH

THTHHHHHHH

THHTHHHHHH

etc.

Then you need to list all possible ways of getting 3 tails, then 4 tails, and so forth. You
could do it this way, but you’d be at it for a very long time. Obviously we need to do
something else.
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Probability 10

Let’s introduce the binomial coefficient. In a situation like this where we have a bunch
of trials (tosses), we can figure out how many different possible ways we can get what we
want by using something called the binomial coefficient:(

n

y

)
= nCy =

n!

y!(n− y)!

Some texts (and most calculators) will use nCj, but just about everyone uses the large
() symbols to indicate the binomial coefficient. The “!”symbol means factorial. This is
defined as follows (for any positive integer, x):

x! = x(x− 1)(x− 2)...(2)(1)

For example, 3! = 3×2×1 = 6 and 5! = 5×4×3×2×1. This gets large fast ; try 10! or 20!.

Although it may seem strange, it is also true that 0! = 1. It doesn’t make much sense but
it does work. You’ll just have to take that as a given for now.

So how does that help us? Well if we want to know how many different ways we can
get 8 tails in 10 tosses, we can now plug this information into the binomial coefficient:

n = the number of trials.

y = the number of successes we’re interested in.

If we have 10 tosses, that means n = 10, and if we define tails as a success, we have y = 8.
Let’s plug this into our formula:(

10

8

)
=

10!

8!(10− 8)!
= 45

Don’t just plug this in and use brute force to get an answer - often you can cancel a lot
of terms and even do this by hand (without a calculator) after you’ve simplified it. In any
case, the formula tells us that there are 45 different ways of getting 8 tails if we toss a coin
10 times.

We could now go through and calculate the number of different ways of getting 0 tails,
1 tail, 2 tails, etc., add these up and put this in our denominator. We would then have
45/(our calculated denominator).

This would work, and it’s already much easier, but it is still a bit tedious, so let’s multiply
some probabilities instead:
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Probability 11

The probability of getting a tail = 0.5, so if we want 8 tails, we can multiply (each coin
toss is independent):

0.5× 0.5× 0.5× 0.5× 0.5× 0.5× 0.5× 0.5 = 0.58 = 0.00390625

But if we have 10 trials, that means we have 2 heads, so we multiply that in as well:

0.5× 0.5 = 0.52 = 0.25

Now if we multiply everything together, we get:

0.00390625× 0.25 = 0.0009765625

What we have now is the probability of one way of getting 8 heads and 2 tails, but there
are 45 ways of getting 8 heads and 2 tails, so next we have to multiply this by 45:

45× 0.0009765625 = 0.04395

And finally we know that the probability of getting 8 heads in 10 tosses is 0.0439.

You might wonder why we couldn’t just do 0.510 above. That’s because the probabili-
ties might not always be 0.5 (see below for an example). This is actually an application of
the binomial distribution formula, which is given as follows:(

n

y

)
py(1− p)n−y

Where:

p = probability of success (in one trial).

n = number of trials.

y = number of successes.

In the coin example we’re working on we have:

p = probability of success = 0.5

n = number of trials = 10

y = number of successes = 8

So we have, (much easier now):

Pr{8 tails in 10 tosses} =

(
10

8

)
0.58(1− 0.5)10−8 = 0.04395
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Probability 12

Let’s finish up our survey of probability by using this formula to calculate the the probability
of getting 3 people with red hair in a sample of 9. We’ll use the U.K. for our example; 10%
of people in the U.K. have red hair. So let’s first figure out all our variables:

p = probability of success = probability of red hair = 0.1

n = number of trials = sample size = 9

y = number of successes = number of people with red hair = 3

Let’s plug all this into our formula:

Pr{3 people with red hair in a sample of 9} =

(
9

3

)
0.13(1− 0.1)9−3 = 0.0446

We’ll see many more applications of the binomial distribution formula before we’re done.
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