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Abstract 
 
A system’s early architectural decisions impact its 
properties (e.g., scalability, dependability) as well as 
stakeholder concerns (e.g., cost, time to delivery). 
Choices made early on are both difficult and costly to 
change, and thus it is paramount that the engineer gets 
them “right”. This leads to a paradox, as in early 
design, the engineer is often forced to make these 
decisions under uncertainty, i.e., not knowing the 
precise impact of those decisions on the various 
concerns. How could the engineer make the “right” 
choices in such circumstances? This is precisely the 
question we have tackled in this paper. We present 
GuideArch, a framework aimed at guiding the 
exploration of the architectural solution space under 
uncertainty. It provides techniques and tools that help 
the engineer to make informed decisions. The 
approach has been thoroughly evaluated in a project 
aimed at reengineering a mobile software system. 
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1. Introduction 

 

A software system’s early architecture is the set of 
principal decisions made at the outset of a software 
engineering project. Early architecture encompasses 
choices at application, system, and hardware level that 

could have an impact on the software system’s 
properties.1 A common practice is to carefully assess 
the system’s early architecture for its ability to satisfy 
functional and non-functional requirements, as well as 
other stakeholder concerns, such as cost and time to 
delivery.  

Early architectural decisions are crucial as they 
determine the scope of capabilities and options that 
can be exercised later in the development process. 
Given the crucial impact of early architectural 
decisions on the system’s properties, changing them in 
subsequent phases of the engineering process are often 
both difficult and costly. At the same time, making 
early architectural decisions is a complex task mired 
with lots of uncertainty. Getting them “wrong” poses 
one of the greatest risks to any software engineering 
project.  

One of the major thrusts of the software 
engineering research has been to transform the process 
of making such decisions from an art form exercised 
successfully by a select few to a repeatable process 
guided through scientific reasoning and formal 
analysis. A few notable examples include ATAM [6], 
CBAM [12], and ArchDesigner [2]. Such efforts have 
not aimed to replace the engineer’s experience and 
knowledge, but to rather augment it through 
provisioning of appropriate methods and tools. 

While great strides have been made on this front, 
the existing approaches do not systematically deal 
with uncertainty [11]. In fact, there is no systematic 

                                                 
1
  While our definition of “early architecture” incorporates 
decisions dealing with hardware, system, and software, 
our focus in this paper is mainly on software decisions.   
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method of even comparing two architectures under 
uncertainty, let alone making the “right” decisions in 
such circumstances [2][11]. 

In this paper, we present a framework aimed at 
guiding the uncertainty-driven exploration of 

architectural space, in short GuideArch. It allows the 
architect to make informed decisions using imperfect 
information. It does so by providing a number of key 
capabilities, including the ability to rank the candidate 
architectures based on their traits, and identifying the 
most critical constraints and design decisions. This 
alleviates the architect from manually sifting through 
an often large solution space, and instead allows her to 
focus on the decisions that are critical to the system’s 
success.  

Unlike any existing approach [2, 6, 12], GuideArch 
explicitly represents the inherent uncertainty of the 
knowledge and incorporates that in the analysis. It 
enables an incremental method of making and refining 
architectural decisions throughout the engineering 
process. As the rough estimates in the early stages 
give way to precise estimates in the later stages, 
GuideArch allows the architect to refine the models 
and explore other suitable alternatives.  

GuideArch employs fuzzy mathematical methods 
[21] to reason about uncertainty. We have devised a 
novel fuzzy operator that forms the foundation for 
quantitative comparison of architectural candidates 
under uncertainty. The fuzzy operator is then used to 
develop advanced analysis techniques, including 
optimization and ranking of architectures, and 
identification of critical design decisions.  

Our experience with applying the approach in a 
project consisting of numerous design choices and 
constraints has been very positive. GuideArch allowed 
the stakeholders to gain better insights into the 
architectural alternatives and avoid risky solutions 
early in the project.  

The remainder of paper is organized as follows.  
Section  2 describe a case study and uses it to motivate 
the research. Section  3 provides an intuitive 
description of our approach, while Sections  0 4 6- 6 
formally present the details. Section  0 provides a 
thorough evaluation of the research. Section  8 outlines 
the related research. The paper concludes with a 
discussion of future work.  

 

2. Motivation 

 

We use a software system, called Emergency 
Deployment System (EDS) [16], to motivate, describe, 
and evaluate our research. EDS was previously 
developed in collaboration with a government agency 

for the deployment of personnel in emergency 
response scenarios. EDS consists of two subsystems: 
Headquarters and Search & Rescue. The 
Headquarters subsystem manages several Search & 

Rescue subsystems. The Search & Rescue subsystem 
is a mobile application that runs on ruggedized 
smartphones and tablets, and used by emergency crew 
members.  

The original subsystem was relatively rudimentary, 
providing support merely for sharing data with 
Headquarters. The recent proliferation of mobile 
technologies, standards (e.g., Open Handset Alliance 
[18]), and platforms (e.g., Android [17]) presented an 
opportunity to improve this part of the system. 
Therefore, a project for clean slate re-architecting of 
the subsystem was ensued. The new application was 
intended to allow the crew to share and obtain an 
assessment of the situation in real-time (e.g., 
interactive overlay on maps), coordinate with one 
another (e.g., send reports, chat, and share video 
streams), and engage with the Headquarters (e.g., 
receive commands).  

We seized the revamping of this software system 
as an opportunity to perform the following study. In 
re-architecting the EDS application, a team, consisting 
of academics and engineers from the agency was 
formed, to decide among the early design decisions, 
shown on the left most column of TABLE I. Each 
decision consists of several viable alternatives, shown 
on the second column from the left. The requirements 
posed by the entities within the agency sponsoring the 
project also called for several areas of concern, which 
the team derived over several project meetings with 
the various stakeholders. The concerns are shown on 
the top most row of TABLE I, and referred to as 
properties of the architecture/system. We will revisit 
TABLE I and its details in Section 3. 

Our experiences with EDS and other systems show 
that precisely predicting the impact of an architectural 
alternative on the system’s properties is extremely 
difficult, particularly in early phases of engineering. 
This observation is also corroborated by other 
researchers and practitioners [12][2]. As a result, the 
process of making early architectural choices is a risky 
proposition mired with uncertainty.  

Previous approaches (e.g., [12][2][15]) that support 
the process of making decisions and optimizing the 
system’s architecture ignore these challenges, which 
hampers their adoption in real-world risk-averse 
domains. We collectively refer to these as the 
traditional approaches. We illustrate their 
shortcoming using a problem in which the objective is 
to choose from a pool of 16 candidate architectures, 
such that Cost and Battery Usage are minimized.  



TABLE I. EXPECTED EFFECT OF ARCHITECTURAL ALTERNATIVES ON PROPERTIES, AND PRIORITIES IN 

RESCUE SUBSYSTEM. “<”, “^”, and “>”
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. EXPECTED EFFECT OF ARCHITECTURAL ALTERNATIVES ON PROPERTIES, AND PRIORITIES IN 
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AND PESSIMISTIC IMPACT, 
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The traditional approaches assume that the 
architect is able to precisely specify the impact of 
candidate architectures on properties of interest. If that 
was the case, then one could visualize the situation as 
in Figure 1a. Here, for the sake of clarity, the values 
for Cost and Battery Usage are normalized between 
zero and one. Assuming both properties have the same 
level of importance, to compare the 16 candidates, for 
each architecture we first sum up the values obtained 
in the two properties. Figure 1b achieves just that, as it 
shows the overall value for the candidate architectures. 
In this space, architectures can be compared with one 
another. For example, we can see that A13 is the best 
architecture, as it obtains the smallest total value. It is 
also possible for several architectures to obtain the 
same value, in which case the architect would need to 
provide a prioritization scheme, such that more 
emphasis is placed on certain properties. However, for 
clarity we do not consider such cases in this section, 
and revisit that later in the paper. While the 
aforementioned approach is theoretically sound, it is 
not useful in practice, as it does not incorporate the 
underlying uncertainty in the impact of architectural 
decisions on properties of interest.  

The complexity of incorporating uncertainty in the 
analysis is shown in Figure 1c. Here, the architect’s 
uncertainty is represented in terms of range of impact 
that an architectural candidate may have on the 
properties of interest. For example, the impact of a 
given architecture on Battery Usage is no longer a 
single number, but rather a range of values. As a 
result, each architectural candidate may obtain a value 
anywhere within the area occupied by the 
corresponding rectangle. Clearly, comparing two 
architectures with overlapping rectangles is difficult. It 
is not clear how the rectangles in Figure 1c can be 
transformed to a space where the trade-off analysis 
can be performed.     

To gain a better appreciation for the complexity of 
this problem consider that the simple example used in 
Figure 1 consists of only 16 architectural candidates 
and 2 properties of interest, but a typical software 
system often consists of many more candidates and 
properties. For instance, the EDS problem depicted in 
TABLE I consists of a total of 6,912 potential 
architectural solutions, each of which could present a 
trade-off with respect to 7 properties of interest.2 
Clearly, manually exploring such a large space is a big 
burden. Incorporating uncertainty into the analysis 
makes a problem that is already challenging so 
overwhelmingly complex that a manual assessment 
without the appropriate tools and techniques becomes 
impossible.   

 

3. Approach 

 

We accept uncertainty as a natural component of 
architecting a software system, particularly in the early 
phases of engineering. Our objective is not to 
eliminate uncertainty, but to provide techniques and 
tools for making informed decisions in such 
circumstances. This section provides an intuitive 
description of our approach; the underlying details and 
mathematics are then presented in Sections  4 6- 6. 

 

3.1 Representing Uncertainty in Impact of 

Alternatives  
 
Instead of modeling the anticipated impact of an 
architectural alternative on the system’s properties as a 
point estimate, we represent it as a range of values. 
Specifying the impact in terms of a range is aligned 

                                                 
2
  In Section  4, we describe how the number of candidate 

architectures can be calculated. 

 
Figure 1. Quantitatively assessing architectural candidates: (a) 16 candidate architecture in a cost vs. battery usage 

trade-off, (b) simple additive approach to resolve the trade-offs, and (c) cost vs. battery usage under uncertainty, where 

each rectangle represents the space of values that an architecture may take. 
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with the way humans in general conceptualize 
uncertainty and provides an intuitive method of 
modeling the architect’s knowledge. TABLE I shows 
these ranges in the EDS system, where for each 
alternative, the optimistic (“<” column), anticipated 
(“^” column), and pessimistic (“>” column) impact on 
the properties are provided. 
The range of impact may be estimated in a number of 
ways, including the data available from similar 
designs in other systems, architect’s prior knowledge, 
prototype of the system, etc. For instance, from prior 
experience with smartphones, the architect may 
estimate that Location Finding using GPS has 10µJ of 
anticipated battery usage, with 8µJ and 14µJ in 
optimistic and pessimistic situations, respectively. 
While there are other elaborate methods of 
representing uncertainty, such as probability 

distribution, our experience suggests that architects are 
often not capable of expressing such models. We note, 
however, that if such models of uncertainty are 
available, then the range could be easily derived using 
the techniques described in [9].  

The key contribution of GuideArch is the ability to 
provide quantitative analysis of the trade-offs given 
such loose specifications. We achieve this by 
representing the uncertain parameters as fuzzy 

numbers. A fuzzy number is founded on the concept 
of fuzzy set [20].  In a fuzzy set, the elements have a 
degree of membership. Degree of membership is a 
value between zero and one: a value of zero indicates 

the element is certainly not a member of the set, a 
value of one indicates the element is certainly a 
member of the set, and a value in between indicates 
the extent of certainty that the element is a member of 
the set. Fuzzy math is grounded in possibility theory 
[20], which provides an alternative interpretation of 
uncertainty to that of probability theory. A common 
misconception is that fuzzy math is imprecise. On the 
contrary, fuzzy math, just like probability, provides a 
precise and sound method of dealing with uncertainty. 
Fuzzy decision making techniques are also often more 
efficient than stochastic programming approaches 
[21]. In addition, since uncertainty in our problem is 
not due to statistical error or noise, but rather to the 
imprecision in knowledge, we adopt possibility theory 
as the foundation of dealing with uncertainty in 
GuideArch.  

We assign the possibility of one to the anticipated 
value, and possibility of zero to the optimistic and 
pessimistic, respectively. We use “^”, “<”, “>” to 
represent anticipated, optimistic, and pessimistic, 
respectively. We let the possibility to decrease linearly 
from the anticipated to the optimistic and pessimistic 
points. Thus, the effect of each design alternative on 
each property is modeled as a triangular fuzzy value 
[21]. For instance, Figure 2a depicts the fuzzy values 
corresponding to the range of Cost and Battery Usage 
for an architectural candidate. Due to uncertainty, the 
actual value of the property may be anywhere in that 
range.  

 

3.2 Calculating Uncertainty in a 

Candidate Architecture 
 
Given the fuzzy impact of alternatives on properties, 
we can now quantify the overall value of a given 
architecture. Similar to the approach employed to 
transform Figure 1a to Figure 1b, we can transform the 
candidate solutions in Figure 1c to a scalar space, such 
that they can be compared with one another. The total 
value for each architecture can be calculated as fuzzy 

summation of the impact of alternatives on the 
properties. When fuzzy numbers are summed up, the 
pessimistic, anticipated, and optimistic values are 
added independently of each other, to arrive at a new 
fuzzy value. For instance, adding fuzzy values for 
Cost and Battery Usage in Figure 2a results in the 
fuzzy value shown in Figure 2b, which represents the 
total value of the corresponding architecture. Since an 
architecture with a lower value is preferred, we call 
the situation in which the actual value is between 
anticipated and pessimistic the negative consequence 
of uncertainty, and the situation in which the actual 
value is between anticipated and optimistic the 
positive consequence of uncertainty. 

 
Figure 2. Uncertainty modeled as fuzzy values using 

possibility theory: (a) the fuzzy values for Cost and 

Battery usage, (b) their summation to determine the 

architecture’s total value, and (c) the total value for three 

hypothetical architectures. 
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3.3 Comparing Candidate Architectures 

under Uncertainty 
 
Fuzzy summation allows us to transform the multi-
dimensional problem into a single scalar value, but 
since the scalar value itself is fuzzy, comparing 
solutions remains a challenge. When comparing two 
fuzzy numbers, the one with the “better” range is 
superior. We say the fuzzy value of one architecture is 
better than another if it has a: (C1) smaller anticipated 
value, (C2) larger positive consequence of uncertainty, 
and (C3) smaller negative consequence of uncertainty.  
Figure 2c shows the total value of the properties for 
three hypothetical architectures (A, B, and C), which 
are represented as fuzzy values. Using Figure 2c we 
describe two possible scenarios that may occur in 
comparing architectures this way. The first scenario 
occurs when a given architecture is inferior to others 
with respect to all three criteria. For instance, in Figure 
2c, architecture A is inferior to architectures B and C 

with respect to all three criteria. The second scenario 
occurs when there are trade-offs. For instance, 
architectures B and C present a trade-off, as 
architecture B is superior to architecture C with 
respect to C2 and C3, and inferior with respect to C1. 
Section  5 describes in detail how we can resolve such 
trade-offs. Section  6 describes how the ability to 
compare architectures under uncertainty provides the 
basis for exploration of the solution space, including 
ranking, optimization, and identification of the critical 
choices. 

 

4. Specification of Architecture 

Selection Problem 

 

In this section, we formally specify the problem of 
making early architectural decisions.   

 

4.1 Decisions and Alternatives 
 

We denote the set of architectural decisions as set �. 
For instance, in TABLE I, Architectural Style is a 

decision. Each decision � � � has several 

alternatives, which we denote as set ��. For example, 
the Architectural Style decision in TABLE I has three 
alternatives: Peer-to-Peer, Client-Server, and Push-

Based. We define the set of all alternatives as 

follows: � � � ����	  
The architecture space is a proper subset of the 

alternatives, where for each decision there exist one 
and only one alternative that is selected as follows: 

 �
 � �
��� � �|��� � �: �
 � ��: 
� 
���� � ��
 � 
���, 
 � ��: ��� ��: � � 
 � � � 
����� 
Thus, the size of the architecture space is: ∏ |��|���	   
For instance, for EDS problem in TABLE I, we have 6 
decisions with 2 alternatives, 3 decisions with 3 
alternatives, and one decision with 4 alternatives for a 
total of 26×33×4=6,912 possible architectural 
candidates. 

For each design alternative 
 � �, we introduce a 
binary decision variable � , which is equal to 1 if the 
alternative is selected, and 0 otherwise: � � 1 "
 � 
��� 
 

4.2 Properties and Coefficients 
 
We denote the properties that stakeholders are 

interested in as set #. In TABLE I properties are 
shown in the clustered columns (e.g., Cost). As 
described in Section  3, each property is broken down 
to three values quantifying the uncertainty in the 
impact of an alternative on that property. For 

alternative 
 � � and property $ � # we use �̃&,  to 
denote the effect of design alternative 
 on property $ 
and we call it a coefficient. The tilde accent “~” 
indicates that the coefficient is a fuzzy value. The set 

of properties # is partitioned into two subsets #'() 
and #' *,  representing properties that need to be 
minimized (e.g., Cost) and maximized (e.g., 
Reliability), respectively.  

We assess the contributions of property $ � # to a 
given architecture 
��� � �
 by summing the 
coefficients of the selected alternatives as: 
+&�
���� � ∑ -�̃&,  � .  �  /01   

The coefficients are included in the summation 
when the corresponding alternative is selected. Note 
that since we use fuzzy arithmetic, the result is also a 
fuzzy number.  

As detailed later in this paper, we would like to 
reason about the impact of alternatives on several 
properties with different units/scales, and thus we 

normalize 
+& as follows: 2
3 &�
���� � 
+&�
���� 4
�&5  

Where 4
�& is calculated as follows: �� � �, $ � #' *: 4
�&,� � 4
�6474� �89��&, :  �� � �, $ � #'(): 4
�&,� � 4
�6474� �89��&, ;  4
�& � ∑ 4
�&,���	   

That is, first, for each � � �, $ � #, we let 4
�&,� be 
equal to the value of the alternative 
 � �� that 
achieves the maximum value for p; next, 4
�& is 
calculated by summing all 4
�&,� values. Note that 4
�& needs to be calculated only once for each 
property. In cases where the absolute maximum value 



 7

is known (e.g., reliability, where maximum is 100%), 
it could be simply used instead. 

 

4.3 Priorities 
 
Stakeholders are typically concerned about some 
properties more than others. Identifying the 
stakeholder concerns and prioritizing those in terms of 
risk and importance is the centerpiece of modern 
software engineering processes [19]. To that end, for 

each property $ � #, we define an integer <& � =0,10? 
indicating the priority of property p to stakeholders. 
The higher the priority, the more important that 
property is to the stakeholders. We chose this 
particular representation of priority to be consistent 
with the existing literature [2][19], which gives us 
some confidence that stakeholders can indeed 
priorities their concerns in this fashion. The last row in 
TABLE I shows the priorities in our case study. 

 

4.4 Total Value of a Candidate 

Architecture 
 

We let 
+�
���� represent the total value of a candidate 
architecture 
��� � �
, which is calculated by 
subtracting the total value of the properties that need 
to be maximized from those that need to be  
minimized as follows: 
+�
���� �
∑ @<& 2
3 &�
����A&�BCDE F ∑ @<& 2
3 &�
����A&�BCGH   

 

Finding an architecture 
��� � �
 with the lowest 
value of 
+�
���� is desirable, since it results in 
minimizing the #'()  and maximizing the #' * 
properties. Here contribution of each property is 

controlled by its priority <&. Since fuzzy arithmetic is 

closed under these operations, the total value is also a 
triangular fuzzy number. From which the range of the 

total value (
; and 
:) and the anticipated value (
^) 
can be determined. 

 

4.5 Constraints 
 
Some architectural candidates may not be valid. An 
alternative from one decision may depend on 
alternative(s) from other decisions, requiring them to 
be enabled. An example of this constraint in EDS (see 
TABLE I) was that the 3G alternatives for 
Connectivity are dependent on the alternatives for 
Hardware Platform. 3G has different battery 
consumption estimates depending on the type of 

hardware platform. We define function �J$: � KL��� that given an alternative returns a set of 

alternatives with dependency relationship to it. The 

dependency constraint for 
��� � �
 is then formally 
specified as follows �
 � 
���: � M ∏ �NN � 	O&� �   

An alternative may also conflict with alternative(s) 
from other decisions requiring them to be disabled 
first, and vice versa. For instance, in EDS (see TABLE 
I), since MySQL could not be installed on 
smartphones, it had a conflict with the Peer-to-Peer 
alternative, which assumed only peers and no reliance 
on database connectivity to the backend 

(Headquarters). We define function PQR: � K L��� 
that given an alternative returns a set of conflicting 
alternatives. We formalize these constraints for 
��� � �
 as follows: �
 � 
���: � ∑ �NN� ST)� � � 0  

A property may have certain thresholds (i.e., 
limitations). For instance, Reliability may be required 
to be greater than 90% or the Ramp up Time [5] may 
be required to be less than 40 man-days. We use the 

set U�� to represent those property constraints. We 

formalize property constraints for 
��� � �
 as 
follows: �$ � #' * : U��& M 
+&�
���� �$ � #'(): 
+&�
���� M  U��&  
 

4.6 Scope of Our Problem 
 
It is important to note that the scope of uncertainty 
dealt with in our paper has to do with not knowing the 
exact impact of alternatives on properties. However, 
there are other sources of uncertainty in early 
architecting that are not tackled in our work. Consider 
for instance the uncertainty introduced by the 
following questions: Have all of the properties of 
concern been elicited? Have all of the decisions and 
alternatives been identified? Do the priorities indeed 
represent the stakeholders’ true preferences? While the 
ability to answer such questions is clearly crucial, they 
fall outside the scope of this paper.   

 

5. Comparing Architectures under 

Uncertainty 

 

Recall from Section  4.4 that a smaller value of 
+ 

 
Figure 3. Intuition behind fuzzy comparison operator. 
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indicates a better architecture. Thus, we say between 

two valid architectures 
���V, 
���W � �
, 
���V is 
better than 
���W, if:  
+�
���V� M 
+�
���W� Eq. 1 

This is a fuzzy comparison, since the two sides are 
fuzzy numbers.  Here we are comparing the range of 
possible values for the two architectures. We 
formalize this by breaking down the fuzzy comparison 
operator into three concurrent comparisons. Let X' � 
^ represent the anticipated value, X& �|
^ F 
;| represent the positive consequence of 

uncertainty, and X) � |
: F 
^| represent the 
negative consequence of uncertainty. Figure 3 
provides the intuition behind the three comparisons, 
where a smaller value of zm and zn, and a larger value 
of zp are collectively considered to be representative of 
a smaller fuzzy value, and thus a better architecture. 
We thus rewrite Eq. 1 as follows: 
+�
���V� M 
+�
���W� Y X'V M X'W, X&V Z X&W, X)V M X)W Eq. 2 

The three comparisons on the right are formal 
representations of the three criteria from Section  3.3. 

Our fuzzy comparison operator is an instance of a 
multi-dimensional comparison, and to decide which 
range is lower, we first need to transform it to an 
equivalent single-dimensional comparison. This is 
necessary to allow us to reason about the trade-offs, 
such as those depicted in Figure 2b. Intuitively, the 
transformation process entails (1) normalizing the 
values being compared, (2) combining the comparison 
dimensions, and (3) if necessary, weighting the 
comparisons differently. In the remainder of this 
section, we describe the details of these three steps. 

 

5.1 Normalizing the Values Being 

Compared 
 

Since the three X values are defined differently in 
terms of 
+�
����, their range may not be the same. 
Therefore, to avoid one comparison to dominate the 
other ones as we combine them, we first have to 

normalize the X values. We use normalizing linear 

membership function [13], which is a function [ that 
maps each X to a value between 0 and 1: �6 � �4, $, R�: -[\D: �Q4�X(� ] =0,1?. 
This allows us to have X values with the same range. 

For defining each function [, we first need to 
determine the two extremums for each X: the 

extremum minimizing X is called Positive Ideal 

Solution (#^
), and the one maximizing X is called 
Negative Ideal Solution (2^
). We can obtain these 
values by performing the following optimizations: 

X'B_` � 
�a46R� /01 � 8`� X' X'b_` � 
�a4
�� /01 � 8`� X'X&B_` � 
�a4
�� /01 � 8`� X&X&b_` � 
�a46R� /01 � 8`� X&X)B_` � 
�a46R� /01 � 8`� X)X)b_` � 
�a4
�� /01 � 8`� X)

 

Note that the 2^
 and #^
 definitions for X' and X) are reverse of that of X& due to their semantic 

differences (i.e., we prefer a solution with small X' 

and X), and large X&). We specify [ to return 0 for the #^
 value, 1 for the 2^
 value, and proportionally 
linear between the two extremums: 

[\C

cd
e
df

0 X' g X'B_`
 X' F X'B_`

X'b_` F X'B_`
X'B_` M X'X' M X'b_` 1  X' h X'b_`

i 

  [\j

cd
e
df

0 X& h X&B_`
 X&B_` F X&X&B_` F X&b_`

X&b_` M X&X& M X&B_` 1  X& g X&b_`

i 

Function [\E is specified similar to [\C. As the 

definitions of 2^
 and #^
 are reversed, the 

normalizing function [\C and [\E are increasing, 
while [\jis decreasing. 

Defining the normalization functions this way also 

allows us to flip the comparison for X&. In other words, [\jk M [\jl becomes the normalized equivalent of 

X&V Z X&W. Thus, we rewrite Eq. 2 using the 

normalized values as follows: 
+�
���V� M 
+�
���W� Y [\Ck M [\Cl , [\jk M [\jl , [\Ek M [\El 
Eq. 3 

 

5.2 Combining the Comparisons 
 
Given that now we are dealing with three comparisons 
that have the same range and direction (i.e., less than 
or equal), we use a conventional technique to 
transform the multi-dimensional comparison of Eq. 3 

to a single-dimensional form [10]. We define m to be 
the sum of the three normalized values as follows: m � ∑ [\D(��',&,)�   Eq. 4 

Therefore, 
+�
���V� M 
+�
���W� n mV M mW. 
While this does not alone result in Eq. 3 to hold, mV M mW is a collective approximation of the extent in 

which 
+�
���V� M 
+�
���W� =10?[15]. In other words, 
for all practical purposes, if the value of mV in 
���V � �
 is less than the value of mW in 
���W �
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�
, we say that 
���V has a lower range, and 
therefore, better.  

 

5.3 Weighting the Comparisons 
 
In the above formulation, the three comparisons have 
the same importance, which is not necessarily the case 
in certain domains. For instance, in risk-averse 
domains, it is typically desirable to put more emphasis 
on reducing the negative consequence of uncertainty 
and achieve some level of assurance. Thus, a 

conservative architecture, where minimizing X) takes 
precedence over others, is preferable. We achieve this 
by assigning weights wm, wp, wn, where wm+wp+wn=1, 

to normalized values [\C, [\j, and [\E, respectively. 
The weights specify the importance of each 
comparison relative to others. Thus, we rewrite Eq. 4 
by including the weights as follows:  m � ∑ -o(  [\D.(��',&,)�   Eq. 5 

 

6. Exploring Solution Space under 

Uncertainty  

 

The ability to compare architectures under uncertainty 
provides the foundation for architectural exploration 
and decision making in early design. In this section, 
we describe four ways in which GuideArch helps with 
this process.  

 

6.1 Identifying Valid Architectures and 

Critical Constraints 
 
GuideArch allows the architect to identify the subset 
of architectural solutions that are “valid” even when 
there is uncertainty in the knowledge. An architecture 
is valid, if it satisfies the constraints presented in 
Section  4.4. An issue is how to check the property 
constraints, since they involve comparing the crisp 

value (i.e., Thd) with a fuzzy value (i.e., 
+&�
����). 
Consider for instance a constraint for the Cost of 
realizing an architecture to be less than $10,000. 
Determining whether this constraint is satisfied for a 
candidate architecture is challenged by the fact that the 
Cost of realizing that architecture is a fuzzy value.  

Constraints, including those specified on 
properties, are intended to be treated as absolute 
limitations, and thus we consider the worst case, 

which occurs at the pessimistic point (i.e., 
&;�. Thus, 
we rewrite the property constraints from Section  4.4 as 
follows: �$ � #' * : U��& M 
&;�
���� 

�$ � #'(): 
&;�
���� M  U��& 
Comparing the threshold with the worst case 

ensures an architectural candidate is valid, even when 
the negative consequence of uncertainty takes effect.  
The ability to identify valid architectures is not only 
going to ensure the architect does not pick a solution 
that is invalid, but can also be used to provide useful 
statistical measures. For instance, GuideArch provides 
the ratio of architectures comprising the solution space 
that are disqualified by each constraint. This allows 
the architect to identify both the limiting and loose 
constraints. Such information is crucial, as it allows 
the architect to explore the trade-offs in tightening or 
relaxing some of those constraints. If certain trade-offs 
are deemed appropriate, they could be communicated 
to other stakeholders, which could result in revising 
the constraints through appropriate negotiations.   

 

6.2 Finding the Optimal Architecture 
 
GuideArch could also be used to find the optimal 
architecture under uncertainty. An architecture is 
optimal for a given problem if it achieves the 

minimum value of m and satisfies the three types of 
constraints described in Section  4.5. We define this as 
a linear programming problem: 
�a46R� /01�8`� m /01  
Subject to:     �
 � 
���: � M ∏ �NN � 	O&� �   �
 � 
���: � ∑ �NN� ST)� � � 0  �$ � #' *: U��& M 
&;�
����  �$ � #'(): 
&:�
���� M  U��&  
Here, the solver uses the approach described in 
Section  5 to compare the total value of properties 
between the candidate solutions. The architecture with 

the minimum value of m (recall Figure 3 and Eq. 5) is 
the one that achieves the best combination of small 
anticipated value, small negative consequence of 
uncertainty, and large positive consequence of 
uncertainty.  

 

6.3 Ranking the Architectures 
 
The ability to find the optimal solution is 
complemented with the ability to see a ranking of 
candidates in GuideArch. There are several reasons for 
this. First of all, architects bring valuable domain 
expertise and experience that cannot be represented in 
existing tools, including GuideArch. Thus, it is 
possible that an architect may select an architecture 
that is slightly worse than optimal for reasons that are 
not modeled in the tool. Reasons for such decisions 
could range from unfounded biases (e.g., preference 
not to purchase products from a particular company) 
to technical intuitions (e.g., emerging standards). 
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Secondly, the ability to see the top ranked candidates 
allows the architect to gain insights into why 
GuideArch selected a solution as optimal. In other 
words, such rankings could help the architect gain a 
better understanding of the trade-offs, and increase her 
confidence in the analysis. 

GuideArch uses the ability to compare 
architectures, described in Section  5, to also rank them 

from best (top) to worst (bottom). We let p represent 
the ranking of top t architectures as an ordered list: p � q
���V , . . , 
���st where 
���( � �
 � 
@�
���( � p: �� � �
 � � u p: 
+��� M 
+�
���(�A � 
@�
���( , 
���v � p, 6 M w: 
+�
���(� M 
+�
���v�A 

Value of t is a configurable threshold in GuideArch. 
Here, candidates with better (lower) range appear at 
the top.  

 

6.4 Identifying and Ranking the Critical 

Decisions 
 
Modern software processes adopt an iterative process, 
where in each iteration the decisions made in the 
previous cycles are assessed and risks are mitigated 
[19]. Generally, it is desirable to resolve decisions that 
pose a high risk early on, and architecture is typically 
considered to provide the appropriate level of 
abstraction to enable such analysis [19].  

GuideArch could help the architect identify 
decisions that are likely to be most critical to the 
success of a software engineering project, and thus 
pose the greatest risk. The underlying insight is that a 
decision is likely to be crucial if it satisfies the 
following two criteria: (1) the alternatives selected 
from that decision have a large impact on the 
properties of architectures ranked at the top; and (2) 
the impact of those alternatives is highly uncertain. 
This is reasonable, since the architect is likely to select 
one of the top ranked architectures. Moreover, 
decisions with alternatives that have both large and 
uncertain impact on properties of the top ranked 
architectures introduce more error than others.    

We quantify these two criteria as follows:  
(1) Impact on system properties: We quantify the 

impact of an alternative 
 � � on the properties as 
follows: 

xy � ∑ @<& z{j,GCGHjA&�BCDE F ∑ @<& z{j,GCGHjA&�BCGH   

We then define the impact of a decision � � � on 
the properties of the top t ranked architectures as 
follows: xy� � ∑ xy /|V:s , where 
 � 
���/ � 
 � �� 

The above approach gives equal weight to the 
choices made in the ranked architectures. However, 
since architect is more likely to select from 

architectures that are ranked at the top, over those that 
are ranked at the bottom, we discount the influence 
based on the order. Thus, we reformulate the above 
equation by incorporating a logarithmic decay to 
discount the influence of alternatives as we traverse 
from the top to bottom of ranked architectures:   xy� � ∑ -xy  J}~/./|V:s , where � is the decay factor 
The larger �, the more emphasis is placed on the 
alternatives appearing at the top of the ranking.  

(2) Uncertainty in the impact: Unlike the ranking 
of architectural candidates, where we were interested 
in the best solutions, here we are interested in finding 
the most critical (worst) decisions. We use the fuzzy 
comparison operator to rank the decisions from worst 

(top) to best (bottom). We let � represent the ranking 
of n most critical decisions as an ordered list: � � q�V, . . , �)t where �( � � � ���( � �: �� � � �� u �: xy0 Z xy�D� � ���( , �v � �, 6 M w: xy�D Z xy��) 

The top ranked decisions are good candidates to be 
investigated further to mitigate risk. Based on this 
information, the architect may take a number of 
actions, such as expanding the critical decisions by 
allowing for additional alternatives, or simply reduce 
the uncertainty by investing resources and time (e.g., 
prototyping) to develop a better understanding of the 
alternatives’ impact. 

 

7. Evaluation 

 

GuideArch was used by a team of engineers and 
academics to explore the architectural space of the 
EDS project (recall Section  2). In this section, we 
describe some of the salient outcomes of this study, as 
well as the results obtained through additional 
experiments in the laboratory. 

 

7.1 Critical Constraints 
 
One of the early requirements posed by client in EDS 
was to keep the cost of a single handheld device 
(which includes the cost of the hardware and off-the-
shelf software packages) below $750. While the team 
already had a hunch that the requirement was overly 
constraining, there was no method of establishing the 
extent of it. In particular, since the impact of most 
alternatives on properties was uncertain, the team had 
no way of knowing exactly what portion of the 
architectural space would be disqualified by such a 
constraint. Using the technique described in Section 
 6.1, GuideArch was able to show that this constraint 
alone disqualifies 5,040 candidates out of 6,912 
potential solutions. This allowed the stakeholders to 
obtain a quantitative, yet intuitive, assessment of the 
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cost constraint on the choices. In a series of 
negotiations the stakeholders agreed to relax the 
constraint by increasing the limit to $1,000. This 
increased the number of valid architectures, which in 
turn resulted in finding better candidates. However, 
even the relaxed constraint disqualified 4,032 
architectures and remained as the critical constraint in 
the project. In the remainder of project and 
experiments reported here, the relaxed cost constraint 
was used. 

 

7.2 Ranking 
 
Figure 4 shows the triangular fuzzy value of 10 sample 
EDS architectures calculated by GuideArch. The 
horizontal axis marks the architectures’ rankings. 
TABLE II shows the selected alternatives for the 
architectures in Figure 4. As you may recall from 
Section  5, one architecture is better than another if it 
has a lower zm and zn, and a larger zp. In EDS, we gave 
equal weights to the satisfaction of each of those 
conditions (i.e., wm=wn=wp=1/3). Looking at Figure 4 
we can gain insights into the analysis performed by 
GuideArch. For instance, 1st architecture, which is 
picked as optimal by GuideArch, has the best 

combination of three X values, i.e., it has a lower zm 
and zn, and larger zp than the majority of 
candidates. As a result, while 1st architecture may 
be slightly inferior to some candidates with respect 
to one of the three conditions, it achieves the best 
set of trade-offs in total. 

 

7.3 Optimal Architecture 
 
Upon further analysis, we observed that the 
traditional approaches would have selected the 
486th candidate in Figure 4 as the optimal solution. 
Recall from Section  2 that traditional approaches 
do not consider uncertainty and only minimize the 
anticipated value (i.e., zm). Comparing the 
difference between 1st and 486th candidates sheds 
light on the contributions of GuideArch. 486th 

architecture achieves the lowest zm among all valid 
architectures, including the 1st architecture. However, 
486th architecture has a very large negative 
consequence of uncertainty, which has been ignored 
by the traditional approach. On the other hand, 
GuideArch selects a solution that has a slightly 
inferior zm but with a better range of uncertainty.    

The difference between 1st and 486th architecture 
could also be gleaned from the specific alternatives 
selected by each approach. For instance, looking up 
the two architectures in Tables II to find the selected 
alternatives, and subsequently looking up the 
alternatives in Table I, we can see that for the Chat 

Protocol decision, GuideArch selects Openfire, while 
traditional selects In house. Openfire is a COTS 
implementation of the XMPP protocol, while In house 
refers to the internal implementation of it. The EDS 
team was less certain with the Response Time property 
of In house, which had never been tested in large 
deployments with many clients. Therefore, as shown 
in Table I, In house had significantly larger pessimistic 
value for its Response Time (200ms for In house 
versus 70ms for Openfire). On the other hand, since 
Openfire was not optimized for smartphones, it had a 
slightly larger anticipated value for the Response Time 
(40ms for In house versus 60ms for Openfire). As a 
result, GuideArch selects Openfire, since it has a 
better range, i.e., makes a small compromise on 
anticipated value to prevent the large negative 
consequence of uncertainty. On the other hand, the 
traditional approach selects the solution with the best 
anticipated value, and ignores the high possibility of 
very bad Response Time. 

 

7.4 Critical Decisions 
 
GuideArch was also used to identify the critical 
decisions. Figure 5a shows the estimated impact of 

 
Figure 4. The triangular fuzzy value of 10 architectural 

candidates in EDS. 

TABLE II. THE ALTERNATIVES COMPRISING ARCHITECTURES 
SHOWN IN FIGURE 4. 
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1 2 1 2 1 1 3 1 1 3 3 

2 2 1 2 1 1 3 1 1 3 1 

3 2 1 1 1 1 3 1 1 3 3 

10 2 2 2 1 1 3 1 1 3 1 

20 2 2 2 1 1 3 1 1 3 2 

30 2 1 1 1 2 3 1 1 3 1 

100 2 1 1 1 1 3 1 2 3 1 

200 2 1 2 2 1 3 4 1 2 2 

300 2 1 2 1 1 1 1 2 1 2 

486 2 2 1 1 2 3 4 1 2 3 
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decisions (i.e., xy�) as well as the range of uncertainty 
in those estimates, which as you may recall from 
Section  6.4 determine their criticality. We can see 
Location Finding is the most critical decision, since 
(1) it has a large effect  on the ranked architectures, 
indicated by high y-axis position, and (2) has a very 
large range of uncertainty, indicated by the span of the 
arrow. In other words, if we use the fuzzy comparison 

operator (recall Section  5), Location Finding’s xy� is 
larger among all other decisions. The reason behind 
this can be gleaned from Table I: both of Location 

Finding’s alternatives (GPS and Radio Triangulation) 
have a large and uncertain impact on two of the 
properties with the highest priority (Battery Usage and 
Response Time). 

This analysis formed the first iteration of using 
GuideArch. It helped the team identify the critical 
decisions early on, and focus additional efforts on 
them. As a result, the team came across an advanced 
state-of-the-art variation of the traditional radio 
triangulation [14] that presented the project with a new 
alternative for Location Finding. Given that a 
prototype of this solution had been developed, 
evaluated, and published [14], the new alternative was 
estimated to have significantly smaller Battery Usage, 
faster Response Time, and smaller range of 
uncertainty. GuideArch was applied to the revised 
problem. Figure 5b shows the range of total value (i.e., 

the fuzzy value of 
+) for the best candidate 
architecture picked by GuideArch in this second 

iteration, compared to the best candidate picked in the 
first iteration. As Figure 5b shows, the introduction of 
the new alternative (i.e., smart radio triangulation) 
improved the total value of the optimal architecture 
significantly. 

 

7.5 Tuning GuideArch 
 
In the EDS project we gave the same weight to the 
three comparisons (i.e., wm=wn=wp=1/3). However, 
recall from Section  5.3 that weights could be used to 
tune GuideArch to be more conservative or bold in its 
analysis. We performed a set of experiments on the 
EDS model to assess the impact of weights on the 
optimal architecture selected by GuideArch. Figure 6 
shows the results executed in the model used in the 
first iteration and before the introduction of additional 
alternatives discussed in the previous section. 

To allow for comparison, in Figure 6, we show the 
result for the balanced weight assignment (i.e., 
[1/3,1/3,1/3]), which corresponds to the candidate 
ranked 1st in Figure 4. Also note that when wm=1 and 
wn=wp=0, GuideArch behaves exactly like the 
traditional approach. Therefore, the optimal 
architecture for that weight assignment in Figure 6 
(i.e., [0,1,0]) is the same as candidate ranked 486th in 
Figure 4. This is because the consequence of 
uncertainty is ignored. 

As expected, in the two experiments with high wn, 
GuideArch selects a conservative solution, i.e., puts 
more emphasis on minimizing the negative 
consequence of uncertainty. In the two experiments 
with high wp, GuideArch selects a risky solution, i.e., 
puts more emphasis on maximizing the positive 
consequence of uncertainty. Both approaches come at 
the cost of achieving mediocre anticipated total value. 
It is important to note that no particular weight 
assignment in Figure 6 is the best. We can envision 
situations in which placing emphasis on one of the 
comparisons may be more appropriate, which 
GuideArch allows for naturally.  

 

7.6 Performance Benchmark 
 
Finding the optimal architecture in the EDS project 
took 281ms. Fast response allowed the EDS team to 
rapidly perform numerous “what if” scenario analyses 
by making changes to the model. For a better 
illustration of GuideArch’s performance, we 
augmented our experience in EDS with benchmarks 
depicted in Figure 7. Here we compare the execution 
time of the traditional approach with that of 
GuideArch on a PC with Intel® Core™ 2 Duo CPU 
and 3.50 GB of RAM running Microsoft® Windows® 
XP SP 3. It took GuideArch longer to find the optimal 

 
Figure 6. The optimal architecture for different weight 

assignments. 

 
Figure 5. Critical decisions: (a) comparing the decisions 

in the first iteration and (b) improvement in the optimal 

architecture after revising the critical decision in the 

subsequent iteration. 
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solution, which is not surprising, since as you may 
recall from Section  5.1, GuideArch requires 6 

additional optimizations to calculate #^
 and 2^
 
value pairs for the three X values. Figure 7 
corroborates this as the performance of GuideArch is 
higher than the performance of traditional approach by 
a constant factor of 7. While it takes longer to execute 
GuideArch, we believe its performance to be 
reasonably fast for most projects. It took 7.5 seconds 
to find the optimal configuration in the largest 
problem, consisting of 100 decisions and average of 

20 alternatives per decision, for a total of 20V�� �1.2 � 10V�� possible combinations. 

 

8.  Related Work 
 

Making architectural decisions is a problem that has 
been studied from both design-time and run-time 
perspectives. Here we discuss only those targeted at 
design-time, since that has been the focus of our work:  

• ArchDesigner [2] is a quality-driven approach to 
find an optimal architecture that meets conflicting 
stakeholders' quality goals. ArchDesigner uses 
linear programming to find the optimal 
architecture.  

• CBAM [12] is a quantitative approach for 
economic modeling of software engineering 
decisions, which builds upon ATAM [6]. CBAM 
provides the cost and benefit of different 
architectural candidates.  

• Cortellessa et al. dealt with the problem of COTS 
selection in [7], which helps the architects decide 
if a component should be purchased or developed 
in house. They formulate this as an optimization 
problem.  

• ArcheOpterix [1] is a tool for optimizing an 
embedded system’s architecture. It uses 

evolutionary algorithms for multi-objective 
optimization of such systems.  

• In [15], we dealt with the problem of selecting a 
deployment architecture (i.e., mapping of 
components to hardware nodes), such that 
multiple QoS objectives are maximized.  
While many of the above approaches [12][2][15] 

acknowledge the challenges posed by uncertainty, 
none addresses it explicitly and in the form of a 
mathematical framework for decision making. 

A few approaches have considered uncertainty:  

• Andreou and Papatheocharous [3] pass data from 
past projects through Fuzzy Decision Trees to 
build association rules that approximate the cost 
of software. 

• Palladio [4] uses information about components 
comprising the architecture to derive analytical 
models (e.g., Queueing Networks) and simulate 
the system’s performance. Random variables are 
used to specify uncertainty in service demands 
and iterations. 

[3][4] are complementary to GuideArch, as they could 
be used to specify the range of cost and performance, 
respectively. Unlike GuideArch, [3][4] neither 
optimize a range of values, nor have the ability to 
compare ranges of possible behaviors for different 
architectures. 

Finally, in [8], Doyle et al. present an approach to 
compare alternative architectures, assuming the 
availability of a probability distribution representing 
the response time of each architecture. Instead of 
fuzzy mathematics, they rely on extensive integration 
to compare the probability distributions, which are 
computationally expensive, making their approach 
inapplicable to exploration of a large solution space. 
Moreover, their approach is specific to response time.  

 

9. Conclusion and Future Work 
 

In any software project, early architectural decisions 
represent some of the most important decisions 
engineers ever make. Yet there is a lack of techniques 
and tools for helping the engineers make those 
decisions. We presented GuideArch, a novel 
framework that guides the engineers in making the 
best choices possible under uncertainty. It provides a 
combination of capabilities, such as ranking of the 
architectures, finding the optimal, and identifying the 
critical decisions, that collectively help with the 
exploration of the solution space. GuideArch is 
tunable, allowing the engineer to set the analysis to be 
as conservative as desired.  

While thorough evaluation of GuideArch in a case 
study as well as the laboratory experiments helped us 
to experience its benefits firsthand, it also suggested 

 
Figure 7. Performance of GuideArch compared to 

traditional approaches. |D| is the number of decisions 

and |A|/|D| is the average number of alternatives per 

decision in the problem. 
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several areas of future improvement. One area of 
future work is to extend the current model from a 
unified stakeholder perspective to a multiple 
stakeholder perspective. In other words, we currently 
assume all stakeholders have agreed on the estimated 
impact of alternatives on properties and their 
priorities. However, this may not always be the case, 
presenting GuideArch with yet another source of 
uncertainty. Another avenue of future work is to 
extend GuideArch to the kinds of uncertainty 
discussed in Section  4.6. 
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