
 1

Testing Android Apps Through Symbolic Execution

Nariman Mirzaei
*
, Sam Malek

*
, Corina S. Păsăreanu

†
, Naeem Esfahani

*
, Riyadh Mahmood

*

*
 Department of Computer Science

George Mason University
{nmirzaei, smalek, nesfaha2, rmahmoo2}@gmu.edu

†
 NASA Ames Research Center
corina.s.pasareanu@nasa.gov

ABSTRACT

There is a growing need for automated testing techniques aimed at

Android apps. A critical challenge is the systematic generation of

test cases. One method of systematically generating test cases for

Java programs is symbolic execution. But applying symbolic

execution tools, such as Symbolic Pathfinder (SPF), to generate

test cases for Android apps is challenged by the fact that Android

apps run on Dalvik Virtual Machine (DVM) instead of JVM. In

addition, Android apps are event driven and susceptible to path-

divergence due to their reliance on an application development

framework. This paper provides an overview of a two-pronged

approach to alleviate these issues. First, we have developed a

model of Android libraries in Java Pathfinder (JPF) to enable

execution of Android apps in a way that addresses the issues of

incompatibility with JVM and path-divergence. Second, we have

leveraged program analysis techniques to correlate events with

their handlers for automatically generating Android-specific

drivers that simulate all valid events.

Keywords

Java Pathfinder, Symbolic Pathfinder, Android, Testing

1. INTRODUCTION
In 2008, Google and Open Handset Alliance launched Android

Platform for mobile devices. Android is a comprehensive software

framework for mobile communication devices including

smartphones and PDAs. Android has had a meteoric rise since its

inception partly due its vibrant app market that currently

provisions over half a million apps, with thousands added and

updated on a daily basis. Not surprisingly there is an increasing

demand by developers, consumers, and market operators for

automated testing techniques applicable to Android apps.

A promising automated testing technique is symbolic execution

[12], a program-analysis technique that uses symbolic values,

rather than actual values, as program inputs. It gathers the

constraints on those values along each path of the program and

with the help of a solver generates inputs for all reachable paths.

Although Android apps are developed in Java, they introduce

three challenges for symbolic execution tools targeted at Java,

namely Symbolic PathFinder (SPF) [22].

First challenge is that Android apps depend on a proprietary set of

libraries that are not available outside the device or emulator.

Android code runs on Dalvik Virtual Machine (DVM) [6] instead

of the traditional Java Virtual Machine (JVM). Thus, Android

apps are complied into Dalvik byte-code rather than Java byte-

code. For using SPF to symbolically executed Android apps, they

need to be transformed into the corresponding Java bye code

representation.

The second challenge is that Android programs’ dependence on

framework libraries makes them prone to path-divergence

problem, and more so than traditional Java programs. In general,

path-divergence problem may occur when a symbolic value flows

outside the context of the program that is being symbolically

executed and to the context of the bounding framework or any

external library. In Android, however, path-divergence is the

norm, rather than the exception. A typical Android app is

composed of multiple Activities and Services, playing the role of

software components, which communicate extensively with one

another using Intents, Android’s messaging system. An Intent is

used to carry over a value to another Activity/Service and as a

result that value leaves the boundaries of the app and is passed

through Android libraries before it is retrieved in the new

Activity/Service.

Finally, Android is an event driven system and extracting program

input values is highly dependent on user action most of the times,

meaning that the symbolic execution engine has to wait for the

user to interact with the system and tap on a button or initiate

some other type of event for the program to continue the

execution of a certain path. Furthermore, the system itself or a

third application can initiate an event and cause the app to behave

in a certain way. Such events are far more frequent in smartphone

apps than traditional software systems, due to the context sensitive

nature of smartphones.

Current techniques for dealing with traditional event based

systems either use Capture-replay or model driven approaches. In

Capture-replay approaches [1, 16, 17], user records her interaction

sequences with the GUI, which are replayed in time of testing.

Model driven techniques [15, 24] require user to provide a model

of the software system’s usages. Both Capture-replay and model

driven approaches depend on manual effort, thus not very

convenient, and prone to missing ways in which an app could be

engaged that are not readily known. In fact, in the context of

security testing, an app may intentionally incorporate hidden ways

in which it can be engaged. There have also been efforts to extract

directed graph models automatically by crawling the GUI [1, 16,

17], and use those graphs to generate test sequences, but again

may fail to identify other ways in which a system can be engaged.

In this paper, we provide an overview of a multi-faceted approach

to tackle these challenges. We describe an extension to SPF that

provides stubs modeling Android libraries. These models enable

us to compile Android apps on JVM, and run them on Java

PathFinder (JPF) to address the first challenge, i.e.,

incompatibility of DVM and JVM. In addition, we provide the

logic in certain stubs to simulate the behavior of Android library

classes to address the problem of path-divergence. Finally, we

leverage both our knowledge of Android specification and a

specialized call-graph model of the app to correlate the events

with their handlers [13]. Using this model we can automatically

generate drivers for extracting the user input values and

generating the sequence of valid events for exercising an app.

Drivers address the last challenge by guiding the generation of

event sequences aimed at simulating an actual user’s behavior.

The resulting extended version of SPF enables us to symbolically

execute Android apps to generate test cases that achieve high code

 2

coverage.

This paper is organized as follows. Section 2 provides the

background on Symbolic PathFinder and Android. Section 3

presents an Android app that is used for illustrating the research.

Section 4 outlines an overview of our approach. Section 5

provides a detailed view of how we model Android libraries,

while Sections 6 provide the details of our approach in generating

the drivers for Android apps. The paper concludes with an

overview of the related research in Section 7, and a discussion of

our future work in Section 8.

2. BACKGROUND
In this section we first provide a brief background on SPF,

followed by a more detailed overview of Android framework.

2.1 Symbolic PathFinder
JPF [11] is a general purpose model checker for Java programs

that uses its own Virtual Machine rather than traditional JVM.

Symbolic Pathfinder (JPF-Symbc) is built on top of JPF as an

extension implementing a non-standard interpretation of Java

bytecode using a modified JPF JVM [5]. SPF analyzes Java

bytecode and can handle mixed integer and real constraints, as

well as complex mathematical constraints via heuristic solving.

SPF can be used for test input generation and for finding

counterexamples to safety properties [23]. We are extending SPF

to model Android apps and leverage it to generate inputs and test

cases for them.

2.2 Android
Android is a comprehensive software framework for mobile

communication devices including smartphones and PDAs. The

Android framework includes a full Linux operating system based

on the ARM processor, system libraries, middleware, and a suite

of pre-installed applications. Google Android platform is based on

DVM for executing and containing programs written in Java.

Android also comes with an application development framework,

which provides an environment for application development and

includes services for building GUI applications, data access, and

other component types. The framework is designed to simplify the

reuse and integration of components.

Each Android app has a mandatory manifest file. This is a

required XML file for every app and provides essential

information for managing the life cycle of an app in the Android

platform. Examples of the kinds of information included in a

manifest file are descriptions of the application’s Activities,

Services, Broadcast Receivers, and Content Providers among

other architectural and configuration properties.

An Activity is a screen that is presented to the user and contains a

set of layouts (e.g., LinearLayout that organizes items within the

screen horizontally or vertically). The layouts contain GUI

controls, known as view widgets (e.g., TextView for viewing text

and EditText for text inputs). The layouts and its controls are

usually described in a configuration XML file with each layout

and control having a unique identifier. A Service is a component

that runs in the background and performs long running tasks, such

as playing music. Unlike an Activity, a Service does not present

the user with a screen for interaction. A Content Provider

manages structured data stored on the file system or database,

such as contact information. A Broadcast Receiver responds to

system wide announcement messages, such as the screen has

turned off or the battery is low. Activities, Services, and Broadcast

Receivers are activated via Intent messages. An Intent message is

an event for an action to be performed along with the data that

supports that action. Intent messaging allows for late run-time

binding between components, where the calls are not explicit in

the code, rather connected through event messaging.

Activity and Service are required to follow pre-specified lifecycles

[3]. For instance, Figure 1 shows the events in the lifecycle of an

Activity: onCreate(), onStart(), onResume(), onPause(), onStop(),

onRestart(), and onDestroy(). These lifecycle events play an

important role in our research as explained later.

In addition to these components, a typical application utilizes

many resources. These resources include animation files, graphics

files, layout files, menu files, string constants, styles for user

interface controls. Most of these are described using XML files.

An example, as mentioned before are layouts. The layout XML

files define the user interface controls that are used by Activities.

The resources each have a unique identifier that is used to

distinguish and get a reference to them in the application code.

3. ILLUSTRATIVE EXAMPLE
For illustrating the approach, we will use a Driving Directions

app, a subset of a software system, called Emergency Deployment

System (EDS) [14]. EDS is intended to allow a search and rescue

crew to share and obtain an assessment of the situation in real-

time (e.g., interactive overlay on maps), coordinate with one

another (e.g., send reports, chat, and share video streams), and

engage the headquarters (e.g., request resources).

Driving Directions app can be used to calculate off-road driving

directions between two geographic points, while considering cost

objectives such as distance, time, and safety. It also provides the

user with the closest dispatches to source, destination or on the

route. Figure 2 depicts the GUI of this Android app. The input

boxes are for latitude/longitude pair and the buttons for alternative

ways of computing the directions. The latitude/longitude

coordinates can be typed in or selected from a map. The resulting

turn-by-turn directions are shown in a separate text box, and

optionally displayed on a map.

4. APPROACH OVERVIEW
The main objective of our

tool is to automatically

generate test inputs for

Android apps using SPF. In

order to do so, we first

need to generate the Java

byte-code of the app that

can be executed on JVM.

Hence, we have to compile

the app’s source code with

Java compiler, instead of

Android’s Software

Development Kit (SDK).

This is achieved by first

replacing platform-specific

parts of the Android

libraries that are needed for

Figure 1. Lifecycle of Activity in Android.

Figure 2. Screen shot of the Driving
Directions app.

 3

each app with our models. These models are essentially stubs that

are created in a way that each component’s composition and

callback behavior is preserved. This allows us to execute an

Android app on JPF without modifying the app’s implementation.

In addition, we have to take into account the fact that a typical app

is composed of multiple components (i.e., Activities and Services)

that communicate using Android’s Intent messages. Path-

divergence issue arises when an Intent is used to pass a symbolic

value to another Activity or Service. To solve this problem, we

have implemented the appropriate logic for simulating how

Android platform mediates the event-based interaction of

components, and incorporated that logic in the Activity, Service,

and Intent stubs. We refer to these enhanced stubs as mock

classes, as they emulate how the corresponding Android

constructs behave. This way we are able to address the path-

divergence problem caused by the basic mechanism in which

Android components communicate with one another.

The second step in our approach is to generate drivers for an app

using its call graph model. Unlike traditional Java programs,

Android apps do not contain a main class that becomes the root

node of the call graph, where the program is always initiated.

Android apps are event driven, meaning that the thread of

execution constantly changes context between the application

logic, system, and user. Therefore, instead of a connected call

graph that represents the complete control flow of the application,

an Android app is composed of a set of disconnected sub-call

graphs that collectively represent the app’s logic. These sub-call

graphs correspond to all the ways in which an app can be initiated,

accessed by the user or Android platform. Figure 3 illustrates a

hypothetical call graph model for an Android app, where A, B and

C are each a sub-call graph with root nodes a, b, and c, while the

black circle represents the start of the app.

Following the generation of the sub-call graphs, we parse the

source code, the resources and configuration information,

including the manifest file, to find the event handlers. This allows

us to automatically connect sub-call graphs in order to construct

the call graph model of the system. Figure 3 illustrates a subset of

the Driving Directions app’s call graph model. The dotted arrows

that connect two sub-graphs illustrate the initiation of an event

either by the user or the system. The call graph model represents

all possible method invocation sequences (execution traces)

within an app, which is depicted by black arrows in the figure.

Finally, we use the call graph model to derive a Context Free

Grammar (CFG) that is used to generate drivers. A driver is a

sequence of events that simulate user’s interaction with the app.

Since the root node of each sub-graph represents an event being

handled, every valid combination of the root nodes represents a

scenario of user interaction with the app. For instance, based on

the call graph model in Figure 3, {a,c} and {a,c,b} are two

possible event sequences.

We monitor the code coverage from the execution of tests using

EMMA [7], an open source toolkit that monitors and reports Java

code coverage. We start with a single event driver and continue

generating derivers with more event sequences iteratively. The

testing stops when we hit a pre-specified code coverage threshold.

We describe the approach in more detail in the next two sections.

5. MODELING ANDROID LIBRARIES
The conventional technique to tackle the path-divergence

problem, which occurs when a Java program depends on external

libraries, is to provide stubs for those libraries. We explored three

possible techniques for developing stubs for supporting Android

apps as describe below.

The first and probably the most straightforward approach for us

would have been to leverage the implementation of Android’s

library classes. Android platform provides a set of library classes

that apps use to access the resources on the phone. These library

classes contain native methods and Java Native Interface (JNI)

calls that are platform dependent and cannot be executed outside

of an actual phone. To support the development activity, Google

provides android.jar with Android’s Software Development Kit,

which allows developers to resolve the dependencies and compile

apps in the development environment. At first blush, it may seem

that this jar file could be used to execute apps on top of JPF.

However, upon further inspection, we found that Google has

stripped the library classes in this jar file, and replaced all the

method bodies to throw an exception.

A second approach we explored was similar to that employed in

Robolectric [20], a framework for running Android unit tests

outside of Android emulator and on top of JVM. In this approach,

one would use shadow classes, which are mock classes that are

accessed through reflection. Shadow classes simulate the behavior

of the actual Android library classes, and override the calls to

them through reflection. This approach may be useful for running

test cases on JVM, but not feasible for use with JPF, because

currently JPF is not capable of handling reflection.

Finally, a third approach, and the one that we have adopted in our

implementation is to provide our own custom built stub and mock

classes. The stub classes are used to compile Android apps into

JVM byte-code, while mock classes are used to deal with the

path-divergence problem. We developed

stubs that return random values, when

the return type of a method is primitive,

and return empty instances of the object,

when the return type is a complex data

type.

Dealing with Android platform, not only

we need to provide stub classes to

resolve the byte-code incompatibility

with JVM, but we also need to address

the lack of Android logic outside the

phone environment. Android uses its

library classes as bolts and nuts that

connect the different pieces of an app

together. For example, and as shown in

Listing 1, in Driving Directions app,

DirectionsActivity uses the startActivity

Figure 3. a subset of the call graph model for Driving Directions app.

 4

method of the Android library class Activity.java to start

the app’s DisplayRouteActivity that displays the shortest

route. It creates an Intent in which the source and

destination activities along with the values to be carried

are specified. In this case we provide the appropriate logic

for startActivity mock, such that when a new instance of

DisplayRouteAcitivity is created the control flow moves to

its onCreate method.

Moreover, we create a mock for the Intent.class to address

the path-divergence problem. As shown in Listing 1, an

instance of Intent is passed to startActivity. This Intent

encapsulates symbolic values of sourceLong, sourceLat, destLong

and destLat, and causes path-divergence. To deal with this issue,

we provided our own implementation of putExtra and getExtra

methods in the mock implementation of Intent.java, such that the

symbolic value of those variables is preserved. Android uses a

hashMap<String, Object> to store and retrieve the values stored

in an Intent, making it difficult to reason about a value stored as

Object symbolically. To solve this problem, we provide our model

of a hash map that holds primitive values. Consequently, in our

implementation of the putExtra and getExtra methods we use our

own model of hash map to enable JPF to symbolically reason

about values that are exchanged using the Intent messages.

6. GENERATING DRIVERS
The second part of our approach is a technique for generation of

drivers that simulate different ways in which an Android app can

be engaged. We do that by generating models of app behavior.

We parse the app’s source code using MoDisco [19] and extract

the app’s call graph model as shown in Figure 3. The call graph

model contains a set of call trees showing the different possible

invocation sequences within a given application. Each yellow box

in Figure 3 represents a method, and the lines represent the

sequence of invocations. The link between sub-graph A and sub-

graph B is implicit, and hence, shown as a dotted arrow. Initially,

implicit links are not present in the model, as MoDisco cannot

retrieve the invocation sequences due to the handling of Intent

messages. Below we describe how these implicit links are

determined in our approach.

To generate the drivers, we need to be able to navigate within the

app to determine all the ways in which it receives user inputs,

system notifications, starts/stops/resumes activities and services,

interacts using Intents, etc. Note that unlike Activity, which only

accepts GUI inputs, Services may receive inputs from other

sources (e.g., system), which are also part of the input surface.

We observe the root node of each tree is a method call that no

other part of the application logic explicitly calls. Recall from

Figure 1 that the lifecycle methods are called by the Android

framework only. When these lifecycle methods are overridden in

an app’s implementation, they form the root nodes of that app’s

call graph model. Similarly, the event methods of a Service,

onCreate() and onBind() for example, would also be root nodes.

Some of these root nodes are the initiating points, where input

may be supplied to the app from within or outside.

Additionally, the controls on an Activity have handlers for their

events. For example, a Button often has a click event

associated with it. This event is handled by a class that

implements the OnClickListener interface and overrides the

onClick() method. We expect these sorts of handlers to be in

the root nodes of our call trees as well, since Android is event

driven and the event handlers are called by the Android system

as opposed to the application logic. In the case of Driving

Directions, we see that sub-graph A’s root is the onCreate()

event handler, and sub-graph B’s root node is the onClick() event

handler (Figure 3).

In order to resolve all of the implicit links in the app, we traverse

the call graph starting with the onCreate() root node of the main

Activity (the starting point of the app). We continue down the

graph and identify implicit method calls in order to link the

different sub-graphs. We know that the links would have to be to

other root nodes of trees, and achieved through setting event

handlers, starting other activities, sending Intent messages, and

handling system events. System event handlers deal with

notification events, such as when a call is received, network is

disconnected, or the battery is running low.

As each new sub-graph is linked and connected, we traverse them

in a similar fashion. By doing so, we are able to connect the entire

call graph of the application, from beginning to end. The call

graph model is updated with the newly found information. Using

the call graph model we can determine all the valid sequences in

which an app can be engaged. This is critical, because one of the

shortcomings of symbolic execution is the fact that it is not

possible to reason about sequences of actions/events symbolically

[10].

The last step is to use the call graph model and create a Context

Free Grammar (CFG) that generates all possible sequences of

events. We take all the root nodes in our sub-call graphs to be the

non-terminals (i.e., alphabets) in the CFG, which are depicted as

a, b, and c in the call graph of Figure 3. Each sub-call graph is

represented by a variable in the CFG, i.e., A, B and C in Figure 3.

We take S to be the start variable. Thus, the CFG for the call

graph model in Figure 3 is as follows:

The production rule (2) captures the implicit calls from the

activity to the event handlers, while productions rules (3) and (4)

capture the return of the control flow to the activity where the call

is intitiated after an event is handeled. It is clear that if the app is

comprised of more than one Activity and many events, the

production rules would subsequenlty become more complex.

Since infinite number of sequences can be generated from a

grammar such as this, we can generate drivers with all kinds of

valid combinations of event sequences. We start with drivers that

(1) 𝑺 → 𝒂𝑨

(2) 𝑨 → 𝒃𝑩|𝒄𝑪|𝜺

(3) 𝑩 → 𝑨|𝜺

(4) 𝑪 → 𝑨|𝜺

 public class DirectionsActivity extends Activity {

 ...

 public String findShortestRoute(double sourceLong,

 double sourceLat, double destLong, double destLat){

...

Intent intent = new Intent(this,DisplayRouteActivity.class);

 intent.putExtra("value", sourceLong);

...

 startActivity(intent);

 }

 }

Listing 1. Code snippet from DirectionsActivity.java

 public static void main(String[] args) {

 try {

 View v = new View(null);

 DirectionsActivity da = new DirectionsActivity();

 ShortestRoute shortestButton = da.new ShortestRoute();

 da.onCreate();

 shortestButton.onClick(v);

 }

 catch (Exception e) {

 e.printStackTrace();

 }
 }

Listing 2. Sample Driver for Driving Directions App

 5

have a single event and iteratively generate more complex drivers.

By symbolically executing the apps using the generated drivers

and monitoring the code coverage using EMMA [7], we obtain an

accurate assessment of code coverage. This iterative process of

generating drivers and testing would continue until a pre-specified

code coverage threshold has been reached.

Listing 2 illustrates a sample driver for Driving Directions app

generated using this method and using the sample call graph

model in Figure 3. It contains two sequence of events, i.e.,

creating a DirectionsActivity object by calling its constructor that

triggers the start of the app and calling shortestButton.onClick that

simulates the action of user tapping on the “Shortest” button.

That triggers findShortestRoute(double srcLong, double srcLat,

double dstLong, double dstLat) method of Listing 1, which is

specified to be executed with symbolic values.

7. RELATED WORK
The Android development environment ships with a powerful

testing framework [4] that is built on top of JUnit. Robolectric

[20] is another framework that separates the test cases from the

device or emulator and provides the ability to run them directly by

referencing their library files. While these frameworks automate

the execution of the tests, the test cases themselves still have to be

written by the engineers.

Traditionally, testing tools use random inputs, but modern

approaches utilize grammars for representing mutations of

possible inputs [9, 21] or achieve white-box fuzz testing using

symbolic execution and dynamic test generation[8]. None of these

methods provide a fully automatic while comprehensive technique

to generate test inputs for applications developed on an event

driven framework, such as Android.

While approaches presented in [16, 18] use GUI crawling

techniques to automatically extract directed graph models to

model user interaction and generate test sequences, we look in the

source code and use program analysis to derive the test generation

and by targeting our framework to Android, we are able to

achieve significant automation.

Our research is related to the approaches described in [2, 10] for

testing Android apps. In [10], a new testing framework that

integrates evolutionary testing and symbolic execution is

proposed to address the weaknesses of symbolic execution in

generating event sequences. [2] presents an approach based on

concolic testing for generating event sequences for Android apps.

While the first approach does not address the problem of event

sequence generation for frameworks, such as Android, the second

one only works for testing screen tap events and does not address

the problem of handling input values.

8. CONCLUSION
We have provided an overview of what we believe to be the first

approach for symbolic execution of Android apps. We have

extended SPF and used it together with the system’s call graph

model to generate test cases for Android apps. The key

contributions of our work are (1) creating stubs that let us compile

and run Android apps on JPF, (2) creating mock classes for

Android library classes to address path-divergence, and (3)

automatically generating drivers that simulate the user’s behavior

based on the valid use cases obtained from analyzing the system’s

source code. In our on going work, we are developing support for

a larger subset of Android library classes by implementing the

appropriate stubs and mock classes. We are also planning to

integrate the extended SPF tool suite with our cloud-based

Android testing infrastructure, described in [13], to detect both

functional and security vulnerabilities.

9. ACKNOWLEDGMENTS
This research is supported by grant D11AP00282 from Defense

Advanced Research Projects Agency.

10. REFERENCES
[1] Amalfitano, D. et al. 2011. A GUI Crawling-Based

Technique for Android Mobile Application Testing. Software

Testing, Verification and Validation Workshops (ICSTW),

2011 IEEE Fourth International Conference on (2011).

[2] Anand, S. et al. 2012. Automated Concolic Testing of

Smartphone Apps. ACM Symposium on Foundations of

Software Engineering (FSE’12), (2012).

[3] Android Developers Guide:

http://developer.android.com/guide/topics/fundamentals.html

[4] Android Testing Framework:

http://developer.android.com/guide/topics/testing/index.html.

[5] Cadar, C. et al. 2011. Symbolic execution for software

testing in practice: preliminary assessment. International

Conference on Software Engineering (ICSE), (2011).

[6] Dalvik - Code and documentation from Android’s VM team:

http://code.google.com/p/dalvik/.

[7] EMMA: http://emma.sourceforge.net/.

[8] Godefroid, P. et al. 2008. Automated whitebox fuzz testing.

Network and Distributed System Security Sym. (2008).

[9] Godefroid, P. et al. 2008. Grammar-based whitebox fuzzing.

ACM SIGPLAN Notices (2008), 206–215.

[10] Inkumsah, K. and Xie, T. 2008. Improving structural testing

of object-oriented programs via integrating evolutionary

testing and symbolic execution. 23rd IEEE/ACM Int'l Conf.

on Automated Software Engineering (ASE '08) (2008).

[11] Java PathFinder: http://babelfish.arc.nasa.gov/trac/jpf/.

[12] King, J. 1975. A new approach to program testing.

Programming Methodology. (1975), 278–290.

[13] Mahmood, R. et al. 2012. A whitebox approach for

automated security testing of Android applications on the

cloud. Int'l Wrkshp. on Automation of Soft. Test. (Jun. 2012).

[14] Malek, S. et al. 2005. A Style-Aware Architectural

Middleware for Resource-Constrained, Distributed Systems.

IEEE Trans. Softw. Eng. 31, 3 (Mar. 2005), 256–272.

[15] Mehlitz, P. et al. 2011. Jpf-awt: Model checking gui

applications. Automated Software Engineering (ASE), 2011

26th IEEE/ACM International Conference on (2011).

[16] Memon, A. et al. 2003. GUI ripping: Reverse engineering of

graphical user interfaces for testing. proceedings of the 10th

working conf. on reverse engineering (WCRE’03) (2003).

[17] Memon, A.M. et al. 2000. Automated test oracles for GUIs.

ACM SIGSOFT Software Engineering Notes (2000), 30–39.

[18] Memon, A.M. and Xie, Q. 2005. Studying the fault-detection

effectiveness of GUI test cases for rapidly evolving software.

Software Engineering, IEEE Transactions on. 31, 10 (2005).

[19] MoDisco: http://www.eclipse.org/MoDisco/.

[20] Robolectric: http://pivotal.github.com/robolectric/.

[21] Sen, K. et al. 2005. CUTE: A concolic unit testing engine for

C. ACM.

[22] Symbolic PathFinder:

http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc.

[23] Visser, W. et al. 2004. Test input generation with Java

PathFinder. ACM SIGSOFT Soft. Eng. Notes. 29, 4 (2004).

[24] White, L. and Almezen, H. 2000. Generating test cases for

GUI responsibilities using complete interaction sequences.

Software Reliability Engineering, 2000. ISSRE 2000.

Proceedings. 11th International Symposium on (2000).

