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Abstract

We present our initial experimental findings from
the collaborative deployment of network Anomaly
Detection (AD) sensors. Our system examines the
ingress http traffic and correlates AD alerts from
two administratively disjoint domains: Columbia
University and George Mason University. We show
that, by exchanging packet content alerts between
the two sites, we can achieve zero-day attack detec-
tion capabilities with a relatively small number of
false positives. Furthermore, we empirically demon-
strate that the vast majority of common abnormal
data represent attack vectors rather than false posi-
tives. We posit that cross-site collaboration enables
the automated detection of common abnormal data
which are likely to ferret out zero-day attacks with
high accuracy and minimal human intervention.

I. INTRODUCTION

Automated zero-day and polymorphic attacks
pose a critical widespread threat to web servers.
Network-based Anomaly Detection (AD) is re-
garded as a potential defense to this very diffi-
cult to identify threat. However, AD sensors often
suffer excessive false positive rates that require an
unacceptable amount of human effort to properly
resolve. When an alert is generated, the operator
does not have a well defined “attack signature” to
analyze — she must drill down to packet content in
order to understand the nature and validity of the
alert. Therefore, to distinguish a true attack from
a legitimate but anomalous packet, operators have
to manually sift through the alerts and offending
packet content. On the other hand, any attempt to
reduce the rate of false positives by modifying the

2Department of Computer Science
George Mason University

{shiremag, astavrou}@gmu.edu

sensitivity of the AD sensor may reduce the true
positive detection rate.

In this paper, we present results using a work-
ing alert exchange architecture with an extensive
section on model comparisons over an extended
period of time. Currently, to limit the false positives,
AD sensor outputs are typically correlated with
other evidence to distinguish true attacks from false
alarms. For instance, see shadow servers in [1].
We propose a large scale network of AD sensors
distributed across disjoint domains that exchange
and correlate web server content alerts to identify
widespread zero-day attacks in real time. This net-
work would analyze ingress traffic to some sample
of collaborating web servers. Sensors could be
deployed at each domain or at a common peering
point. The zero-day attacks found could then be
communicated broadly.

The results from an initial deployment of the
system across two administrative domains on the
Internet, support the feasibility and accuracy of such
a system. Additionally, we present a method of
comparing normal models between sites to poten-
tially identify sites with distinct normal traffic flows.
We conjecture that each administrative domain may
detect zero-day attack vectors as abnormal content
since, by definition, zero-day attacks are data de-
livered to a service that have not been seen before
and are not contained in a signature database. Each
site will also will classify some legitimate traffic as
abnormal thus generating false positives. However,
it is likely that this traffic will only be seen at a
single site: errors of this nature are not likely to be
similar at different domains because normal traffic
flows will be different. The same (or nearly the



same) abnormal packet content seen at two or more
sites is most likely a widespread attack vector rather
than a false positive. Hence, correlating abnormal
data across two or more sites in real-time may
detect and accurately identify zero-day attacks. In
presented results, we manually confirm the attack
vectors in our correlated alerts. The number of zero-
day attacks specifically depends on which signature
engine the attacks are compared to. Furthermore,
we claim that real-time filtering of zero-day attacks
against web servers is feasible with essentially
no human intervention by automatically filtering
common abnormal content.

The strategy to correlate common abnormal con-
tent will detect zero-day attacks that do not use
sophisticated polymorphic engines. In the case of
polymorphic attacks, where each infection produces
an entirely new version of the attack for each
propagation attempt [2], it is unlikely this cross-
domain correlation strategy will work. One should
not expect to see any common attack vectors. In
those cases, correlating AD alerts with host-based
instrumented shadow servers is a likely better strat-
egy to detect zero-days and reduce false positives.
However, as it now stands today, most web-based
attacks we have detected deliver their payload as
relatively short PHP arguments, and do not con-
tain polymorphic attack engines nor have we seen
code attempting to download polymorphic variants.
Hence, we posit that the cross-domain correlation
strategy is effective against the large class of zero-
day attacks targeting web-based applications and
services.

To validate our claims, we study the outcome of
two weeks of real network data capture and an au-
tomated exchange of AD alerts between Columbia
University and George Mason University over the
Internet. Our empirical results confirm our theory:
the more distinct each normal model may be, the
more likely common AD alerts will identify and fil-
ter true zero-day attacks. Indeed, by comparing the
normal models from different domains we establish
that each site has a distinct model of normal content.
Moreover, throughout the two week study, we found
11787 common alerts. Furthermore, we analyze the
time between each site first detecting each attack

and verify that real time exchange is feasible. With
this baseline of common content-based web server
Anomaly Detector alerts comprised almost entirely
of attacks, the few false positives can be quickly
identified and shared to reduce the human workload.
These experimental results support our conjecture
that cross-domain content-based AD correlation de-
ployed at a large-scale could effectively detect and
mitigate zero-day web attacks.

II. RELATED WORK

Previous work on distributed intrusion detection
has focused mainly on the exchange of data within
a single organization. Much of the early work, e.g.,
[3], [4] focused on limited distribution within an
enclave. In [5], the authors discuss methods for
cooperatively correlating alerts from different types
of intrusion detection systems. Krugel et al. [6],
[7] concluded that only a relatively small number
of messages (seldom more than two) need to be
exchanged to determine an attack is in progress,
making decentralized intrusion detection feasible
and appropriate. DShield [8] is the most active
volunteer-based DIDS project on the Internet that
we are aware of, focusing on “top 10”-style reports
and blacklists; however, it uses a centralized model,
is reliant on reports from volunteers, and generally
scrubs data. In [9], [10] the authors describe more
general mechanisms for node “cooperation” during
attacks.

DOMINO [11] is probably the closest decen-
tralized framework in scope to ours. The paper
measured, using DShield alert logs, the notion of
information gain, however, DOMINO does not in-
corporate alerts generated by Anomaly Detectors.
In addition, Farroukh et al. proposed a distributed
and collaborative intrusion detection system called
DaCID [12] based on the Dempster Shafer theory
of evidence of fusing data. Additionally, in [13]
the authors used a decentralized analyzer. Tian et
al. introduced an alert correlation model based on
hierarchical architecture [14].

The AD system we employ is based on STAND
by Cretu et al., [1] a derivative of an earlier system
call Worminator [15]. A collaborative technique
where the sites exchange abnormal models to im-



prove detection was presented in [1]. In [16], the
authors completely automated the process of deter-
mining the optimal AD sensors parameters for a sin-
gle sensor. As user interactions with systems change
overtime, the current model becomes stale and
may incorrectly classify new traffic patterns [17].
However, in all the above systems, the authors did
not explore the benefits and caveats of exchanging
anomaly detector content alerts. This paper provides
the novel contribution that cross-domain AD alert
exchange can identify zero-day attack vectors.

III. EXPERIMENT ARCHITECTURE

We call our complete system AutoSense, which
consists of an expanded Worminator [15] alert ex-
change and storage system integrated with deployed
local AD sensors to exchange alerts and abnormal
models in real time. Using a client-server architec-
ture, each administrative domain has a Worminator
client install that receives the raw alerts and models
from a sensor. Each client then encodes alerts by
inserting the n-grams of the content into bloom
filters [18] as needed before sending the alerts and
models to the server over an encrypted channel. On
the Worminator server alerts and models are stored
in a database. Separate threads perform correlation
on the stored alerts continuously matching all non-
private content from the host domain to all bloom
filter representations of private alerts.

We use the combination of STAND [16], an auto-
mated training and sanitizing process with the Ana-
gram sensor [19] as our network based Anomaly
Detection sensors. We have sensors deployed at
Columbia University and George Mason Univer-
sity inspecting inbound network traffic. To allow
a proper training period and still have time for
the data exchange to reveal common alerts, we
collected traffic over the period of 2 weeks. The
sensors’ automated training process requires around
50-60 hours. For testing, we ran our sensors on
TCP port 80 traffic inbound to two web servers:
www.cs.columbia.edu and www.gmu.edu. For the
collection, aggregation, and correlation of the HTTP
data, we used VMWare virtual machines running
Ubuntu Server 9 64bit. Each virtual machine was
equipped with 16GB ram and 2-4 CPUs. The AD

sensors are designed to sample a subset of packet
traffic by parsing and normalizing TCP port 80 GET
request URIs. In order to reduce variability, we strip
the URI down to just the string of arguments and
then remove numbers and decode hex characters.
The resulting normalized argument strings that are
less than 17 characters are dropped as attack vectors
are much longer. This subset of packet content
allows our machines to still see a wide range of
potential attacks as numerous applications have a
web service front-end. For each alert we log the IP
address, timestamp, and content string. After each
site ran the sensor on their two weeks of data from
the same time period, we correlated the resulting
alert content strings.

IV. MODEL COMPARISON

We theorize that correlating AD content alerts
between sites with distinct normal traffic flows
will reduce the false positive rate since legitimate
requests will be less likely to be similar. For a
large scale system, we will want to minimize the
alert comparisons between similar sites to prevent
more false positives. Therefore, a method to quickly
compare the similarity of normal traffic between
sites will be vitally important. In this section, we
use each site’s normal model as an approximation
of its normal traffic flow for cross-site comparisons.

In order to explain our model comparison results,
here is a brief explanation of the model generation
process. For a complete description please see pre-
vious work on STAND [1]. STAND has a sanitizing
process where small micromodels are continuously
created on small sets data once little new traffic is
seen, generally around 3 hours worth depending on
data volatility. Then after 25 of these micromodels
are created, they use a voting process to test all
the data the micromodels used. All the data is
then voted on by micromodels. Data passing the
vote is added to a bloom filter to create a, now
sanitized, normal Anagram model. Once the first
sanitized model is created then each time a new
micromodel is made the process is repeated. The
new micromodel replaces the oldest one so that the
latest 25 micromodels are always used to create a
new sanitized Anagram model.
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Each Anagram model is a bloom filter with a
228 Jong bit array initialized to Os. Data is added to
the model by hashing n-grams from the data into
the bit array setting some bits to 1. While not an
exact measurement, we believe that since the same
hash functions are used for all models that directly
comparing the bits that are set on in each bloom
filter gives a general idea of how similar two models
are. In all our comparisons we find the number of
1 bits that both bloom filters share and divide by
the total number of 1 bits in the bloom filter. This
comparison operation C is represented below:

Let B1, B2 be bloom filters from Anagram models
with bits {1...i...22%}.

C(B1,B2) = (Number of bits i such that B1[i] =
1 and B2[i] = 1) / (Number of bits i such that
Blli]=1)

Each AD sensor computes models of normal data
for consecutive epochs at each site, producing a set
of time-ordered models. Fig. 1 displays each indi-
vidual normal model compared against each other
normal model, both those from the same and col-
laborating site. The top quadrant shows Columbia
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University models compared to each other, while
the bottom quadrant shows George Mason Univer-
sity models compared to each other. The models are
placed in time order from top to bottom. Notice that
the content flows at each site slowly change over
time. The comparison of the time-ordered models
computed at the same site shared 49% of set bits.
Furthermore, the left side of the graphic in Fig. 1
shows George Mason University models compared
to Columbia University models and the right side
shows Columbia University models compared to
George Mason University models. Notice that the
content flows at each site are truly distinct. The
important lesson is that the CU and GMU anomaly
detectors have learned entirely different “normal”
models at each site.

With an average of 5% rate of common bits
set between models from separate sites, we show
that both sites are quite diverse. This confirms the
intuition that distinct sites have radically different
models of normal data and supports the ability
of Anomaly Detectors to recognize attack traffic
from distinct domains. With distinct models, traffic



detected as abnormal at separate sites is much more
likely to be an attack. Attackers attempting to put
together a mimicry attack against multiple sites
likely face an impossible task. They would have to
target it specifically to one site since the sites have
diverse normal content flows.

V. ALERT CORRELATION

The initial correlation process began with 41,232
alerts observed at Columbia University and 20,678
at George Mason University. We compare each local
alert to each bloom filter encoded alert from the
remote site until we find a match. To account for
simple polymorphism that could exist in the alerts,
we consider a match to be 80% of n-grams from
the local alert being present in the bloom filter and
the alert lengths to be within 80% of each other.
We found 11787 common alerts, 7989 at Columbia
University and 3798 at George Mason University.

We confirm our online results from the bloom
filter comparisons with an offline study using the
Levenshtein string distance [20]. We normalized
this distance by the length of the longer string to
find equivalent alerts. The Levenshtein algorithm
is a simple and effective way to correlate content
alerts offline. For more information on suitable
algorithms for content correlation see [21]. After
testing, we set the threshold for matching at 0.2.
This means that we allow for up to 2 changes in
every 10 characters. In addition, the unique sets of
alert content strings from each site were clustered
using the normalized Levenshtein distance to obtain
the common alerts. This correlation results in 96
common content alert string clusters representing
12353 total alerts, 8570 at Columbia University
and 3783 at George Mason University. Using these
two different methods and seeing similar results
confirms that encoding the alerts in bloom filters
still allows for accurate correlation.

Using manual inspection, we see that all but 4
of the attack clusters are indeed true attacks in
both correlation methods. An Internet Explorer au-
tomated browser request related to an office toolbar
made up 2554 alerts. This alert is caused by an
IE browser extension and will likely be seen as an
anomalous request by all web servers. This distinct

but highly repetitive alert should be identified as
a false positive once upon its first occurrence,
and subsequently ignored by simply filtering it
as “noise.” Since it is so common, after filtering
this specific alert the remaining false positive rate
drops precipitously. Three additional clusters of
false positives produces a net false positive rate of
0.69% out of common alerts and 1.2+«107°% (68 of
549 millions packets) out of total incoming packets
to the web servers. For this dataset, covering a 2
week period, a human operator would have had to
manually inspect 96 clusters to identify the 3 false
positives. This is strong evidence that cross-domain
alert exchange is a valuable security measure with
minimal amounts of human interaction needed. Out
of the 3 false positives, two are iframe tags and
the other is related to a twitter feed. This makes
intuitive sense as one of the only ways legitimate
traffic would appear at both sites would be a generic
request with never-before-seen parameters. Never-
theless, manual inspection of a false positive cluster
from one operator could save all other sites from
having to identify the alert. We believe that other
false positives will most likely also be fairly generic
mistakes. Therefore, the limited number of these
generic argument strings will be identified as false
positives, and then any future results will have an
even lower low false positive rate.
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Fig. 2. Time gap between Common Alerts at CU and GMU for 40 shortest time gap clusters

Now that we have the alerts common to both sites
clustered, we analyze the timing of alerts. An inter-
esting measurement is the time lag between each
cluster’s first detection at each site. Fig. 2 shows
the time lag which varied widely from the shortest
delay being 37 seconds to attacks being seen at
the second site after 8 days. Without information
from a third site, we cannot directly estimate the
utility of broadcasting “filters” to many other col-
laborating sites. Neither can we measure the impact
of filters on reducing the infection rate of a large-
scale attack. Hence, with additional collaborating
sites we may directly measure the response time
needed to provide wide-area protection against an
attack. Extrapolating the data from the two sites, we
hypothesize that a real time exchange of a watch list
with confirmed attack signatures would be able to
filter even the more rapid attacks. Given that the
large number of attacks fit into a small number
of clusters, generating a signature for each cluster
seems feasible. We also measured the duration
of each alert cluster. Our results show that some
attacks persist beyond the time that both sites have
seen them. This suggests that a watch list still
benefits the sites that first identify a new attack.

Furthermore, we compute the frequency distri-

bution of the common alert clusters for Columbia
University and George Mason University. In Fig. 3

we can see that the presented distribution of alerts
follows an exponentially decreasing trend indicating
that a small fraction of the alert clusters are respon-
sible for the vast majority of the total alerts. This
favors our collaborative approach because we can
mark only a small number of dense clusters only
at one of the sites to sift through the majority of
the alerts. The rest of the small frequency clusters
can be vetted out over time since their rate of
appearance is also small, and thus manageable.
Currently, our collaborative architecture is applied
on feeds at two sites. This makes it difficult to
estimate how the alert clustering and frequency
distribution would change with the addition of other
collaborating sites.

AutoSense can be employed as a means of ex-
tracting zero day attacks from web applications
streams at a peering point or any set of distributed
sensors across enterprises. The entire set of packet
streams need not be analyzed, but rather an AD
model may be computed from a sample of ingress
packets destined to some selected web server. By
comparing the models a group of “collaborating”
servers may then be chosen from which a pool of
correlated common anomalous web requests would
be extracted by AutoSense. Those are likely zero
day attacks as evidenced by the Columbia and
George Mason University experiments. With the



addition of more peers, the process of exchanging
and marking alerts clusters is going to require a
more comprehensive approach for operator synchro-
nization and prioritization. This warrants further
investigation which we plan to complete in the
future.

VI. CONCLUSIONS

We present and analyze empirical evidence sup-
porting the benefits from deploying a distributed
content-based Anomaly Detection system. Our find-
ings demonstrate the potential for efficient large
scale mitigation of the zero-day attacks and false
positives by real-time filtering of common attacks.
Indeed, a total of 11787 alerts were confirmed
by both AD systems for a period of two weeks.
Our correlation of real alerts between distinct sites
demonstrated that, in most cases, we can boost the
detection performance by identifying attack clusters
and false positives in one of the sites ahead of time.
With this number of alerts just between two sites,
we posit that, if our system is expanded to a large
scale, a significant portion of zero-day web attacks
could be identified and mitigated. Our findings
support our theory that collaborative cross-domain
content-based AD correlation might be a potential
solution to the web-based zero-day attacks.
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