

Science Content Standards: National Science Teachers Association (NSTA) http://nsta.org/standards

Standard for all K-12

- 1. **Unifying concepts and processes**: *As a result of activities in grades K-12, all students should* develop understanding and abilities aligned with the following concepts and processes:
 - a. Systems, order, and organization
 - b. Evidence, models, and explanation
 - c. Constancy, change, and measurement

Standards for all K-4

As a result of activities in grades K-4, all students should...

- 2. **Science as inquiry**: develop: a) Abilities necessary to do scientific inquiry b) Understanding about scientific inquiry
- 3. **Physical science**: develop and understanding of: a) Properties of objects and materials, b) Position and motion of objects and c) Light, heat, electricity, and magnetism
- 4. **Life science**: develop understanding of: a) The characteristics of organisms, b) Life cycles of organisms and c) Organisms and environments
- 5. **Earth and Space Science**: develop understanding of: a) Properties of earth materials, b) Objects in the sky and c) Changes in earth and sky
- 6. **Science and Technology**: develop: a) Abilities of technological design, b) Understanding about science and technology and c) Abilities to distinguish between natural objects and objects made by humans
- 7. Science in Personal and Social Perspectives: develop understanding of: a) Personal health, b) Characteristics and changes in populations, c) Types of resources, d) Changes in environments and e) Science and technology in local challenges
- 8. **History and Nature of Science**: develop understanding of: Science as a human endeavor (through the use of short stories, films, videos, and other examples)

Science Descurees

- d. Evolution and equilibrium
- e. Form and function

Standards for all 5-8

As a result of activities in grades 5-8, all students should...

- 2. Science as inquiry: develop: a) Abilities necessary to do scientific inquiry b) Understanding about scientific inquiry
- 3. **Physical science**: develop and understanding of: a) Properties and changes of properties in matter, b) Motion and forces and c) Transfer of energy
- Life science: develop understanding of: a) Structure and function in living systems, b) Reproduction and heredity, c) Regulation and behavior, d) Population and ecosystems and e) Diversity and adaptations of organisms
- 5. **Earth and Space Science**: develop understanding of: a) Structure of the earth system, b) Earth's history and c) Earth in the solar system
- 6. **Science and Technology**: develop: a) Abilities of technological design and b) Understanding about science and technology
- 7. Science in Personal and Social Perspectives: develop understanding of: a) Personal health, b) Populations, resources, and environments, c) Natural hazards, d) Risks and benefits and e) Science and technology in society
- 8. **History and Nature of Science**: develop understanding of: a) Science as a human endeavor, b) Nature of science and c) History of science

Science Resources			
Gen Ed Software	Sped. Software	Virtual Manipulatives	Teacher Supplies
Riverdeep <u>www.k12software.com</u>	*Slater Software	Science Online	*Beacon-Ridge
Tom Snyder <u>www.tomsnyder.com</u>	www.slatersoftware.com	http://classroom.jc-	www.beacon-ridge.com
DK www.edresources.com	*IntelliTools	schools.net/sci-	Learning Resources
*Digital Frog International	www.intellitools.com	units/living-things.htm	www.learningresources.
http://www.digitalfrog.com	Mayer-Johnson	Virtual Science	com
*Tool Factory	http://www.mayerjohnson.com	Resources	Walk
http://www.toolfactory.com/	Soft Touch	http://www.lane.k12.or.	(čõQL
	http://www.softtouch.com	us/insttech/vtc/science	With Solesian
		interactive.html	NOA R
			AS VA
*Thank you for providing materials for this presentation			When! The

SOS! Strategies on Standards: Access to Science for Everyone!

Inquiry

- Microscopes (magnifying, talking, digital)
- Slide strips
- Magnifiers
- Binoculars
- Test tubes (with clamps), flasks, plates
- Gyroscope
- Dissecting kit

Measurements

- Centimeter cubes
- Rulers
- Tape measures
- Thermometers
- Scales (various [platform, spring, simple] including electronic)
- Weights
- Graduated cylinders (with enlarged numbers), beakers
- Measuring cups, containers
- Balances
- Timers
- Funnels

Physical Science

- Magnets, magnetic wands
- Iron fillings
- Atom, crystal, and molecular model
- Density cubes
- Force Pulleys
- Wimshurst Generator
- Wave apparatus
- Listening discrimination blocks
- Tuning fork
- Color peddles/color wheels
- Prisms, lenses
- Litmus paper
- Mirrors

Life Science

Animal Studies

- Animals/insects
- Inflatable insects, frogs, butterflies *Natural Science*

CLASSROOM SCIENCE MANIPULATIVES

- Amoeba model
- Butterfly garden/tower
- Bug life tables
- Observational science stations (including bug viewers, jugs, etc.)
- Insect Parts
- Garden laboratories/grow windows
- Life cycle models
- Habitat models
- Nature blocks
- Flower, leaf model
- Frog model
- Eye dropper

Human Anatomy

- Anatomy apron
- Organs models (heart, brain, lung, kidney)
- Skull, torso models
- Skeletons

Earth and Space Science

- Compass
- Rocks, minerals, fossils sets
- Globe (landforms; astronomy)
- Anemometer (measure wind)
- Barometer
- Fault model
- Erupting volcano model
- Tornado tube
- Telescope
- <u>Sling Psychrometer/Humidity Detector</u>
- Cloud forming apparatus
- Rain gauge
- Water cycle model
- Solar system model/simulator
- Rocket system
- Sun/earth models
- Solar system maps

Machines and Technology

- Lego
- Rollercoasters
- Gear sets
- K?NEX

• Cell, DNA models

Science in Personal and Social Perspectives

Health

- Food pyramid
- Stethoscopes
- Blood pressure kit
- Blood typing kit
- Oral Hygiene kit

• Pulleys

General

- Mixtures, indicators, and chemicals
- Pocket charts
- Diagrams
- Stamps
- Science flashcards
- Puzzles

Virtual Manipulatives/Activities for Science Teachers

- <u>http://www.wonderville.ca/support/index.htm</u> science activities (3-7)
- <u>http://www.uen.org/3-6interactives/science.shtml</u> interactive science activities (3-6)
- <u>http://www.medtropolis.com/VBody.asp</u> interactive, 3-D presentations of human body
- <u>http://www.ibiblio.org/virtualcell/index.htm</u> virtual cell tours
- <u>http://faculty.washington.edu/chudler/chgames.html</u> Neuroscience for kids, interactive
- <u>http://faculty.washington.edu/chudler/chmemory.html</u> presentations/simulations of how brain works
- <u>http://frog.edschool.virginia.edu/</u> virtual frog dissection
- <u>http://www.scholastic.com/kids/weather/</u> interactive weather maker
- <u>http://classroom.jc-schools.net/sci-units/matter.htm</u> virtual interactive manipulatives/activities
- <u>http://www.ga.k12.pa.us/curtech/interactive/interactive.htm</u> interactive classroom
- <u>http://www.accessexcellence.org/RC/virtual.html</u> list of virtual dissections, labs, and field trips
- <u>http://www.seed.slb.com/en/scictr/lab/index_virtual.htm</u> virtual experiments for middle and high school
- http://www.virlab.virginia.edu/FS/home.htm University of Virginia Virtual lab
- <u>http://www.iknowthat.com/com/L3?Area=L2_Science</u> experiments and activities for elementary and middle school

Websites that include a collection of links for virtual labs and activities:

- <u>http://www.nist.gov/public_affairs/kids/kidsmain.htm</u>
- http://www.ofsd.k12.wi.us/science/frogdiss.htm
- <u>http://www.hazelwood.k12.mo.us/~grichert/sciweb/misc.htm</u>
- <u>http://sciencepage.org/lessons.htm</u>
- <u>http://www.niehs.nih.gov/kids/links.htm</u>
- <u>http://scorescience.humboldt.k12.ca.us/fast/kids.htm</u>
- <u>http://www.iknowthat.com/com/L3?Area=L2_Science&COOK</u>
- <u>http://www.kidsolr.com/science/page2.html</u>

Science Lesson Plans

• <u>http://www2.nsta.org/sciencesites/default.asp?category=14</u>

- <u>http://dev.nsta.org/ssc/</u>
- http://science.education.nih.gov/

Adaptations to Pollination Parties! Lesson (Grade 4-6, Life Science Standards)

Lesson available on the Web at:

http://school.discovery.com/lessonplans/programs/tlc-butterflies

Learning Disabilities

- Students may have difficulty with the Pollination Parties! worksheet. There are several ways you can adapt the worksheet.
 - Highlight every other row on the plant list so students can better track the rows and boxes.
 - Use a reading guide to help students reach across each row.
 - Adapt the worksheet by enlarging #2. This would provide more space for tracking what is read and for writing and checking the boxes.
 - Separate the individual questions within each numbered part of the worksheet so students can better know what is being asked without getting one question confused with another.
 - Provide websites and/or book resources on the sheet for students to use as references in #4.
 - Lengthen the worksheet with each question on a page so students have room to complete answers.
- Using a software program such as Microsoft Word or PowerPoint can serve as an adaptation
 - Teacher/Student can adjust font style, size, and color to meet student's needs along with adjusting the background color and screen magnification.
 - Use highlighting tool to draw attention to certain items, or help with visual tracking as discussed above.
 - Record/insert audio directions and/or insert comments throughout the worksheet to provide additional directions or hints.
 - Have direct hotlinks to websites as references.

Visual Impairments

- Many of the adaptation described for students with learning disabilities work well for students with visual impairments.
- Additionally students with visual impairments may need the worksheet in large-print, printed in Braille, or to complete the worksheet online with text/screen reading software.

Cognitive Disabilities/Autism

- Students with cognitive disabilities may benefit from the adaptations described above, but also may require additional modifications to help support their learning needs and academic level.
 - Provide students with a checklist with step-by-step directions of the individual tasks. Include picture symbols for students as needed.
 - o Have students answer the questions using a communication board, communication device, expanded keyboard
 - Adapt the content/complexity by providing pictures of the plants, audio recordings of the lesson and/or resource information, and/or have pictures already available, having students sequence them correctly
 - Adapt the content/complexity by asking students to select between only a few number of plants and/or those most familiar to the student
 - For students who need a more simplified worksheet, reduce the number of questions. Limit #1 and #5 to one question. Let the student select which question they want to answer. Provide possible answers to questions for students to select. Provide the possible answers in picture form.
 - Instead of drawing the pollination process, have students use puzzles or puppets to show understanding.

All Disabilities

• The ability for students to work with a partner or in groups not only provides the support for completing tasks, but encourages social interactions that may be of benefit to all students involved!

Presenters

Marci Kinas Jerome	Cindy George	Anna Evmenova
Instructional Faculty	Assistive Technologist	Assistive Technology Ph.D. Student
mkinas@gmu.edu	cgeorge4@gmu.edu	aevmenov@gmu.edu

Helen A. Kellar Institute for Human disabilities, George Mason University4400 University Dr., MS 1F2, Fairfax, VA 22030703-993-3670800-333-5879

To dos for presentation:

Alter worksheet Make PowerPoint for worksheet Augcom for sequencing Overlay for plant selection – automatic to resource info Puzzle Puppets