COURSE OUTLINE GEOLOGY 101, Sec 002 Fall 2008, Diecchio Text: Lutgens, Tarbuck and Tasa, *Essentials of Geology*, 10th edition

Overview Of Earth	ch 1
Earth's place in solar system, galaxy, universe	
Atmosphere, hydrosphere, biosphere, lithosphere	
Earth's interior	
Earth's surface	
internal processes	
plate tectonics	
isostasy	ch 17 (411-413)
surficial processes	ch 11 (246-248)
	ch 12 (272-274)

Matter & Minerals atoms elements atomic number isotopes atomic mass molecules & compounds bonds ionic bonds covalent bonds states of matter minerals chemical composition crystalline structure properties of minerals chemical composition of earth's crust major groups of minerals silicate minerals structural groups chemical trends

Igneous Rocks

composition variation of minerals (reflected in color) variable composition of magma cooling history (related to silicate structural groups) crystal size/texture rate of cooling volcanic (extrusive) rapid cooling fine crystalline (aphanitic), glassy, or fragmental texture plutonic (intrusive) slow cooling coarse crystalline (phaneritic) texture porphyritic - variable cooling rates other textures

Surficial Processes hydrologic cycle atmospheric circulation patterns wind systems climate belts

Weathering & Soils

weathering mechanical weathering clastic particles particle size classification chemical weathering stability series products clays (particles) oxides (particles) dissolved ions

soils

soil profile development of soils types of soils pedocal – pedalfer - laterite controls of soil type P - parent material P - process - weathering T - time soil properties soil as a resource ch 12 (272-274)

ch. 5

Sedimentary Rocks

weathering		
clastic sediment \rightarrow clastic rocks		
pieces of original rock		
clays		
oxides		
chemical sediment \rightarrow chemical rocks		
solutions & sedimentary precipitates		
carbon cycle and limestones		
erosion		
transportation		
deposition		
stratification		
sedimentary environments		
diagenesis		
lithification		
porosity & permeability		
interpreting earth history		
fossil fuels		

Metamorphic Rocks

contact metamorphism (high temperature) regional metamorphism (high pressure) foliation metamorphic grades mountain belts

Rock Cycle

Geologic time relative time		ch 18
absolute time		
	today (0 my ago)	
C	enozoic Era	
	65 my ago	
Μ	lesozoic Era	
	250 my ago	
Pa	aleozoic Era	
	540 my ago	
Pı	recambrian Eon	
	4600 my ago	
geologic timespans rates of geologic pro	ocesses	

3

Mass Wasting

causes & conditions types of slope failures recognition of unstable slopes slope stabilization

Wind and Deserts

climate belts location of deserts

wind erosion deposition sorting

hydrologic cycle **Rivers and Streams** drainage basins (watersheds) drainage divides headwaters stream order baselevel(s) mouth source of water runoff springs mechanics of streams gradient graded stream profile channel size (cross-sectional area) velocity discharge variability floods stream sediment coarser upstream, finer downstream sorting erosion vs. deposition stream landforms erosional valleys depositional bars, floodplains, deltas, fans, terraces evolution of landscapes P - parent materials P - process T - time drainage basin evolution erosion cycles climate belts humid stream erosion cycle importance of groundwater arid erosion cycle importance of wind differential erosion

Valley & Ridge topography

fig 10.5 p 275-278

Groundwater	ch 10
water table	
porosity and permeability	
aquifer vs. aquiclude/aquitard	
movement of groundwater	
climate	
influent vs. effluent streams	
geologic complexities	
what geologists do	
practical considerations	
utilization of groundwater	
contamination of groundwater	
landforms – karst	
PPT	
carbon cycle	p. 158-159
erosion of soluble rocks	
deposition by groundwater	
Glaciers	ch 11
global distribution	
high latitude glaciers	
continental	
high elevation glaciers	
alpine	
snowline varies with latitude	
mechanics of glaciers	
ice budget	
accumulation vs ablation	
glacial advance, retreat (recession)	
glacier movement	fig. 1.12
glacial erosion	
glacial deposition	
glacial sediment	
lack of sorting	
glacial landforms	
recognition of past ice ages	
widespread effects of glaciation	
sea level changes	
isostatic adjustment	p. 411-413
modification of land surface	
ice ages	
evidence of climate change	
history of climate change	
causes of ice ages & climate change	
carbon cycle	

marine processes	
Shorelines	ch 13
processes	
cyclical	
waves, tides, seasons	
concept of equilibrium shoreline	
non-cyclical	
storms, tsunami	
global sea-level change	
coastal landforms	
PPT	
coastal evolution	
primary coasts	
secondary coasts	
clastic shorelines	
energy vs. sediment supply	
finer sediment seaward	
high vs. low energy shorelines	
carbonate shorelines	
carbon cycle	p. 158-159
deep sea	p. 377-381
calm environment	I
deep marine sediment	
submarine "landforms"	
origin not due to surficial processes	
plate tectonics	
1	

INTERIOR PROCESSES

Earthquakes

seismic waves intensity vs. magnitude focus (hypocenter) epicenter locating earthquake epicenters maximum intensity triangulation earthquake zones = zones of deformation = plate boundaries intra-plate seismicity

Earth's Interior

D=VT (distance = velocity x time) seismic refraction know D, measure T, calculate V $V_{sol} > V_{liq} > V_{gas}$ V increases with density predict nature of earth's interior regions seismic discontinuities seismic reflection know V, measure T, calculate D depth to seismic discontinuities characterizing earth's interior oceanic crust continental crust MOHO (M-discontinuity) mantle low velocity zone outer core P-wave shadow zone S-wave shadow zone inner core weak P-waves in P-wave shadow zone

Crustal deformation

types of geologic structures folds faults tensional - normal fault compressional - reverse fault translational - strike-slip fault ch 17 (394-403)

ch 14 (337-339)

Plate Boundaries

Types of plate boundaries divergent oceanic ridges & continental rift zones normal faults shallow focus, low magnitude earthquakes associated with transform faults (strike-slip) process: rifting convergent submarine trenches reverse faults shallow to deep focus earthquakes (Benioff zone) low to high magnitude earthquakes process: subduction translational transorm faults & fracture zones shallow focus earthquakes very low to very high magnitude earthquakes strike-slip faults earthquake prediction spatial, temporal, severity

Volcanism

review igneous rocks generation of magma partial melting mantle source crustal source crystallization of magma differentiation volcanism properties of magmas density viscosity gas content types of eruptions - relationship to plate boundaries divergent plate boundaries mantle source mainly basaltic volcanism lava flows convergent plate boundaries crustal source mainly andesitic to rhyolitic volcanism pyroclastic eruptions batholiths hot spots prediction of volcanoes spatial - temporal - severity

Plate tectonics	
Paleomagnetism	ch 15 (362-369)
earth's magnetic field	
magnetic inclination	
remanent magnetization	
determination of paleo-latitude	
ancient pole positions	
polar wandering	
continental drift	
polarity reversals	
Evolution of Oceans	ch 16 (382-391)
geology of Iceland	
magnetic stripes	
patterns of stripes	
mechanics of rifting	
age of the sea floor	
evolution of ocean basins & oceanic crust	
sea floor spreading	
reconstruction of past 200 my	
Mountain Building	ch 17 (404-411)
geology of Himalayas and Indian Ocean	
patterns of magnetic stripes at trenches	
relationship between mountain belts and subduction zones	
destruction of oceanic crust	
evolution of volcanic arcs	
relationship between oceans and continents	
Wilson cycle	ah 10 (452 456)
evolution of continents& continental crust continental crust	ch 19 (452-456)
mountain belts	
platforms & shields model of growth of continents	
origin of continental crust	
Past, present & future earth Energy & Mineral Resources	
energy resources	
renewable vs. non-renewable resources	
exploration, extraction, processing	
utilization vs. environmental preservation	
fossil fuels	
carbon cycle	
alternate energy resources	
mineral resources & mining	