
Self-Architecting Software SYstems (SASSY) from
QoS-Annotated Activity Models

Sam Malek, Naeem Esfahani, Daniel A. Menascé, João P. Sousa, Hassan Gomaa

Department of Computer Science
George Mason University

{smalek, nesfaha2, menasce, jpsousa, hgomaa}@gmu.edu

Abstract

 As the complexity associated with software
development has increased, software engineers have
sought novel ways to represent, reason about, and
compose large-scale software systems. However, the
majority of these approaches are geared to technically
well versed engineers, making them unwieldy for use in
a growing class of real-world pervasive computing
systems. In this paper, we propose a new approach
intended to address the current shortcomings in
service-oriented software systems. Given the functional
and QoS requirements specified by a domain expert in
an activity oriented modeling language, an
architecture satisfying the requirements is generated.
We describe our approach in the context of a
framework, entitled Self-Architecting Software SYstems
(SASSY), which shapes our ongoing research and aims
to automate the composition, analysis, adaptation, and
evolution of service-oriented software systems.

1. Introduction
Service-Oriented software systems are associated

with a number of advantages, including the ability to
abstract away the heterogeneity of the communication
and computational substrate, the decoupling of service
providers from consumers, and the flexibility of
dynamically discovering and binding to services. As a
result, service-oriented systems are fast becoming
pervasive in a variety of computing domains. Service-
Oriented Architecture (SOA) [13][14] is seen as the
solution to many of the problems facing modern day
enterprise and e-commerce software systems, which
continue to grow in size and complexity. Similarly, the
proliferation of portable and embedded computing
devices and the recent advances in wireless network
connectivity have made the SOA paradigm a viable
option for an emerging class of pervasive systems.

On top of the traditional complexity associated
with the construction of any large scale software
system, software developers are forced to cope with
additional sources of complexity introduced by the
growing class of mobile and pervasive systems, which
are innately dynamic and unpredictable. Moreover,
these systems are often long-lived, and are expected to

adapt not only to the fluctuating execution conditions
(e.g., network throughput, available battery power), but
also to changes in their operational requirements (e.g.,
functional features).

As the complexity associated with software
development has increased, software engineers have
sought novel ways to represent, reason about, and
synthesize large-scale software systems. However,
many of these approaches have relied heavily on
human reasoning and manual intervention, making
them unwieldy for use in highly dynamic and
unpredictable pervasive settings. Moreover, the
majority of existing approaches have primarily targeted
technically savvy software engineers, as opposed to
domain users, thereby making them difficult to use in
many real-world industrial settings.

In this paper, we present a novel approach targeted
at the challenges of automatically composing an SOA
software system in dynamic, unpredictable, and
pervasive SOA software systems. We rely on the
domain expert’s functional and Quality of Service
(QoS) requirements expressed in an activity-oriented
language to automatically generate an “optimal”
architecture. Architecture generation consists of (1)
selection of the appropriate service providers that
satisfy the user’s activities, and (2) application of
suitable architectural patterns to compose the services
into a cohesive software system. The approach ensures
that the generated architecture satisfies the key quality
attributes (e.g., latency, security) specified by the user.
The work presented in this paper is part of a
framework, entitled Self-Architecting Software
SYstems (SASSY), which shapes our ongoing research
effort and aims to automate the composition, analysis,
adaptation, and evolution of SOA software systems.

The remainder of the paper is organized as
follows. Section 2 introduces a motivating example
used throughout this paper for exposition purposes.
Section 3 provides an overview of the SASSY
framework. The rest of the paper focuses on a
particular aspect of the SASSY framework dealing
with the process of generating a viable architecture. To
that end, Section 4 describes the architecture
generation methodology, Section 5 describes the
activity-oriented language used to model the system’s

requirements, Section 6 discusses the architectural
modeling language, and finally Section 7 presents the
architecture generation process. The paper concludes
with an outline of our future work.

2. Motivating Example
As a motivating example, consider the following

application scenario taken from the emergency
response domain. Smart buildings equipped with
various sensors, such as smoke detectors, seismic
probes, and cameras, provide monitoring data for
emergency phenomena, such as fire, structural damage,
and burglary. Other sensors, such as fire sprinklers,
electronic locks, and exit lights, provide means of
responding to an emergency situation. The services
provided by these sensors is made available publicly
(to authorized consumers) via service discovery
directories (e.g., UDDI). Information fusion services
provisioned by various emergency response agencies
(hospitals, police headquarters, firefighting stations)
aggregate and process the data received from the
sensors, determine the occurrence of emergency
situations, and publish the results onto a wide-area
event notification system (e.g., Siena). A management
service listens to emergency events and deals with
classification and determination of the appropriate
course of action, as well as with supporting the field
work of emergency response teams.

The above scenario is an example of pervasive
software systems that are increasingly deployed in a
variety of domains, including emergency response.
Such systems consist of a heterogeneous set of smart
spaces (e.g., buildings equipped with sensors,
autonomous vehicles) that through the commonly
adopted SOA standards (i.e., Web Services enabling
standards [14][18], such as SOAP, WSDL, and UDDI)
can find each other’s provided services and integrate to
form a cohesive software system. Unlike
traditional systems, they are expected to be
utilized in a variety of scenarios (e.g., different
emergency situations), many of which may not be
known a priori. In other words, the system’s
actual functional and QoS requirements become
known at run-time. These systems require
significantly more flexible and dynamic software
composition techniques than those that are
currently at our disposal. In the next section, we
describe a framework that aims to alleviate these
challenges.

3. Overview of SASSY
Figure 1 illustrates the SASSY framework at

a high level. A domain expert, as opposed to a
software engineer, expresses the system’s
requirements in the form of an activity diagram,

called Service Activity Schemas (SAS). A SAS is a
graph whose nodes correspond to activities that a user
needs to accomplish. An activity describes a task that
needs to be performed. Therefore, it is a technology
independent concept that represents a transformation of
inputs, potentially artifacts from another activity, into
outputs. An activity may be long-lived, where the
activity generates an indefinite number of outputs
before termination, or short-lived, where the activity
terminates after generating an output. For example, in
an emergency response system that supports victims of
a hurricane, activities may correspond to “contact the
state national guard”, “declare state of emergency”,
“contact the fire department”, “contact the police
department”, “order food supplies”, “order
medication”, “order tents”, etc. The terms used to name
activities come from a domain ontology. The domain
ontology provides the means for unambiguously
distinguishing different concepts and elements, which
as outlined further below facilitate the discovery of
services and resources in support of activities. The
domain ontology is created and maintained by a
consortium of domain experts, who specify the various
domain activities and concepts, including the
properties of respective services that realize them.

Given the requirements defined in the SAS, a base
System Service Architecture (SSA) is automatically
generated. A SSA is essentially a system’s software
architecture, with the exception that the component
types are service types. A service type is the
specification (e.g., name of operations, type of
parameters) of a service. A service type is defined in
the ontology. The service interface is defined in terms
of the operations it provides, where each operation
corresponds to one or more activities in the SAS. A
service type is realized by a service instance, which is
made publicly available for use by a service provider.
Given the SAS, the corresponding service types are

Figure 1. High-level view of SASSY framework.

found in the ontology, and a base SSA is composed.
QoS goals are specified in an SAS through Service
Sequence Scenarios (SSS), as detailed in Section 5.

The next step entails discovering a set of candidate
service providers that can support the execution of the
service types described in the SAS. There may be more
than one service provider for each service type, each
exhibiting a different QoS level at potentially different
cost. The framework performs a service selection that
maximizes a utility function provided by the domain-
expert. A utility function reflects the usefulness of the
software system based on the value of its quality
attributes (e.g., response time, throughput, availability,
security). If all QoS goals specified in the SSSs are
met, the base architecture is effected by binding the
associated services, generating the coordinator’s logic,
and executing the system on top of the SASSY run-
time support system, which includes the following
common services: monitoring of QoS metrics,
consumer report, service rating, change management,
goal management, repository services, service
discovery, QoS brokering services [20], and others.

If however, the QoS goals are not met, SASSY
determines the critical SSSs that violate the QoS goals.
Then, it uses a library of architectural patterns [6] to
generate alternative architectures that may ameliorate
the QoS issues (e.g., replication for availability,
encrypted channels for security). See Section 7 for
specific examples. New service discovery has to be
performed for each of the candidate architectures
followed by optimal service allocation and QoS
verification in an iterative process.

The SASSY approach is used for evolution and
runtime adaptation of the software systems as well. We
are extending our previous work [19] to support
runtime adaptation. In the case of software evolution,
the new system requirements (i.e., new SAS) are
compared with the current requirements, and an
architecture that satisfies the new requirements is
generated (see Section 7). In the case of runtime
adaptation, when the services fail to meet their QoS
contracts, the QoS monitoring services trigger
exploration of alternative architectures, and
subsequently the revised architecture is reconfigured
via the SASSY infrastructure support. As the backward
arrow in Figure 1 indicates, monitors within the
SASSY run-time support system may trigger
adaptation, which may result in the generation of a new
architecture and new service discovery.

In the remainder of this paper, we focus on two
aspects of the SASSY framework: (1) modeling the
system’s requirements via a user-friendly, relatively
informal, activity-oriented language, and then (2)
automatically transforming the requirements to
concrete architectural artifacts.

4. Architecture Generation Methodology
Our approach is grounded in the Model Driven

Architecture (MDA) methodology [7]. MDA
distinguishes between business and software models.
To that end, MDA advocates the construction of a
Computation Independent Model (CIM), which
represents an organization’s business requirements.
The CIM is then leveraged to arrive at a Platform
Independent Model (PIM) of a software system that
satisfies the business requirements. The PIM provides
an appropriate-level of granularity (i.e., architectural-
level) for assessing a software system’s ability to
satisfy its key functional and QoS requirements. The
PIM is then translated into a Platform-Specific Model
(PSM) that is more detailed and closely aligned with
the implementation technology.

Researchers have shown that, in the general case,
automatic derivation of software architectural models
(PIM) from business models (CIM) to be infeasible
[7]. To make the problem manageable, we have (1)
constrained our research to SOA software systems,
which allow us to make several simplifying
assumptions, and (2) limited the expressiveness scope
of the requirements language (SAS) to a predetermined
set of concepts available in the ontology.

 Figure 2 depicts our methodology. An MDA
environment, such as the Generic Modeling
Environment [5], is utilized to develop visual Domain
Specific Modeling Languages. This process is depicted
in Figure 2: a meta-model codifying the semantics of
the SAS language is developed and passed to the Meta-
Model Interpreter, which in turn customizes the MDA
environment accordingly and provides visual support
for constructing models in the SAS language. Support
for the SSA language is provided similarly.

The domain user specifies the requirements of the
system using the SAS language. The Model Generator
leverages the constructed SAS model, the domain

Figure 2. Architecture generation and analysis

methodology.

Domain Specific Req
Modeling Environment

Metamodeling
Environment

Metamodeling
Language

SAS Modeling
Language

SAS
Metamodel Requirements

Model (SAS)

Metamodel
Interpreter

Model
Analyzers

Model
Generator

Domain Specific Arch
Modeling Environment

Metamodeling
Environment

Metamodeling
Language

SSA Modeling
Language

SSA
Metamodel

Architectural
Model (SSA)

Metamodel
Interpreter

Ontology

ontology relating activities to service types, and the
specification of the SSA modeling language to produce
an architectural model of the system that satisfies the
requirements. The architectural models are then
utilized by the Model Analyzer engines, which may
perform either further analysis (e.g., service provider
selection) or software composition (e.g., applying
architectural patterns). In the remainder of this paper,
we take a closer look at the application of this
methodology in the context of our research.

5. Service Activity Modeling
This section describes the rationale and elements

of the activity-oriented modeling language we propose
for defining SAS and SSS. The two most important
requirements of this language are that: (a) it should be
usable by domain experts with little training in
software technologies, and (b) it should fit easily to the
class of real-world problems illustrated in Section 2.

Specifically, it should easily support distribution
and concurrency (joins, forks, etc.), specification of
QoS objectives (see SSS below), awareness of
geographic location, activities with different durations
(ongoing versus short duration), and different styles of
interaction (synchronous, asynchronous, streaming,
etc.). Furthermore, it should manage the scalability of
specifications via hierarchical decomposition of
activities (i.e., sub-activities).

A comprehensive survey of existing languages led
us to the Business Process Modeling Notation (BPMN)
[1], which has recently been designated as an OMG
standard. Unlike many others, e.g., UML activity
diagrams [9], BPMN is intended to be used by domain
experts, as opposed to software engineers.
Additionally, previous research has shown that
appropriately constrained BPMN models can be
mapped to the executable Business Process Execution
Language (BPEL) [15][17], which increases our
confidence that a language based on BPMN can be
automatically translated to executable
software.

Nevertheless, the current specification of
BPMN has three significant shortcomings
with respect to the goals of our research.
First, in its general form, it is overly flexible
and open-ended to support fully automatic
generation of software architecture. Second,
it does not support modeling of QoS
objectives. Finally, it does not support
awareness of geographic location for scalable
and context-aware discovery of services.
While the first limitation prompted us to
define a subset of BPMN with precise
semantics, the other two prompted us to
extend the language in those directions.

5.1. Service Activity Schemas
The SAS modeling language is specified by the

meta-model depicted in Figure 3. As mentioned in
Section 4, the meta-model is used to provide support
for the language in the Generic Modeling Environment
[5]. For brevity, we do not describe the details of the
meta-model; instead, we provide a description of the
language in this section. However, we would like to
point out the importance of the meta-models in our
approach. Meta-models provide precise semantic
underpinnings for the languages used in our research,
addressing a shortcoming of many existing languages
(e.g., BPMN). This in turn enables systematic
transformation of our models.

From BPMN, SAS retains the following elements:
(1) Events, depicted as circles, for sending and
receiving messages between possibly distributed
logical or physical entities; (2) Gateways, depicted as
diamonds, for controlling the flow of execution within
an SAS; and (3) a generic notion of activity, or task,
represented as a round-corner rectangle. Like BPMN,
activities may be annotated as looping, based on a
condition, and multiple, contingent on an expression to
determine the number of instances.

Unlike the BPMN, SAS explicitly distinguishes
local activities from those that are performed
externally. An external entity, also referred to as
service usage, is represented as a round-corner
rectangle annotated with a server icon. An entity could
be either logical (i.e., a conceptual element in the
domain) or physical (e.g., a sensor). Each activity
carried out by an external entity is represented as a port
(a small envelop in the round-corner rectangle).

Also unlike BPMN, SAS does not use the notation
of swim lanes to represent the concerns of separate
activities (see Figure 4a). Each SAS is depicted from
the local point of view of the component responsible
for the activity (i.e., coordinator), and the interactions
with external entities are shown as exchanges of

Figure 3. Subset of the SAS meta-model in GME.

events. In other words, one could map the SAS
notation to BPMN’s swim lanes by dragging each
service usage into a separate swim lane, decomposing
it into its underlying activities, and keeping local
activities and gateways in a central lane, which
contains the logic for coordinating the invocation of
external activities. We have pushed the intermediate
message events to the boundary of the external entities
residing in their pools; in this way we have removed
the need for extra communication type (i.e. Message
Flow) and made the language even simpler.

The reason we chose to drop the swim lane
notation is the key role played by service discovery in
the class of systems targeted by our research. Swim
lanes suggest a stable, predefined mapping of functions
to components. In contrast, in SAS, which component
actually provides a service is contingent on service
discovery, and immaterial to the specification of the
service usage within the activity.

To better illustrate these ideas, Figure 4a shows a
simple example of a scenario that monitors fire
emergencies in a smart building. The scenario uses the
services of external smoke detectors, sprinklers,
building occupancy estimation, and a fire station.

Similarly to BPMN, the arrival and emission of
such messages is represented as events: a dark
envelope (not shown in the figure) denotes the event of
sending a message, and a clear envelope, the event of
receiving one. In the example, the monitoring activity
is started upon receipt of a start message, after which
the relevant SmokeDetector and Timer are started.
Timer is a local sub-activity which generates periodic
ticks requesting OccupancyAwareness to provide an
estimation on the number of the occupants in the
monitored building.

If a SmokeDetector ever senses smoke, it sends a
message describing the level of smoke and Carbon
Monoxide (CO), as well as the specific location. The
gateway marked with a circle, an inclusive
(Conditional-Or) gateway in BPMN, proceeds to
activate SprinklerControl, if the concentration of CO is
above 600ppm. In any case, it further proceeds to
activate the gateway marked with a cross, a Parallel
(And-Join) gateway in BPMN, which makes sure an
occupancy estimate has been received before sending a
fire call message to the FireStation.

5.2. Service Sequence Scenarios
The second shortcoming of BPMN, dealing with

the specification of QoS objectives, is addressed by
Service Sequence Scenarios (SSS). These are well-
formed sub-graphs of SAS, and correspond to a
sequence of interest to the user, to which QoS
objectives are associated. An SSS is well-formed if it
satisfies the syntactic constraints of an SAS: a
condition easily checked by the modeling tool.

Currently, SSS are accessible via dashed
rectangles at the upper left corner of an SAS (see
Figure 4a). Figure 4b shows what happens when the
Availability SSS is selected: the corresponding sub-
graph is highlighted, while the rest of the SAS is
grayed out. Specific QoS objectives associated with
this scenario, e.g., an availability of 99%, are captured
in a property sheet associated with the SSS (not shown
for the sake of space). Furthermore, to facilitate the
job of domain experts, the tool relies on ontology to
support specifying domain-specific objectives either at
a high-level of abstraction, e.g. high-resolution images,
or at a technical level, e.g., 1024x1024 pixel.

The QoS objectives associated with an SSS are
 (a) (b)

 Figure 4. (a) A simple SAS for a Fire Emergency Response Scenario, (b) A selected availability SSS.

used in the generation of the
architecture and analysis, as
discussed in the next section.
These annotations are expressed in
a language that is inspired by
WSLA [16].

5.3. Scaling Discovery
The third limitation of BPMN,

dealing with location-aware
service discovery, is addressed by
associating location constraints to
service usages. Referring to the
example in Figure 4, after a smoke
sensed message is received, the
monitoring activity should
discover the fire sprinklers that are
close to the affected area in the
building, using the location
information received from the
smoke detector, and send the activate message only to
those. Geographic constraints on service discovery can
be used to pin-point services across wide geographic
distances. For example, given a specific emergency, a
federal agency located in Washington DC might need
to discover and inquire the state of all the emergency
response vehicles currently at a particular district in
New Orleans.

We are currently experimenting with a hierarchical
representation of location, with support for aliasing,
similar to the notation used for URLs in the internet.
For example, //fairfax.va.us/22030/4400-university-drv
represents the same location as //gmu.edu.

6. System Service Architecture
Architectural Description Languages (ADLs) [10]

have been shown to be effective in modeling the
crucial characteristics of a software system that
determine its ultimate capabilities, properties, and
qualities. However, a traditional shortcoming of ADLs
is that each is specialized to a particular type of
concern (e.g., structural vs. behavioral, dynamic vs.
static, computation vs. interaction). In SASSY, we
needed a comprehensive architectural modeling
approach to model the different aspects of the System
Service Architecture (SSA). To this end, we have
extended our previous work [4] that allows for the
construction of a software system’s architectural
concerns from different points of view using multiple
ADLs. In this approach, each ADL is supported via a
meta-model (see Section 4). More importantly, the
ADLs are linked together at the meta-model level,
allowing for the development of composite ADLs. The
approach provides innate consistency among the

multiple views of the same system, even if they are
developed using different ADLs.

Our SSA models are based on two well-known
ADLs that have been adapted for the purposes of
modeling SOA systems. We have utilized a widely
used and extensible ADL, eXtensible Architectural
Description Language (xADL) [3] to represent the
structural properties of a system’s software
architecture. xADL provides the traditional
component-and-connector view of a software systems
architecture [3]. In SASSY, we model services as
components. Figure 5 shows an example of a xADL
model that is further discussed in the next section.

To represent the behavioral aspects of an SOA
system (i.e., the coordinator’s logic) we have used
Finite State Processes (FSP) [8]. FSP is a type of state
machine language intended to capture a software
system’s high-level behavioral and interaction
properties. Figure 6 shows an example of a FSP model
in SSA, which is also discussed in more detail in the
next section. A more detailed description of support for
xADL and FSP, including the corresponding meta-
models, which form the basis of SSA, is provided in
[4]. Next, we describe our approach in the generation
of SSA models from SAS models.

7. Architecture Generation
As described in Section 3 and depicted in Figure 1,

the process of generating the architecture consists of
(1) generating a base architecture, (2) solving the QoS
objectives via service provider selection, and finally
(3) if QoS objectives are not satisfied, find an
alternative architectural solution. The first step is easily
achieved using an appropriate domain ontology
referring activities to service types. The second step is

Figure 5. Structural view of SSA for the example of Figure 4.

a complex problem which is the subject of our ongoing
research, and early results are provided in [11]. In this
section, we are going to focus on the third step.

When existing service providers capable of
satisfying the QoS objectives of the base architecture
cannot be found, SASSY applies a variety of software
architectural patterns [6] to find an architectural
solution to the problem. To demonstrate this capability,
we revisit the example of Figure 4. In this example the
user has specified an availability requirement of 99%
for the two services involved in the availability SSS.
Moreover, the user has specified a security
requirement of “High” for any communication with the
FireStation service (i.e., the user has requested
encrypted communication with the FireStation). Note
that the security SSS is not selected in Figure 4b;
therefore its details are not highlighted.

Let us assume that an OccupancyAwareness
provider that is 99% available and a FireStation
provider that support encrypted communication are not
found. However, the SASSY infrastructure has found
two potential OccupancyAwareness providers that are
90% available. Similarly, a generic Cipher component
with the ability to encrypt and decrypt messages is
found. We describe the process of generating an
alternative architectural model that satisfies the QoS
requirements of this example next.

7.1. Generating the Structural View
Figure 5 shows the structural view of the SSA that

is generated. The FERSCoordinator component
organizes the interaction among the services. Its logic
is generated from the SAS example of Figure 4 and
detailed in the next section. SmokeDetector and
SprinklerControl components correspond to the two
service providers that satisfy the QoS requirements.

 Since an OccupancyAwareness provider capable
of satisfying the availability requirement is not found,
SASSY applies the replication pattern through the use
of a specialized FaultTolerant connector [12]. A
FaultTolerant connector broadcasts the service
requests to several service providers, but only the
response from the primary provider is sent back to the
client. If the primary provider becomes unavailable, the
FaultTolerant connector detects it, and promotes one
of the secondary providers to the role of the primary.
As shown in Figure 5, by utilizing the replication
pattern, SASSY satisfies the user’s stringent QoS
requirement of 99% availability, via the two
OccupancyAwareness services, each of which is
available 90% of time.

Similarly, SASSY satisfies the security
requirement associated with the FireStation by
applying the mediator pattern. The FERSCoordinator
component relies on a SecureChannel connector that

encrypts messages using the Cipher service. The
resulting architecture is depicted in Figure 5. The
above patterns can be more generally utilized for other
purposes. For example, the mediator pattern can also
be used in conjunction with a compression service to
satisfy the throughput and latency requirement.

The SSA in Figure 5 can be extended to support a
highly distributed software architecture consisting of
multiple buildings, each of which containing several
instances of SmokeDetector and SprinklerControl, one
instance of the FERSCoordinator and FaultTolerant
connector, and two instances of OccupancyAwareness.
In addition, the architecture may consist of several
instances of FireStation, where each FERSCoordinator
would discover the FireStation instance geographically
closest to it using the approach described in Section 3.
Finally, the coordinator itself could be both logically
and physically distributed. For the sake of simplicity,
our example does not show such a scenario. A more
complex system would involve multiple SAS models,
each of which may result in one or more, potentially
distributed, set of coordinator components.

7.2. Generating the Behavioral View
In the previous section, we described the structural

view of the generated SSA. Figure 6 shows a subset of
the coordinator’s logic in FSP that is generated from
the SAS example of Figure 4. As detailed in [4] we
have slightly modified the traditional FSP for the
purposes of simulation (not discussed in this paper).

FSP allows for the hierarchical composition of
state machines. The portion of the coordinator behavior
depicted shows the highest level, dealing with the
receipt of messages. The initial entry point to the
coordinator is a wait task, which represents the initial

Figure 6. Coordinator’s behavior in handling
the inputs for the example of Figure 4.

storage of the messages before they are handled by a
processing thread.

Afterwards, one of the potential paths is selected
based on the type of the input received. The inputs in
the FSP model are generated based on the events in the
SAS model of Figure 4. A coordinator needs to be able
to handle the Event messages marked with a white
envelope, which denote messages received by the
coordinator in SAS. Some of the inputs (estimated and
smoke sensed) carry data that are stored in local
variables (occupancy and smoke). This data
corresponds to the Event attributes (e.g., the Carbon
Monoxide value of the smoke sensed event) specified
in the SAS model and used by the SAS Gateways for
decision making. Based on the selected path, the
coordinator is put into the corresponding state to
handle the received input. The details of the other
states not shown in this figure are generated similarly.

Finally, the generated architectures may have to
evolve as a result of changes in the requirements. For
instance, an additional entity, such as an ambulance,
may need to be added to the example of Figure 4 . The
user specifies the new requirements by revising the
existing SAS models. Afterwards, the SASSY
framework adapts the existing software architecture by
modifying the structural view and generating the
behavioral view for the new coordinator. This could
result in changes to the set of service providers and to
previous architectural decisions.

8. Conclusion
The SOA paradigm is increasingly employed in

the construction of a growing class of pervasive real-
world software systems. This paper presented a novel
approach intended to streamline the composition of
SOA software system in such settings. Our approach
deviates from related approaches (e.g. Jopera [21])
through its explicit reliance on the system’s software
architecture. Given the functional and Quality of
Service (QoS) requirements expressed in an activity-
oriented language, an “optimal” architecture is
generated. The architecture indicates specifically the
service providers as well as the interaction patterns that
should be utilized to satisfy the requirements.

This work is part of an ongoing research effort on
Self-Architecting Software Systems (SASSY), a
framework intended to automate the composition,
analysis, adaptation, and evolution of real-world SOA
software systems. Specific ongoing work include,
automatic architecture generation, building a QoS
related pattern repository, empirical evaluation of the
approach, development of runtime architecture
adaptation capability, and the generation of BPEL code
for distributed coordination of activities.

9. Acknowledgements
This work is partially supported by grant CCF-

0820060 from the National Science Foundation.

10. References
[1] BPMN Spec. ver 1.1. Object Management Group, 2008.
[2] P. Clements, et al. Documenting Software

Architectures: Views and Beyond. Addison Wesley,
2003.

[3] E. Dashofy, et al. An Infrastructure for the Rapid
Development of XML-based Architecture Description
Languages. Int’l Conf. on Software Engineering,
Orlando, FL, May 2002.

[4] G. Edwards, S. Malek, and N. Medvidovic. Scenario-
Driven Dynamic Analysis of Distributed Architecture.
Int’l Conf. on Fundamental Approaches to Software
Engineering, Braga, Portugal, March 2007.

[5] GME. http://www.isis.vanderbilt.edu/Projects/gme/
[6] H. Gomaa, et al. Composition of Software Architectures

from Reusable Architecture Patterns. Int’l Workshop on
Software Architecture, Orlando, Florida, 1998.

[7] A. G. Klepp, et al. MDA Explained: Practice and
Promise, Addison-Wesley, Boston, MA, 2003.

[8] J. Magee, et al. Behaviour Analysis of Software
Architectures. Int’l Working Conf. on Software
Architecture, Deventer, Netherlands, Feb, 1999.

[9] S. Martin, et al. UML Distilled: Applying the Standard
Object Modeling Language. Addison-Wesley, 1997.

[10] N. Medvidovic, et al. A Classification and Comparison
Framework for Software Architecture Description
Languages. IEEE Trans. on Soft. Eng.., vol. 26, 2000.

[11] D. A. Menascé, et al. A Heuristic Approach to Optimal
Service Selection in Service Oriented Architectures,
ACM Workshop on Software and Performance,
Princeton, NJ, June 2008.

[12] M. Rakic, et al. Increasing the Confidence in Off-the-
Shelf Components: A Software Connector-Based
Approach. Symp. on Software Reusability, Toronto,
Canada, May 2001.

[13] M. P. Papazoglou, et al. Service-oriented Design and
Development Methodology. Int’l Journal on Web
Engineering and Technology, vol. 2, pp. 412-442, 2006.

[14] M. P. Papazoglou. Web Services: Principles and
Technology. Prentice Hall, 2008.

[15] W.M.P. van der Aalst and K.B. Lassen. Translating
unstructured workflow processes to readable BPEL:
Theory and implementation. Information and Software
Technology, vol. 50, pp. 131-159, 2008.

[16] WSLA. www.research.ibm.com/wsla/
[17] WS-BPEL ver 2.0, OASIS, 2006.
[18] S. Weerawarana et al. Web Services Platform

Architecture. Prentice Hall, 2005.
[19] H. Gomaa, et al. Model-Based Software Design and

Adaptation. Workshop on Soft. Eng. for Adaptive and
Self-Managing Systems, Minneapolis, MN, May 2007.

[20] D. A. Menascé, et al. QoS Management in Service-
Oriented Architectures, Journal of Performance
Evaluation, vol. 64, Issues 7+8, Pp. 646-663, Aug 2007.

[21] C. Pautasso, T. Heinis, and G. Alonso. JOpera:
Autonomic Service Orchestration. IEEE Data
Engineering Bulletin, vol 29, no 3, Sep. 2006.

