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ABSTRACT 

There is a growing need for automated testing techniques aimed at 

Android apps. A critical challenge is the systematic generation of 

test cases. One method of systematically generating test cases for 

Java programs is symbolic execution. But applying symbolic 

execution tools, such as Symbolic Pathfinder (SPF), to generate 

test cases for Android apps is challenged by the fact that Android 

apps run on Dalvik Virtual Machine (DVM) instead of JVM. In 

addition, Android apps are event driven and susceptible to path-

divergence due to their reliance on an application development 

framework. This paper provides an overview of a two-pronged 

approach to alleviate these issues. First, we have developed a 

model of Android libraries in Java Pathfinder (JPF) to enable 

execution of Android apps in a way that addresses the issues of 

incompatibility with JVM and path-divergence. Second, we have 

leveraged program analysis techniques to correlate events with 

their handlers for automatically generating Android-specific 

drivers that simulate all valid events. 
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1. INTRODUCTION 
In 2008, Google and Open Handset Alliance launched Android 

Platform for mobile devices. Android is a comprehensive software 

framework for mobile communication devices including 

smartphones and PDAs. Android has had a meteoric rise since its 

inception partly due its vibrant app market that currently 

provisions over half a million apps, with thousands added and 

updated on a daily basis. Not surprisingly there is an increasing 

demand by developers, consumers, and market operators for 

automated testing techniques applicable to Android apps.   

A promising automated testing technique is symbolic execution 

[12], a program-analysis technique that uses symbolic values, 

rather than actual values, as program inputs. It gathers the 

constraints on those values along each path of the program and 

with the help of a solver generates inputs for all reachable paths. 

Although Android apps are developed in Java, they introduce 

three challenges for symbolic execution tools targeted at Java, 

namely Symbolic PathFinder (SPF) [22].  

First challenge is that Android apps depend on a proprietary set of 

libraries that are not available outside the device or emulator. 

Android code runs on Dalvik Virtual Machine (DVM) [6] instead 

of the traditional Java Virtual Machine (JVM). Thus, Android 

apps are complied into Dalvik byte-code rather than Java byte-

code. For using SPF to symbolically executed Android apps, they 

need to be transformed into the corresponding Java bye code 

representation. 

The second challenge is that Android programs’ dependence on 

framework libraries makes them prone to path-divergence 

problem, and more so than traditional Java programs. In general, 

path-divergence problem may occur when a symbolic value flows 

outside the context of the program that is being symbolically 

executed and to the context of the bounding framework or any 

external library. In Android, however, path-divergence is the 

norm, rather than the exception. A typical Android app is 

composed of multiple Activities and Services, playing the role of 

software components, which communicate extensively with one 

another using Intents, Android’s messaging system. An Intent is 

used to carry over a value to another Activity/Service and as a 

result that value leaves the boundaries of the app and is passed 

through Android libraries before it is retrieved in the new 

Activity/Service. 

Finally, Android is an event driven system and extracting program 

input values is highly dependent on user action most of the times, 

meaning that the symbolic execution engine has to wait for the 

user to interact with the system and tap on a button or initiate 

some other type of event for the program to continue the 

execution of a certain path. Furthermore, the system itself or a 

third application can initiate an event and cause the app to behave 

in a certain way. Such events are far more frequent in smartphone 

apps than traditional software systems, due to the context sensitive 

nature of smartphones.  

Current techniques for dealing with traditional event based 

systems either use Capture-replay or model driven approaches. In 

Capture-replay approaches [1, 16, 17], user records her interaction 

sequences with the GUI, which are replayed in time of testing. 

Model driven techniques [15, 24] require user to provide a model 

of the software system’s usages. Both Capture-replay and model 

driven approaches depend on manual effort, thus not very 

convenient, and prone to missing ways in which an app could be 

engaged that are not readily known. In fact, in the context of 

security testing, an app may intentionally incorporate hidden ways 

in which it can be engaged. There have also been efforts to extract 

directed graph models automatically by crawling the GUI [1, 16, 

17], and use those graphs to generate test sequences, but again 

may fail to identify other ways in which a system can be engaged. 

In this paper, we provide an overview of a multi-faceted approach 

to tackle these challenges. We describe an extension to SPF that 

provides stubs modeling Android libraries. These models enable 

us to compile Android apps on JVM, and run them on Java 

PathFinder (JPF) to address the first challenge, i.e., 

incompatibility of DVM and JVM. In addition, we provide the 

logic in certain stubs to simulate the behavior of Android library 

classes to address the problem of path-divergence. Finally, we 

leverage both our knowledge of Android specification and a 

specialized call-graph model of the app to correlate the events 

with their handlers [13]. Using this model we can automatically 

generate drivers for extracting the user input values and 

generating the sequence of valid events for exercising an app. 

Drivers address the last challenge by guiding the generation of 

event sequences aimed at simulating an actual user’s behavior. 

The resulting extended version of SPF enables us to symbolically 

execute Android apps to generate test cases that achieve high code 
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coverage. 

This paper is organized as follows. Section 2 provides the 

background on Symbolic PathFinder and Android. Section 3 

presents an Android app that is used for illustrating the research. 

Section 4 outlines an overview of our approach. Section 5 

provides a detailed view of how we model Android libraries, 

while Sections 6 provide the details of our approach in generating 

the drivers for Android apps. The paper concludes with an 

overview of the related research in Section 7, and a discussion of 

our future work in Section 8. 

2. BACKGROUND 
In this section we first provide a brief background on SPF, 

followed by a more detailed overview of Android framework. 

2.1 Symbolic PathFinder 
JPF [11] is a general purpose model checker for Java programs 

that uses its own Virtual Machine rather than traditional JVM. 

Symbolic Pathfinder (JPF-Symbc) is built on top of JPF as an 

extension implementing a non-standard interpretation of Java 

bytecode using a modified JPF JVM [5]. SPF analyzes Java 

bytecode and can handle mixed integer and real constraints, as 

well as complex mathematical constraints via heuristic solving. 

SPF can be used for test input generation and for finding 

counterexamples to safety properties [23]. We are extending SPF 

to model Android apps and leverage it to generate inputs and test 

cases for them. 

2.2 Android 
Android is a comprehensive software framework for mobile 

communication devices including smartphones and PDAs. The 

Android framework includes a full Linux operating system based 

on the ARM processor, system libraries, middleware, and a suite 

of pre-installed applications. Google Android platform is based on 

DVM for executing and containing programs written in Java. 

Android also comes with an application development framework, 

which provides an environment for application development and 

includes services for building GUI applications, data access, and 

other component types. The framework is designed to simplify the 

reuse and integration of components.  

Each Android app has a mandatory manifest file. This is a 

required XML file for every app and provides essential 

information for managing the life cycle of an app in the Android 

platform. Examples of the kinds of information included in a 

manifest file are descriptions of the application’s Activities, 

Services, Broadcast Receivers, and Content Providers among 

other architectural and configuration properties. 

An Activity is a screen that is presented to the user and contains a 

set of layouts (e.g., LinearLayout that organizes items within the 

screen horizontally or vertically). The layouts contain GUI 

controls, known as view widgets (e.g., TextView for viewing text 

and EditText for text inputs). The layouts and its controls are 

usually described in a configuration XML file with each layout 

and control having a unique identifier. A Service is a component 

that runs in the background and performs long running tasks, such 

as playing music. Unlike an Activity, a Service does not present 

the user with a screen for interaction. A Content Provider 

manages structured data stored on the file system or database, 

such as contact information. A Broadcast Receiver responds to 

system wide announcement messages, such as the screen has 

turned off or the battery is low. Activities, Services, and Broadcast 

Receivers are activated via Intent messages. An Intent message is 

an event for an action to be performed along with the data that 

supports that action. Intent messaging allows for late run-time 

binding between components, where the calls are not explicit in 

the code, rather connected through event messaging. 

Activity and Service are required to follow pre-specified lifecycles 

[3]. For instance, Figure 1 shows the events in the lifecycle of an 

Activity: onCreate(), onStart(), onResume(), onPause(), onStop(), 

onRestart(), and onDestroy(). These lifecycle events play an 

important role in our research as explained later. 

In addition to these components, a typical application utilizes 

many resources. These resources include animation files, graphics 

files, layout files, menu files, string constants, styles for user 

interface controls. Most of these are described using XML files. 

An example, as mentioned before are layouts. The layout XML 

files define the user interface controls that are used by Activities. 

The resources each have a unique identifier that is used to 

distinguish and get a reference to them in the application code.  

3. ILLUSTRATIVE EXAMPLE  
For illustrating the approach, we will use a Driving Directions 

app, a subset of a software system, called Emergency Deployment 

System (EDS) [14]. EDS is intended to allow a search and rescue 

crew to share and obtain an assessment of the situation in real-

time (e.g., interactive overlay on maps), coordinate with one 

another (e.g., send reports, chat, and share video streams), and 

engage the headquarters (e.g., request resources). 

Driving Directions app can be used to calculate off-road driving 

directions between two geographic points, while considering cost 

objectives such as distance, time, and safety. It also provides the 

user with the closest dispatches to source, destination or on the 

route. Figure 2 depicts the GUI of this Android app. The input 

boxes are for latitude/longitude pair and the buttons for alternative 

ways of computing the directions. The latitude/longitude 

coordinates can be typed in or selected from a map. The resulting 

turn-by-turn directions are shown in a separate text box, and 

optionally displayed on a map. 

4. APPROACH OVERVIEW 
The main objective of our 

tool is to automatically 

generate test inputs for 

Android apps using SPF. In 

order to do so, we first 

need to generate the Java 

byte-code of the app that 

can be executed on JVM. 

Hence, we have to compile 

the app’s source code with 

Java compiler, instead of 

Android’s Software 

Development Kit (SDK). 

This is achieved by first 

replacing platform-specific 

parts of the Android 

libraries that are needed for 

 

Figure 1. Lifecycle of Activity in Android. 

 

Figure 2. Screen shot of the Driving 
Directions app. 
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each app with our models. These models are essentially stubs that 

are created in a way that each component’s composition and 

callback behavior is preserved. This allows us to execute an 

Android app on JPF without modifying the app’s implementation.  

In addition, we have to take into account the fact that a typical app 

is composed of multiple components (i.e., Activities and Services) 

that communicate using Android’s Intent messages. Path-

divergence issue arises when an Intent is used to pass a symbolic 

value to another Activity or Service. To solve this problem, we 

have implemented the appropriate logic for simulating how 

Android platform mediates the event-based interaction of 

components, and incorporated that logic in the Activity, Service, 

and Intent stubs. We refer to these enhanced stubs as mock 

classes, as they emulate how the corresponding Android 

constructs behave. This way we are able to address the path-

divergence problem caused by the basic mechanism in which 

Android components communicate with one another.  

The second step in our approach is to generate drivers for an app 

using its call graph model. Unlike traditional Java programs, 

Android apps do not contain a main class that becomes the root 

node of the call graph, where the program is always initiated. 

Android apps are event driven, meaning that the thread of 

execution constantly changes context between the application 

logic, system, and user. Therefore, instead of a connected call 

graph that represents the complete control flow of the application, 

an Android app is composed of a set of disconnected sub-call 

graphs that collectively represent the app’s logic.  These sub-call 

graphs correspond to all the ways in which an app can be initiated, 

accessed by the user or Android platform. Figure 3 illustrates a 

hypothetical call graph model for an Android app, where A, B and 

C are each a sub-call graph with root nodes a, b, and c, while the 

black circle represents the start of the app. 

Following the generation of the sub-call graphs, we parse the 

source code, the resources and configuration information, 

including the manifest file, to find the event handlers. This allows 

us to automatically connect sub-call graphs in order to construct 

the call graph model of the system. Figure 3 illustrates a subset of 

the Driving Directions app’s call graph model. The dotted arrows 

that connect two sub-graphs illustrate the initiation of an event 

either by the user or the system. The call graph model represents 

all possible method invocation sequences (execution traces) 

within an app, which is depicted by black arrows in the figure.  

Finally, we use the call graph model to derive a Context Free 

Grammar (CFG) that is used to generate drivers. A driver is a 

sequence of events that simulate user’s interaction with the app. 

Since the root node of each sub-graph represents an event being 

handled, every valid combination of the root nodes represents a 

scenario of user interaction with the app. For instance, based on 

the call graph model in Figure 3, {a,c} and {a,c,b} are two 

possible event sequences.  

We monitor the code coverage from the execution of tests using 

EMMA [7], an open source toolkit that monitors and reports Java 

code coverage. We start with a single event driver and continue 

generating derivers with more event sequences iteratively. The 

testing stops when we hit a pre-specified code coverage threshold. 

We describe the approach in more detail in the next two sections. 

5. MODELING ANDROID LIBRARIES 
The conventional technique to tackle the path-divergence 

problem, which occurs when a Java program depends on external 

libraries, is to provide stubs for those libraries. We explored three 

possible techniques for developing stubs for supporting Android 

apps as describe below.  

The first and probably the most straightforward approach for us 

would have been to leverage the implementation of Android’s 

library classes. Android platform provides a set of library classes 

that apps use to access the resources on the phone. These library 

classes contain native methods and Java Native Interface (JNI) 

calls that are platform dependent and cannot be executed outside 

of an actual phone. To support the development activity, Google 

provides android.jar with Android’s Software Development Kit, 

which allows developers to resolve the dependencies and compile 

apps in the development environment. At first blush, it may seem 

that this jar file could be used to execute apps on top of JPF. 

However, upon further inspection, we found that Google has 

stripped the library classes in this jar file, and replaced all the 

method bodies to throw an exception.  

A second approach we explored was similar to that employed in 

Robolectric [20], a framework for running Android unit tests 

outside of Android emulator and on top of JVM. In this approach, 

one would use shadow classes, which are mock classes that are 

accessed through reflection. Shadow classes simulate the behavior 

of the actual Android library classes, and override the calls to 

them through reflection. This approach may be useful for running 

test cases on JVM, but not feasible for use with JPF, because 

currently JPF is not capable of handling reflection. 

Finally, a third approach, and the one that we have adopted in our 

implementation is to provide our own custom built stub and mock 

classes. The stub classes are used to compile Android apps into 

JVM byte-code, while mock classes are used to deal with the 

path-divergence problem. We developed 

stubs that return random values, when 

the return type of a method is primitive, 

and return empty instances of the object, 

when the return type is a complex data 

type.  

Dealing with Android platform, not only 

we need to provide stub classes to 

resolve the byte-code incompatibility 

with JVM, but we also need to address 

the lack of Android logic outside the 

phone environment. Android uses its 

library classes as bolts and nuts that 

connect the different pieces of an app 

together. For example, and as shown in 

Listing 1, in Driving Directions app, 

DirectionsActivity uses the startActivity 
 

Figure 3. a subset of the call graph model for Driving Directions app. 
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method of the Android library class Activity.java to start 

the app’s DisplayRouteActivity that displays the shortest 

route. It creates an Intent in which the source and 

destination activities along with the values to be carried 

are specified. In this case we provide the appropriate logic 

for startActivity mock, such that when a new instance of 

DisplayRouteAcitivity is created the control flow moves to 

its onCreate method. 

Moreover, we create a mock for the Intent.class to address 

the path-divergence problem. As shown in Listing 1, an 

instance of Intent is passed to startActivity. This Intent 

encapsulates symbolic values of sourceLong, sourceLat, destLong 

and destLat, and causes path-divergence. To deal with this issue, 

we provided our own implementation of putExtra and getExtra 

methods in the mock implementation of Intent.java, such that the 

symbolic value of those variables is preserved. Android uses a 

hashMap<String, Object> to store and retrieve the values stored 

in an Intent, making it difficult to reason about a value stored as 

Object symbolically. To solve this problem, we provide our model 

of a hash map that holds primitive values. Consequently, in our 

implementation of the putExtra and getExtra methods we use our 

own model of hash map to enable JPF to symbolically reason 

about values that are exchanged using the Intent messages. 

6. GENERATING DRIVERS 
The second part of our approach is a technique for generation of 

drivers that simulate different ways in which an Android app can 

be engaged. We do that by generating models of app behavior. 

We parse the app’s source code using MoDisco [19] and extract 

the app’s call graph model as shown in Figure 3.  The call graph 

model contains a set of call trees showing the different possible 

invocation sequences within a given application. Each yellow box 

in Figure 3 represents a method, and the lines represent the 

sequence of invocations. The link between sub-graph A and sub-

graph B is implicit, and hence, shown as a dotted arrow.  Initially, 

implicit links are not present in the model, as MoDisco cannot 

retrieve the invocation sequences due to the handling of Intent 

messages. Below we describe how these implicit links are 

determined in our approach.  

To generate the drivers, we need to be able to navigate within the 

app to determine all the ways in which it receives user inputs, 

system notifications, starts/stops/resumes activities and services, 

interacts using Intents, etc. Note that unlike Activity, which only 

accepts GUI inputs, Services may receive inputs from other 

sources (e.g., system), which are also part of the input surface.  

We observe the root node of each tree is a method call that no 

other part of the application logic explicitly calls. Recall from 

Figure 1 that the lifecycle methods are called by the Android 

framework only. When these lifecycle methods are overridden in 

an app’s implementation, they form the root nodes of that app’s 

call graph model.  Similarly, the event methods of a Service, 

onCreate() and onBind() for example, would also be root nodes.  

Some of these root nodes are the initiating points, where input 

may be supplied to the app from within or outside. 

Additionally, the controls on an Activity have handlers for their 

events. For example, a Button often has a click event 

associated with it. This event is handled by a class that 

implements the OnClickListener interface and overrides the 

onClick() method. We expect these sorts of handlers to be in 

the root nodes of our call trees as well, since Android is event 

driven and the event handlers are called by the Android system 

as opposed to the application logic. In the case of Driving 

Directions, we see that sub-graph A’s root is the onCreate() 

event handler, and sub-graph B’s root node is the onClick() event 

handler (Figure 3).  

In order to resolve all of the implicit links in the app, we traverse 

the call graph starting with the onCreate() root node of the main 

Activity (the starting point of the app). We continue down the 

graph and identify implicit method calls in order to link the 

different sub-graphs. We know that the links would have to be to 

other root nodes of trees, and achieved through setting event 

handlers, starting other activities, sending Intent messages, and 

handling system events. System event handlers deal with 

notification events, such as when a call is received, network is 

disconnected, or the battery is running low.  

As each new sub-graph is linked and connected, we traverse them 

in a similar fashion. By doing so, we are able to connect the entire 

call graph of the application, from beginning to end. The call 

graph model is updated with the newly found information. Using 

the call graph model we can determine all the valid sequences in 

which an app can be engaged. This is critical, because one of the 

shortcomings of symbolic execution is the fact that it is not 

possible to reason about sequences of actions/events symbolically 

[10].  

The last step is to use the call graph model and create a Context 

Free Grammar (CFG) that generates all possible sequences of 

events. We take all the root nodes in our sub-call graphs to be the 

non-terminals (i.e., alphabets) in the CFG, which are depicted as 

a, b, and c in the call graph of Figure 3. Each sub-call graph is 

represented by a variable in the CFG, i.e., A, B and C in Figure 3. 

We take S to be the start variable. Thus, the CFG for the call 

graph model in Figure 3 is as follows: 

 

The production rule (2) captures the implicit calls from the 

activity to the event handlers, while productions rules (3) and (4) 

capture the return of the control flow to the activity where the call 

is intitiated after an event is handeled. It is clear that if the app is 

comprised of more than one Activity and many events, the 

production rules would subsequenlty become more complex. 

Since infinite number of sequences can be generated from a 

grammar such as this, we can generate drivers with all kinds of 

valid combinations of event sequences. We start with drivers that 

(1)    𝑺 → 𝒂𝑨 

(2)    𝑨 → 𝒃𝑩|𝒄𝑪|𝜺 

(3)    𝑩 → 𝑨|𝜺 

(4)    𝑪 → 𝑨|𝜺 

 public class DirectionsActivity extends Activity { 

      ... 

   public String findShortestRoute(double sourceLong, 

        double sourceLat, double destLong, double destLat){ 

... 

Intent intent = new Intent(this,DisplayRouteActivity.class); 

        intent.putExtra("value", sourceLong); 

... 

        startActivity(intent); 

   }   

 } 

Listing 1. Code snippet from DirectionsActivity.java 

 public static void main(String[] args) { 

   try {  

       View v = new View(null); 

       DirectionsActivity da = new DirectionsActivity(); 

       ShortestRoute shortestButton = da.new ShortestRoute(); 

 

       da.onCreate(); 

       shortestButton.onClick(v); 

     } 

    catch (Exception e) { 

       e.printStackTrace();  

   } 
 } 

Listing 2. Sample Driver for Driving Directions App 
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have a single event and iteratively generate more complex drivers. 

By symbolically executing the apps using the generated drivers 

and monitoring the code coverage using EMMA [7], we obtain an 

accurate assessment of code coverage. This iterative process of 

generating drivers and testing would continue until a pre-specified 

code coverage threshold has been reached.  

Listing 2 illustrates a sample driver for Driving Directions app 

generated using this method and using the sample call graph 

model in Figure 3. It contains two sequence of events, i.e., 

creating a DirectionsActivity object by calling its constructor that 

triggers the start of the app and calling shortestButton.onClick that 

simulates the action of user tapping on the “Shortest” button. 

That triggers findShortestRoute(double srcLong, double srcLat, 

double dstLong, double dstLat) method of Listing 1, which is 

specified to be executed with symbolic values. 

7.  RELATED WORK 
The Android development environment ships with a powerful 

testing framework [4] that is built on top of JUnit. Robolectric 

[20] is another framework that separates the test cases from the 

device or emulator and provides the ability to run them directly by 

referencing their library files. While these frameworks automate 

the execution of the tests, the test cases themselves still have to be 

written by the engineers. 

Traditionally, testing tools use random inputs, but modern 

approaches utilize grammars for representing mutations of 

possible inputs [9, 21] or achieve white-box fuzz testing using 

symbolic execution and dynamic test generation[8]. None of these 

methods provide a fully automatic while comprehensive technique 

to generate test inputs for applications developed on an event 

driven framework, such as Android.  

While approaches presented in [16, 18] use GUI crawling 

techniques to automatically extract directed graph models to 

model user interaction and generate test sequences, we look in the 

source code and use program analysis to derive the test generation 

and by targeting our framework to Android, we are able to 

achieve significant automation.  

Our research is related to the approaches described in [2, 10] for 

testing Android apps. In [10], a new testing framework that 

integrates evolutionary testing and symbolic execution is 

proposed to address the weaknesses of symbolic execution in 

generating event sequences. [2] presents an approach based on 

concolic testing for generating event sequences for Android apps. 

While the first approach does not address the problem of event 

sequence generation for frameworks, such as Android, the second 

one only works for testing screen tap events and does not address 

the problem of handling input values.  

8. CONCLUSION 
We have provided an overview of what we believe to be the first 

approach for symbolic execution of Android apps. We have 

extended SPF and used it together with the system’s call graph 

model to generate test cases for Android apps. The key 

contributions of our work are (1) creating stubs that let us compile 

and run Android apps on JPF, (2) creating mock classes for 

Android library classes to address path-divergence, and (3) 

automatically generating drivers that simulate the user’s behavior 

based on the valid use cases obtained from analyzing the system’s 

source code. In our on going work, we are developing support for 

a larger subset of Android library classes by implementing the 

appropriate stubs and mock classes.  We are also planning to 

integrate the extended SPF tool suite with our cloud-based 

Android testing infrastructure, described in [13], to detect both 

functional and security vulnerabilities.  
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