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Abstract. Information markets are markets created to aggregate
information. Such markets usually estimate a probability distri-
bution over the values of certain variables, via bets on those
values. Combinatorial information markets would aggregate in-
formation on the entire joint probability distribution over many
variables, by allowing bets on all variable value combinations.
To achieve this, we want to overcome the thin market and irra-
tional participation problems that plague standard information
markets. Scoring rules avoid these problems, but instead suffer
from opinion pooling problems in the thick market case. Market
scoring rules avoid all these problems, by becoming automated
market makers in the thick market case and simple scoring rules
in the thin market case. Logarithmic versions have cost and mod-
ularity advantages. After introducing market scoring rules, we
consider several design issues, including how to represent vari-
ables to support both conditional and unconditional estimates,
how to avoid becoming a money pump via errors in calculating
probabilities, and how to ensure that users can cover their bets,
without needlessly preventing them from using previous bets as
collateral for future bets.
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Introduction

Financial markets, such as stock or commodities fu-
tures markets, are usually created to allow traders to
hedge risks. Once created, however, such markets also
attract speculators who seek to “buy low and sell high.”
And while speculators can profit if they can find any
way to predict future prices from current prices, a side
effect of their trades is to eliminate such profit opportu-
nities. As a result, speculative market prices are often
quite accurate estimates of future prices, aggregating
a great deal of available information (Lo, 1997). For
example, orange juice commodity futures markets im-
prove on government weather forecasts (Roll, 1984),
and horse races are better predicted by betting markets
than by professional handicappers (Figlewski, 1979).

This ability of existing markets to aggregate infor-
mation has recently inspired several “information mar-
kets,” which were created not to entertain or to hedge
risks but to aggregate information on particular topics
of interest. For example, when compared to concurrent
major opinion polls on U.S. presidential elections, the
Iowa Electronic Market forecasts were more accurate
451 out of 596 times (Berg, Nelson, and Rietz, 2001).
When compared to official Hewlett-Packard forecasts
of printer sales, internal corporate markets were more
accurate 6 out of 8 times, even though the official fore-
casts where made after the markets closed and with
knowledge of the market prices (Chen and Plott, 1998).
Play money markets predicted the 2000 Oscar winners
better than 4 out of 5 columnists who made concurrent
forecasts (Pennock, Giles, and Nielsen, 2001).

Anti-gambling laws are probably now the main bar-
rier to wider use of real-money information markets.
Speculative markets are in general illegal, though reg-
ulators allow exceptions for certain purposes. For ex-
ample, insurance markets allow individuals to hedge
idiosyncratic risks such as fire and sickness, capital
markets allow firm managers to hedge uncertainties in
firm profits, commodity futures markets allow individ-
uals and firms to hedge risks from common economic
trends, and sports betting markets enhance entertain-
ment from watching sporting events. For each of these
purposes, there are regulatory bodies devoted to ap-
proving some markets for that purpose. But since there
are no regulatory bodies devoted to approving markets
which serve the purpose of aggregating information,
information markets are now only allowed by accident.

Even when information markets are legal, however,
they often fall victim to the thin market problem. To
trade, traders must coordinate on the assets they will
trade, even though there are an astronomical number
of possible events for which assets might be defined.
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Traders must also coordinate on when they will agree
to trade, since offers that wait long before being ac-
cepted suffer adverse selection from new public infor-
mation. Thus traders usually only expect substantial
trading activity in a certain limited set of assets, and
have little reason to offer to trade other assets. Trader
coordination can be aided somewhat by call markets,
where all trades happens at pre-defined moments, and
by combinatorial matching markets, which search for
combinations of offers that can be matched. But such
aid can only go so far. Consider the case where a single
person knows something about an event, and everyone
else knows that they know nothing about that event. In
this case, standard information markets based on that
event simply cannot acquire this person’s information.

Standard information markets also suffer from an
irrational participation problem. Once rational agents
have hedged their risks regarding the events covered by
an information market, they should not want to trade
with each other. Even if they have substantial private
information not reflected in previous market prices,
agents who care only about what they can buy with
the assets they might gain must realize that the gains of
some can only can from the losses of others (Milgrom
and Stokey, 1982; Aumann, 1976). Now real markets
do show surprisingly high levels of speculative activ-
ity, perhaps due to widespread irrationality, or to people
using bets to signal their expertise to observers (as in
“bar bets”). But it may not be possible to induce much
more such activity, in order to support new information
markets without taking away from other markets.

Long before there were information markets,
however, there were scoring rules, designed to ob-
tain information by eliciting probability distributions
from individuals. Scoring rules do not suffer from ir-
rational participation or thin market problems; they
have no trouble inducing one person to reveal infor-
mation. They instead suffer from a thick market prob-
lem, namely how to produce a single consensus es-
timate when different people give differing estimates.
This paper considers a new technology, market scoring
rules, which combines the advantages of information
markets and scoring rules. When dealing with a single
person, a market scoring rule becomes a simple scor-
ing rule, yet when dealing with a group of people, it
becomes an automated market maker supporting trades
between those people. Thus a market scoring rule basi-
cally solves both the thin market and the irrational par-
ticipation problems with information markets, as well
as the thick market problem of scoring rules.

Given some base set of after-the-fact-verifiable vari-
ables, given patrons willing to pay a modest per-
variable cost to induce information revelation on those
variables, and setting aside computational limitations,
market scoring rules allow people to reveal what they
know by trading on any event defined in terms of com-
binations of those base variable values. So, for exam-
ple, given N binary variables, people could trade on
any of the 2N possible states or 22N

possible events. A
market scoring rule always has a complete consensus
probability distribution over the entire state space, a
distribution that anyone can change any part of at any
time. And risk-neutral agents should expect to profit
from such changes whenever their own beliefs differ in
any way from this consensus distribution.

Of course there are in fact limits on what we can
compute. So after reviewing existing information ag-
gregation technologies and the new technology of mar-
ket scoring rules, this paper will go on consider several
implementation issues raised by this new technology.

Previous Technologies
of Information Aggregation

The general task we consider in this paper is to in-
duce people to acquire and reveal information rele-
vant to estimating certain random variables. These vari-
ables may include natural outcomes like earthquakes
or the weather, economic statistics like GDP, and po-
litical outcomes like elections, wars and revolutions.
We may also want conditional estimates, such as the
chance of war given that GDP falls, and especially
decision-contingent estimates such as of the chance of
war given that we elect a particular person for presi-
dent, the stock price of a company given that we dump
the current CEO, or a patient’s lifespan given that she
adopts a particular course of treatment. Such decision-
contingent estimates can give us relatively direct advice
about what choices to make (Hanson, 1999).

We will not assume that we know which people have
which areas of expertize, but we will assume that we
can someday verify the variable values with little con-
troversy “after the fact.” Ideally we would like a single
complete consistent probability distribution over the
entire state space of all variable value combinations,
embodying everything that everyone knows, as well as
everything they could learn with a modest effort. In
practice, we may have to accept compromises.
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Scoring Rules

To date, there have been two main approaches to the
information aggregation task we have outlined, scor-
ing rules and information markets. In order to elicit a
risk-neutral person’s probability distribution p = {pi }i

over all states i (where
∑

i pi = 1), one can ask him to
report a distribution r = {ri }i , and then if the true state
turns out to be i give him a reward ci according to a
proper scoring rule ci = si (r) that satisfies an incentive
compatibility constraint1

p = argmaxr

∑
i

pi si (r)

and a rational participation constraint

0 ≤
∑

i

pi si (p).

(The reward for not participating is set here to zero.)
Given these assumptions and constraints, the person
will want to set r = p. Scoring rules also give agents
incentives to acquire information they would not oth-
erwise possess (Clemen, 2002). These incentives come
at the expense of a patron who agrees to pay the
reward xi .2

In 1950 Brier introduced the quadratic scoring rule
(Brier, 1950)

si = ai + b

(
2ri −

∑
k

r2
k

)
,

and in 1952 Good followed with the logarithmic scor-
ing rule (Good, 1952)

si = ai + b log(ri ).

The logarithmic rule is the only rule that can be
used both to reward an agent and to evaluate his per-
formance according to standard statistical likelihood
methods (Winkler, 1969). Scoring rules have long been
used in weather forecasting (Murphy and Winkler,
1984), economic forecasting (O’Carroll, 1977), stu-
dent test scoring, economics experiments, risk analysis
(DeWispelare, Herren, and Clemen, 1995), and the en-
gineering of intelligent computer systems (Druzdzel
and van der Gaag, 1995).

While scoring rules in principle solve incentive
problems with eliciting probabilities, many other prob-
lems have appeared in practice. For example, people are
often hesitant to state probability numbers, so proba-
bility wheels and standard word menus are often used.
Also, corrections are often made for human cognitive
biases. In theory, risk-aversion, uncommon priors, and

state-dependent utility can also make it hard to infer the
information people have from the estimates they make
(Kadane and Winkler, 1988), though in practice these
are not usually considered to be big problems. When
they are problems, in theory risk aversion can be dealt
with by paying in lottery tickets (Smith, 1965; Savage,
1971), and uncommon priors and state-dependent util-
ity can be dealt with by having people first play a certain
lottery insurance game (Hanson, 2002a).

Another problem is that, in general, the number of
states is exponential in the number of variables, making
it hard to elicit and compute with probability distribu-
tions with many variables. This problem is often dealt
with by creating a sparse dependence network, such as
a Bayes net (Pearl, 1988; Jensen, 2001; Pennock and
Wellman, 2000), relating the variables. A dependence
network among the variables says that each variable
is, given its neighbor variables, conditionally indepen-
dent of all other variables. Thus by eliciting a sparse
network of dependencies, one can drastically reduce
computational complexity (more on this below). While
little attention is usually paid to incentive compatibil-
ity when eliciting such network structures, they often
seem uncontroversial.

One big problem with scoring rules remains largely
unsolved, however. When different people are asked to
estimate the same random variable, they can and often
do give different estimates. Yet what we really want is
a single estimate that aggregates information from dif-
ferent people. Unfortunately, the literature on “pooling
opinions,” i.e., constructing a single pooled probabil-
ity distribution from a set of individual distributions,
is mostly discouraging (Genest and Zidek, 1986). For
example, it turns out that any two of the following three
apparently reasonable conditions imply a dictator, i.e.,
that the pooled distribution is equal to one of the indi-
vidual distributions:

1. If two events are independent in each individual
distribution, they are independent in the common
distribution.

2. The pooling procedure commutes with updating the
distributions with new information.3

3. The pooling procedure commutes with coarsening
the state space (e.g., dropping a variable).

Since pooling opinions well is hard, the usual practice
in building large probability distributions is to choose
a single expert to specify parameters for each vari-
able. For example, a single person might be assigned
to estimate the weather in a given geographic area.
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Information Markets

Information markets can overcome many of the limita-
tions of scoring rules as information aggregation mech-
anisms. Like scoring rules, information markets give
people incentives to be honest, because each contribu-
tor must “put his money where his mouths is.” In such
markets, people typically trade assets of the form “Pays
$1 if event A happens,” and the market price for such
assets is interpreted as a consensus estimate of p(A).
The approaches described above for dealing with num-
ber shyness, risk-aversion, and state-dependent utility
can also be used with information markets.

In contrast to scoring rules, however, information
markets can combine potentially diverse opinions into
a single consistent probability distribution. The infor-
mation pooling problem with scoring rules arises be-
cause a given probability distribution over some limited
set of variables can arise from many different infor-
mation sets, and so one cannot determine an agent’s
information from his probability estimates. Rational
agents who are repeatedly made aware of each other’s
estimates, however, should converge to identical es-
timates, at least given common priors (Geanakoplos
and Polemarchakis, 1982; Hanson, 1998, 2003). Infor-
mation markets can use such repeated interaction to
produce common estimates that combine available in-
formation, avoiding the opinion pooling problem. No
knowledge of who is more expert on what topics is re-
quired, and corrections for cognitive bias can even be
left to market participants, who can profit by making
such corrections. Market traders self-select to focus on
the topics where they believe they are most expert, and
those who are mistaken about their areas of expertize
are punished financially.

As was discussed in the introduction, however, stan-
dard information markets suffer from both irrational
participation and thin market problems. Once rational
agents who care only about what they can buy with
the assets they might win have hedged their risks, they
should not want to make speculative trades with each
other, even when they know things that others do not
(Milgrom and Stokey, 1982; Aumann, 1976). And be-
cause traders must coordinate on the assets to trade and
on when to agree to trade, traders usually only expect
substantial trading activity in a certain limited set of
assets, and have little reason to offer to trade other as-
sets. For example, when one person knows something
about a certain variable, and everyone else knows that

they know little about that variable, standard informa-
tion markets trading assets based on that variable will
not reveal what this person knows.

Market Scoring Rules

Fig. 1 illustrates some performance issues with scor-
ing rules and information markets. When information
markets are thick, their accuracy should increase with
the number of traders who focus on each asset. As the
number of traders per asset falls near one, however,
the thin market problem should eliminate trading ac-
tivity. Scoring rules, in contrast, can produce estimates
in such cases, though one expects estimate accuracy to
fall with the number of estimates one asks of any one
person. When using scoring rules in the thick market
case, however, where many people are asked to estimate
the same parameter, opinion pooling problems should
make them less accurate than information markets.

Market scoring rules can combine the advantages of
scoring rules and standard information markets. They
should thus produce an accuracy like that of informa-
tion markets when many people make the same kind
of estimates, and like that of scoring rules when only
one person makes each estimate. Market scoring rules
are, in essence, sequentially shared scoring rules. Any-
one can at any time choose to use such a rule, i.e., be
paid according to that rule, if they agree to pay off the
last person who used the rule. So if only one person
uses a market scoring rule, it in effect becomes a sim-
ple scoring rule. But if many people use that market

Accuracy
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Fig. 1. Comparing mechanisms.
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scoring rule, it in effect becomes an automated market
maker facilitating trades between those people. And
since each user pays off the previous user, the mar-
ket scoring rule’s patron need only pay off the last
user.

More formally, a market scoring rule always has a
current probability distribution p, which is equal to the
last report that anyone has made to this rule. Anyone
can at any time inspect this distribution, or change any
part of it by making a new report. If someone chooses
to give a report rt at time t , and then the actual state
eventually turns out to be i , this person will be paid a
reward

ci = �si (rt, rt−1) = si (rt ) − si (rt−1),

where si (r) is some proper scoring rule, and rt−1 is the
last report made. Since this amount ci can be negative,
the person must show an ability to pay this if needed,
such as by depositing or escrowing4 an amount—
mini ci .

Since the person giving report rt cannot change the
previous report rt−1, he maximizes the expected value
of �si (rt , rt−1) by maximizing the expected value of
si (rt ), and so wants to honestly report his beliefs here
whenever he would for a simple scoring rule.5 When-
ever someone’s beliefs differ from the current distribu-
tion p, he expects to profit on average from making a
report, for the same reason that someone who had mis-
takenly made the wrong report would want to correct
such a mistake before it became official.

When a person changes a market scoring rule distri-
bution p, he must raise some probability values pi and
lower others. If the true state turns out to be one where
he raised the probability, he will gain, but if the true
state turns out to be one where he lowered the probabil-
ity, he will lose. This person is thus in essence making
a bet with the market scoring rule regarding the true
state. Since one could choose to change the distribu-
tion p by only a tiny amount, and one could undo such
a bet by reversing the change, these tiny bets are all
“fair bets” at the probabilities p.

Since people are free to change any combination
of probabilities in p, and since bets are what make
those probabilities change, a market scoring rule is in
essence an automated inventory-based market maker
who stands ready to make any tiny fair bets at its current
probabilities.6 This market maker also stands ready to
make any large bets that can be constructed from tiny
bets. The only catch is that the prices p change as tiny
bets are made.

We can summarize all this by saying that each mar-
ket scoring rule in essence has a “net sales so far” vector
s = {si }i , where each si says how many units have been
sold of assets of the form “Pays $1 if the state is i .” The
current unit price for a tiny amount of such an asset is
pi , and these prices change according to a price func-
tion p(s), which is in essence a generalized inverse of
the scoring rule function s(p). For example, for the log-
arithmic scoring rule si (p) = ai + b log(pi ), the price
function is the exponential

pi (s) = e(si −ai )/b∑
k e(sk−ak )/b

.

To find the price for any non-tiny bundle of assets, one
must integrate the price as it changes across sales of
tiny bundles. If the sales history is s = h(t), and this
new sale starts at t and ends at t̄ , then the total amount
of this sale is h(t̄) − h(t), and the total price for this
sale is

∫ t̄

t

∑
i

pi (h(t)) h′
i (t) dt.

Since s(p) is a function, this integral is independent of
the sales path between h(t) and h(t̄).

In many existing markets, all trades are made with
one or a few central market makers. These actors al-
ways have public offers to buy or to sell, and update
these prices in response to trades. Human market mak-
ers have been found to do as well as the standard dou-
ble auction market form in aggregating information
(Krahnen and Weber, 1999). Some markets, such as
the Hollywood Stock Exchange (www.hsx.com), use
automated market makers to fill this role. Typically,
each asset has a single automated market maker which
deals only in that asset. A market scoring rule is like
this, except that it is a single automated market maker
that deals in all of the assets associated with an entire
state space. So, for example, given N binary variables,
a single market scoring rule can make trades on any of
the 2N possible states, or any of the 22N

possible events
(i.e., sets of states).

As with ordinary market makers, abstractions can
be devised to allow users to more easily follow various
standard trading scenarios. For example, a “limit order”
can specify an amount and a boundary in p space, and
mean that one is willing to spend up to a given amount
to keep p from crossing this boundary.
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Costs

Since the patron of a market scoring rule must only pay
the last user, his total expected loss depends only on
how informative that last report is, relative to the initial
report the rule was started with. This loss is otherwise
independent of the number of users. To minimize his
expected loss, the patron should set the initial report
to his initial beliefs q, in which case his worst case
expected loss is

S =
∑

i

qi (si (1i ) − si (q)),

where (1i ) j = 1 when i = j and zero otherwise. This
worst case applies if in each state i , the last report
is sure that this is the true state. For the logarithmic
scoring rule, this worst case expected loss is (b times)
the entropy of the distribution q.

How much more does it cost to have a single market
maker which covers the entire state space, relative to
just having a market maker for each variable? A market
scoring rule that covered only a single variable with V
possible values would be an automated market maker
for all V assets of the form “Pays $1 if this variable
has value v.” For a logarithmic rule, the worst case
loss would be (b times) the entropy of the marginal
distribution {qv}v over the values v. In general the sum
of the entropies of the marginal distributions of each
variable is no less, and usually more, than the entropy of
the joint distribution over all variables.7 Thus (setting
aside computational costs) it costs no more to fund
an automated market maker to trade in the entire state
space than it costs to fund automated market makers
limited to each variable.

Logarithmic market scoring rules also have modu-
larity advantages. It seems good to minimize the ex-
tent to which people making bets on some dimen-
sions of the probability distribution regularly cause
unintended changes to other unrelated dimensions of
the distribution. For example, when one believes that
p(A | B) > q, one expects to gain by giving up q units
of “Pays $1 if B” in trade for one unit of “Pays $1
if A and B.” And by making this trade one takes no
risk regarding whether the event B is true, since one
trades some assets which assume B for other assets
which also assume B. While it seems appropriate for
such trades to change the value of p(A | B) in the
distribution p, it does not seem appropriate for them
to change the value of p(B). Requiring this condi-
tion to hold for all such trades, however, is equiva-

lent to requiring the logarithmic market scoring rule
(Hanson, 2002b). Given such a conditional trade, the
logarithmic rule preserves not only p(B), but for any
event C it also preserves the conditional probabilities
p(C | not B), p(C | B and A), and p(C | B and not A),
and the variable independence relations I (A,B, C),
I (B,A, C), I (C,B,A), and I (C,A,B), for A a value
of A, B a value of B, and C a value of C. (For vari-
ables A,B, C, we say I (A,B, C) holds for p when
p(Ai | B j Ck) = p(Ai | B j ) for all values Ai of A, B j

of B, and Ck of C.)

Representing Variables

Market scoring rules were described above in terms of
probability distributions over states i defined in terms
of combinations of variable values v. But how should
we define those variable values?

Imagine that we have two real-valued random vari-
ables, x and y, such as GDP change and immigration.
One user might want to express his opinion on how
much he expects GDP to change, while another user
might want to express his opinion that immigration will
be high if GDP rises somewhat. If we want to let both
these users express their opinions, but we also want to
describe GDP in terms of a small number of assets,
to limit computational complexity, what should those
assets be?

A user who wants to use GDP as a condition, as in
“if GDP rises somewhat,” might prefer “digital option”
assets defined in terms of whether x is in a given region,
such as “Pays $1 if x < x1,” “Pays $1 if x1 ≤ x < x2”,
and “Pays $1 if x2 ≤ x .” A user who wants to express
his opinion on the expected value of GDP change, how-
ever, might prefer “linear” assets such as “Pays $x̂ ,”
and “Pays $(1 − x̂),” where we have defined a rescaled
variable

x̂ = max

(
0, min

(
1,

x − x

x̄ − x

))
,

which is zero up to x = x , is one above x = x̄ , and
moves linearly with x in between.

While scoring rule payoffs were defined above only
when a given state i is found to be true with certainty,
we can easily reinterpret that framework to include such
linear assets. Scoring rules can instead payoff accord-
ing to any final assignment a = {ai }i where

∑
i ai = 1.

In essence, each asset of the form “Pays $1 if the
‘state’ is i” pays $ai . In this case, people should want
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to report their expectations for a, as in ri = Ep[ai ].
When individual variables are expressed linearly, such
as with value assignments x̂ and 1 − x̂ , value assign-
ments for variable combinations can be products, as
in x̂ ŷ, (1 − x̂)ŷ, x̂(1 − ŷ), and (1 − x̂)(1 − ŷ). That is,
when the real-valued random variable j has value z j ,
let a corresponding discrete variable value v have as-
signment a jv(z j ), so that

∑
v a jv(z) = 1 for all z. We

can then let the assignment of state i be

ai (z) =
∏

j

a jv j (i)(z j ),

where v j (i) is the value of discrete variable j in state
i , and z = {zi }i .

Given linear variable value assignments, a user
could in a sense bet that immigration will be high
given that GDP change is high, i.e., that y will be high,
given that x is high, by giving up q units of “Pays
$x̂” for one unit of “Pays $x̂ ŷ” whenever he believed
that q > Ep[x̂ ŷ]/E[x̂]. For most people, however, this
seems an unnatural way to describe their conditional
expectations. To have a single asset representation that
can let people express opinions on the expected change
in GDP, and let people express opinions which use “if
GDP rises somewhat” as a condition, we might use
“sawtooth” assets, such as illustrated in Fig. 2. Each
of a set of K + 1 points xk would have a matching
asset with a final assignment ak , so that

∑
k ak = 1

no matter what happens. When x < x0, then a0 = 1
and the other ai are zero, and if x > xK then aK = 1
and the others are zero. If x = xk for any k then that
ak = 1 and the others are zero. Otherwise the assign-
ment varies linearly between these values. That is, for
any x there is some k where xk < x < xk+1, and we
set a j = (xk+1 − x)/(xk+1 − xk), ak+1 = 1 − ak , and
all others to zero.

1

0
x0 x1 x2 x3

a0 a1 a2 a3

Asset Assignment

Real-valued Random Variable

Fig. 2. Sawtooth asset representation.

A sawtooth asset only has value when the real vari-
able x is “near” a particular value xk . Thus such assets
can be used as a condition, as in “if GDP rises some-
what.” Yet linear combinations of sawtooth assets can
also reproduce assets like “Pays $x̂ ,” and they can do
this for x and x̄ equal to any pair of values xk . Thus
if the GDP change and immigration variables are both
represented by sawtooth assets, users can naturally bet
on both the expected value of GDP change, and on the
expected value of immigration, given that GDP change
is somewhat high.

Note that the state space for a variable can be refined
on the fly when real variables are represented either by
sawtooth assets or digital options. Both representations
rely on a set of cutpoints xk , and new cutpoints can be
inserted at anytime, as it is straightforward to translate
assets defined in terms of the old cutpoints into assets
defined in terms of the new cutpoints. However, since
adding cutpoints makes it possible for the last report to
be more informative about the actual state of the world,
adding cutpoints can increase the expected cost to the
patron to pay for a market scoring rule. New variables
can also be easily added on the fly, if a patron is willing
to pay for the extra cost.

Computational Issues

When there are only a dozen or so variables, each with
a handful of values, one can exactly compute a mar-
ket scoring rule. A central data structure can store the
current probability pi explicitly for every state, and
probabilities of events can be directly calculated via
sums, as in p(A) = ∑

i∈A pi . A similar data structure
per user can describe his assets, by giving his payoff
in each state. That is, for each user one stores a num-
ber ci for each state, which describes an asset of the
form “Pays $c if state i .” If a user acquires an asset
“Pays $c if event A happens,” this asset can be stored
by increasing ci by the amount c for each state i ∈ A.
This representation of assets allows users to maximally
reuse assets they acquired in previous bets to support
future bets.

When value v of variable α has probability pv , and
then is verified to have assignment av , the entire distri-
bution can be updated to p′

i = pi av/pv for each state
i where vα(i) = v. When all the values of this vari-
able are assigned, the state space can be coarsened to
eliminate this variable, by merging all states which dif-
fer only in their value of this variable. In this merging
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process, the probability of the new state is the sum of
the probabilities of the old states, and the assets hold-
ings for each person in the new state is an average of
their asset holdings in the old states, weighted by the
assignment av .

Consider a logarithmic market scoring rule based
on si = β log2(pi ), with β an integer. The patron of
this rule can avoid roundoff error losses by storing the
amounts ci each user holds of asset “Pays $1 if state
i” as exponentials θi = 2ci /β . So when a user makes a
“cash” deposit d that is a multiple of β, we can set all
his initial holdings to the integer θi = 2d/β . If probabil-
ities pi are always rational numbers, then whenever a
user starts by holding θi , and then changes a probability
from pi to p′

i , we can exactly compute his new hold-
ing to be the rational θ ′

i = θi (p′
i/pi ). And if we never

allow a user to make a change that would produce any
θi < 1 (in a state where pi > 0), then users can never
go bankrupt. We can also allow a user to withdraw
cash by specifying a w ≤ mini θi that is a multiple of
β. We just set θi = θi/w, and give him cash β log2 w.8

(A sample implementation, in CommonLisp, is avail-
able at http://hanson.gmu.edu/mktscore-prototype.
html)

Beyond a dozen or so variables, each with a handful
of values, the above approach quickly becomes infea-
sible. After all, when N variables each have V possible
values, there are V N possible states, and 2V N

possible
events. When V N is more than a billion or so (e.g.,
thirty binary variables), the above approach becomes
infeasible on today’s computers. In this case some
other approaches must be used to maintain a consistent
set of current market prices, to maintain a description
of the assets each person holds, and to determine when
a user’s assets can allow them to back up a given
new bet.

Limiting the Probability Distribution

One approach to dealing with enormous state spaces
is to choose a particular family of probability distribu-
tions, and limit users to choosing distributions within
that family. Bets must change the probability distribu-
tion from one member of this family to another, and
user assets changes must be consistent with that con-
straint. For example, the family of Bayes linear distri-
butions has some attractive computational advantages
(Goldstein, 1987). We will here elaborate on Bayes nets

(Pearl, 1988; Jensen, 2001), however, because of their
popularity.

In a Bayes net, variables are organized by a directed
graph in which each variable α has a set of “parent”
variables Pα . The probability of any state i can then be
written as

pi =
∏
α

p(vα(i) | {vk(i)}k∈Pα
),

where vα(i) is the value of variable α in state i . If each
variable α has Vα possible values, this distribution
can then be stored in tables, with one table of size
Vα

∏
k∈Pα

Vk for each variable α. Thus when the
network is sparse, meaning that each variable has
only a few parents, there are only a few parameters to
specify and store per variable, it is straightforward to
compute the probability of any given state, and it is
easy to calculate or change the probability of a variable
value, conditional on the values of the parents of that
variable. A market scoring rule which represented its
probabilities in terms of a Bayes net could thus easily
support bets which change these particular conditional
probabilities.

But what about supporting bets on other conditional
probabilities, or on the unconditional probabilities of
variable values? In order to support simple bets on vari-
able values, one wants to be able to calculate the un-
conditional probability distribution over the values of
a variable given the current network, and one wants
to know how to change that network to be consistent
with a new desired distribution. It turns out that all this
and more is possible if the Bayes net happens to be
singly-connected, so that there is at most one path con-
necting any two variables. In this case, one can change
the unconditional distribution of any variable, and then
propagate those changes across the network, to exactly
update the unconditional distributions of other vari-
ables. Conditional distributions of one variable given
another can be exactly calculated, such as by provision-
ally changing one variable and propagating that change
through to the other variable. Also, since one can merge
a set S of variables, each with Vα values, into a single
variable with

∏
α∈S Vα values, one can also apply this

approach to Bayes nets that are “nearly” but not exactly
singly-connected.9

Thus a market scoring rule which represented its
probabilities in terms of a nearly singly-connected
Bayes net could support bets which change any
unconditional variable probabilities, and any condi-
tional probabilities between pairs of variables. Such
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a market scoring rule could even support bets which
change the network structure, as long as those changes
keep the network nearly singly-connected. Unfortu-
nately, while the Bayes nets that seem plausible to
people are usually sparse, with only a few connec-
tions per variable, they are not usually nearly singly-
connected. So if a Bayes-net-based market scoring
rule allowed users to create any sparse Bayes net they
wished, it would typically be infeasible to exactly
calculate most unconditional variable probabilities,
and most conditional probabilities relating variable
pairs.

There are of course many ways to compute approxi-
mations to these probabilities. So one might be tempted
to endow a market scoring rule with such an approx-
imation algorithm, and then let it accept fair bets at
the approximate probabilities determined by that algo-
rithm. This approach, however, might turn the market
scoring rule patron into a money pump. This is because
the accuracy of these approximations varies in com-
plex ways with the context. If any user could, for any
part of the probability distribution, find any systematic
pattern in when the official approximation made over-
estimates vs. under-estimates, he could in principle use
that pattern to make money via arbitrage. To arbitrage,
he would make simple bets one way at the approximate
probabilities, and make some combination of other bets
at the more basic probabilities. Of course it may be hard
to find such patterns and bet combinations that exploit
them, and the amounts gained may be small compared
to the effort required. Also, a market scoring rule with
a smart manager might limit losses by detecting such
activity. Potential market scoring rule patrons might
not find these considerations sufficiently reassuring,
however.

In order to guarantee that a market scoring rule pa-
tron loses no more than a given amount of money while
supporting an indefinite number of trades, one might
adopt a policy of only allowing bets on probabilities
that one can exactly compute. This policy, however,
could prevent most of the trades that users would be
most interested in.

Overlapping Market Makers

Another approach to dealing with enormous potential
state spaces is to have several market scoring rules,
each of which dealt exactly with some part of the same

total state space. For example, a market scoring rule that
represented its probabilities via a general sparse Bayes
net might be combined with market scoring rules that
each dealt only in the unconditional probabilities of a
single variable. Then if the unconditional probabilities
of a variable were not consistent with the Bayes net
probabilities, users who discovered this inconsistency
could profit thereby, but their profit would be bounded.
After all, if each market scoring rule is exactly com-
puted, we can exactly bound the loss of each rule, and
hence bound the total loss.

Perhaps the simplest approach of this sort would
consist of a set of market scoring rules m that each
used a completely general probability distribution over
some subset Sm of the variables. Users could then di-
rectly make any bets and change any probability esti-
mates, as long as the set of variables Sb used in that
bet or probability estimate b was a subset of the set
Sm of some market maker m. Such bets or changes
would just be implemented by dealing simultaneously
and directly with all of the market makers that overlap
that set, i.e., by trading with M(b) = {m : Sb ⊂ Sm}.
Between user-initiated trades of this sort, the system
could bring the market makers into greater consistency
with each other by seeking out arbitrage opportuni-
ties, i.e., sets of trades which produce a pure cash net
profit.

Let us call two market makers m and n neighbors if
they have variables in common, i.e., if Sm ∩ Sn is non-
empty. Arbitrage opportunities would exist between
any two neighboring market makers if they had dif-
ferent probability distributions over the set of variables
they shared. (For logarithmic market makers, arbitrag-
ing this difference would change the probability dis-
tributions over these shared variables to be a normal-
ized geometric mean of the distributions of the market
makers.) Thus all the market makers could be made
consistent with each other via waves of arbitrage pass-
ing though a network of market makers. Neighbor-
ing market makers would be arbitraged, and if this
produced a large enough change, neighbors of those
neighbors would also be arbitraged, and so on. Once
this process stopped, users would in essence be invited
to profit by finding and correcting any remaining in-
consistencies. This profit might be large if the remain-
ing inconsistencies were large, but it would be strictly
bounded by the total subsidy offered by all the market
makers.

Under this sort of approach, if one could anticipate
the sorts of variables that users would be likely to want
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to relate to one another, one might construct an appro-
priate set of market makers to support those users. Each
rule would be based on a type of probability distribution
whose consistency across the entire state space could
be guaranteed, and each rule would only accept bets on
probabilities that it could exactly compute from this dis-
tribution. There could be rules that covered single vari-
ables, rules for all value combinations for certain sets
of a dozen variables, rules for nearly-singly-connected
Bayes nets, rules for general sparse Bayes nets, rules
for sparse linear covariance matrices, and rules for lo-
gistic regressions. Market scoring rule patrons might
want the first crack at arbitraging any inconsistencies
between probabilities from different rules, if those pa-
trons are willing to take on the risks required. But after
this, users would be invited to profit by fixing any re-
maining inconsistencies.

Avoiding Bankruptcy

Even when probability distributions are exactly consis-
tent, users might still turn a market scoring rule patron
into a money pump by playing “heads I win, tails I’m
bankrupt.” That is, users might make bets for which
they are paid when they win, but which they cannot
pay when they lose. To avoid this, a market scoring
rule should compare the price changes that a user pro-
poses to the assets that he offers as collateral to cover
his proposed bet. Specifically, a logarithmic rule based
on si = β log2(pi ) could treat any set of collateral as-
sets as in principle describable in terms of amounts ci

held of each state asset “Pays $1 if state i .” If a market
scoring rule can determine that in all states

1 < 2ci /β

(
p′

i

pi

)
,

then it can safely approve a change from p to p′.
Of course the best way to make such a determina-

tion will likely depend on the type of distribution p
handled by this market scoring rule, and on the type
of assets offered as collateral. This determination can
be very easy when the collateral offered is “cash,” i.e.,
assets with state-independent value. On the other hand,
this determination may get very hard when the collat-
eral is the result of previous bets made with respect to
rather different distributions or types of distributions.
For example, if the structure of a Bayes net changed
substantially over time, then a user who once made a

bet with respect to an old version of the net may find it
hard to use that bet as collateral to support a new bet.

While it might be tempting to require cash as collat-
eral for all bets, such a policy would greatly discourage
users from making small changes, i.e., changes to the
probability distribution which covered only small parts
of the state space. This is because small changes would
have a similar opportunity cost to large changes, in
terms of assets which can no longer be used to support
bets, even though the potential payoff from such bets
is much smaller. Since it is often not hard to verify that
other kinds of assets can serve as collateral, insisting
on cash seems much too severe a constraint. Market
scoring rules thus need a non-trivial policy regarding
how much computation they are willing to undergo
to determine that any given collateral will cover any
given bet. This policy can of course depend on the kind
of changes proposed and collateral offered. Since it is
often easier to check proofs than to create them, one
possible policy is that in more complex cases the user
must provide a “proof” of coverage, a proof that the
market scoring rule need only check.

The fact that changes to probability distributions can
make it harder for old bets to be used as collateral to
cover new bets means that users who make bets can
cause a substantial externality on previous users. For
example, in a singly-connected Bayes net market scor-
ing rule, changing the unconditional distribution of a
variable will have little impact on previous users, but
changing the structure of the network can have a large
impact. A user who made a bet about the conditional
probabilities associated with a given link might eas-
ily later undo that bet if that link still remained in the
current network, but if the link was gone they might
need to first add it back in. And if there were binding
complexity limits on the network, this may require the
elimination of some other links in the network. Thus
previous users can be harmed by taking away links that
they have made bets on, and can be benefited by replac-
ing such links. Similar effects come if users can add or
delete cutpoints from a digital option or sawtooth rep-
resentation of a real-valued random variable.

The law and economics perspective seems an appro-
priate framework to consider this externality (Cooter
and Ulen, 2000). If it were easy for each new user to
negotiate with effected previous users, then we could
just clearly assign a property right for them to trade.
This seems difficult, however, both because there will
often be many previous users, and because of the possi-
bility of strategically threatening to become a new user.
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When negotiations are difficult, we must guess at what
rights the parties would assign, if they could negotiate.
If the parties could negotiate, would they agree to tax
or subsidize certain probability changes, because of the
net externality due to those changes?

For topics where we expect too little information ag-
gregation, such as due to free-riding problems among
potential patrons, we expect users to produce a net pos-
itive information aggregation externality, on average.
In contrast, for topics where we expect too much in-
formation aggregation, such due to wasteful signaling,
we expect a net negative information aggregation ex-
ternality, on average. With some way to distinguish
particular uses from others, in terms of the relative
magnitudes of benefits and costs, we should want to
subsidize users in the first case and tax them in the
second case. While structural changes do seem to have
more potential for negative impact on previous users,
when there is a net positive information aggregation ex-
ternality such changes also seem to have more potential
for a positive impact via producing a better probability
model.

In the absence of a more detailed analysis which can
better pinpoint which sorts of changes should be dis-
couraged, relative to other changes, the simplest policy
seems best. Let users make whatever structural changes
they like, if they can afford the bets and the result-
ing structural complexity is acceptable, and leave it
up to previous users to mitigate the externalities such
changes produce on them. Users can mitigate such ex-
ternalities by not waiting too long before undoing bets,
avoiding betting on structural changes they do not ex-
pect to last, and seeking synergies among the bets which
make to make it easier to prove that earlier bets can
serve as collateral for later bets.

In general in the world, the introduction of new prod-
ucts benefits those who use that new product, and others
associated with those beneficiaries, but this act can also
produce negative externalities on those who are tied to
the old products. While this is a shame, on net it still
seems better to usually encourage new products. Un-
til we can tell which new products are net harms, we
should just embrace them all.

Conclusion

Information markets seem to do well at aggregating in-
formation in the thick market case, where many traders

all estimate the same value. But to have combinato-
rial information markets, which estimate a probability
distribution over all combinations of values of many
variables, we want to better deal with the thin market
and irrational participation problems. Simple scoring
rules avoid these problems, but suffer from opinion
pool problems in the thick market case. Market scor-
ing rules avoid all these problems.

After reviewing information markets and scoring
rules, and presenting market scoring rules, this paper
has considered several implementation issues with us-
ing market scoring rules as combinatorial information
market makers. We saw that sawtooth assets can sup-
port both unconditional estimates of expected values,
and conditioning on a variable being “near” some value.
We saw that by using several market scoring rules on the
same state space, each internally consistent but with in-
consistencies possible between the rules, one can avoid
becoming a money pump due to the difficulty of com-
puting consistent probabilities, while still allowing bets
on most probabilities of interest. We saw that market
scoring rule managers should want to make some ef-
forts to allow past bets to be used as collateral for fu-
ture bets, and that it remains an open question just how
much effort is appropriate. Finally, we saw that while
bets that produce structural changes can have a neg-
ative externalities on those who have made bets us-
ing older structures, on net it seems better to usually
leave the mitigation of this externality to those with old
bets.

A summary of the proposed design is as follows:

1. There are several logarithmic market scoring rules,
each of which maintains a distribution p of a certain
type, such as a nearly singly-connected Bayes net.

2. Patrons choose a set of variables to patronize. Vari-
ables can be added and refined on the fly, if further
funding is available.

3. Each real-valued variable z is represented by a dis-
crete variable α, whose values v are assigned payoffs
according to sawtooth functions aαv(z) described
earlier.

4. Patrons choose an initial distribution q for each mar-
ket scoring rule.

5. Patrons choose a subsidy level β for each market
scoring rule. The expected loss of patrons has a
guaranteed bound, and with uniform initial distri-
butions q, the exact loss has a guaranteed bound.

6. Any user can at any time make a change to any
of these distribution, by changing distribution p



118 Hanson

into another distribution p′ of the same type. Such
changes are calculated exactly, without roundoff
error.

7. In between user changes to individual market scor-
ing rules, arbitrage opportunities between such rules
are found and exploited, reducing the inconsisten-
cies between their probability distributions.

8. Consider a user who has so far on net deposited
“cash” d, and has so far made a set of changes
b(p′, p) to various scoring rules, where we define
bi = p′

i/pi . For a logarithmic market scoring rule,
such a user can make one more change, and with-
draw cash w, if he can prove that, considering all
past changes bn and this proposed new change, for
each state where now pi > 0 we have

1 < 2(d−w)/β
∏

n

bin.

9. Whenever a variable’s values are assigned, state
probabilities are reweighted according to this as-
signment, and the state space is coarsened to elimi-
nate this variable. Asset holdings become a weighted
average of asset holdings in the old states.

The main category of issues not dealt with in this
paper is that of user interfaces. Users need to be able
to browse a probability distribution over the set of all
variable value combinations, to identify the estimates,
such as probabilities and expected values, which they
think are in error. User then need to be able to choose
values for those estimates, and see whether they have
enough collateral to cover the bets required to make
these changes. Users also need to be able to see how
much risk they have already acquired along these di-
mensions, so they can judge how much more risk is
appropriate. While reasonable approaches are known
in many cases, it is far from clear what approaches are
most effective and robust across a wide range of the
most interesting cases.
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Notes

1. For a scoring rule that is not proper, this argmax contains other
distributions besides p. In this paper, we consider only proper
scoring rules.

2. For rewards that are in the form of “bragging rights,” the pa-
tron is in essence whatever audience is impressed by such
brags.

3. Procedures “commute” when the result is independent of the order
of applying them.

4. Note also that if much time passes before states will be veri-
fied and payments made, trades are in essence of future assets.
Thus if interest rates are positive, fewer real resources need be
deposited now to guarantee such an ability to pay. For exam-
ple, if the future assets traded were shares in a stock index
fund, one could deposit or escrow the same number of shares
now.

5. This analysis ignores the strategic consideration that one’s report
may influence the reports that others make later, which could
then influence one’s profits from making yet more reports after
that. But if this process ever reaches an equilibrium where people
don’t expect further changes, the equilibrium market scoring rule
distribution should be what each person would report to a simple
scoring rule.

6. It has long been known that in one dimension, an agent using a
scoring rule is equivalent to his choosing a quantity from a con-
tinuous offer demand schedule (Savage, 1971). This equivalence
also holds in higher dimensions.

7. This is the same fact that in physics ensures that the total entropy
of two correlated systems is lower than the sum of the entropies
of each system considered separately.

8. Users could also withdraw non-β multiple amounts, if they were
willing to suffer a rounding down to cover the worst possible
roundoff error in calculating the logarithm.

9. Technically, the directed network of a Bayes net can be trans-
lated into an undirected network by adding “moral” links be-
tween the parents of each variable. The “cliques” of this undi-
rected network are then the largest sets of nodes that are all
linked to each other. By adding more links to this network,
these cliques can be organized into a “join tree,” where for ev-
ery pair of cliques, their intersection is a subset of every clique
on the tree path between these two cliques. The cost to consis-
tently update this network is roughly proportional to the num-
ber of variables, times a factor exponential in the size of the
cliques. (The computational complexity of finding the cliques of
a networks is NP-complete in the worst case, however (Cooper,
1990).)
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