
 1

Department of Computer Science
George Mason University
Technical Report Series

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/
703-993-1530

Guided Exploration of the Architectural Solution Space in

the Face of Uncertainty

Naeem Esfahani

nesfaha2@gmu.edu
 Sam Malek

smalek@gmu.edu

Technical Report GMU-CS-TR-2011-3

Abstract

A system’s early architectural decisions impact its
properties (e.g., scalability, dependability) as well as
stakeholder concerns (e.g., cost, time to delivery).
Choices made early on are both difficult and costly to
change, and thus it is paramount that the engineer gets
them “right”. This leads to a paradox, as in early
design, the engineer is often forced to make these
decisions under uncertainty, i.e., not knowing the
precise impact of those decisions on the various
concerns. How could the engineer make the “right”
choices in such circumstances? This is precisely the
question we have tackled in this paper. We present
GuideArch, a framework aimed at guiding the
exploration of the architectural solution space under
uncertainty. It provides techniques and tools that help
the engineer to make informed decisions. The
approach has been thoroughly evaluated in a project
aimed at reengineering a mobile software system.

Keywords

Uncertainty; Software Architecture; Decision Making

1. Introduction

A software system’s early architecture is the set of
principal decisions made at the outset of a software
engineering project. Early architecture encompasses
choices at application, system, and hardware level that

could have an impact on the software system’s
properties.1 A common practice is to carefully assess
the system’s early architecture for its ability to satisfy
functional and non-functional requirements, as well as
other stakeholder concerns, such as cost and time to
delivery.

Early architectural decisions are crucial as they
determine the scope of capabilities and options that
can be exercised later in the development process.
Given the crucial impact of early architectural
decisions on the system’s properties, changing them in
subsequent phases of the engineering process are often
both difficult and costly. At the same time, making
early architectural decisions is a complex task mired
with lots of uncertainty. Getting them “wrong” poses
one of the greatest risks to any software engineering
project.

One of the major thrusts of the software
engineering research has been to transform the process
of making such decisions from an art form exercised
successfully by a select few to a repeatable process
guided through scientific reasoning and formal
analysis. A few notable examples include ATAM [6],
CBAM [12], and ArchDesigner [2]. Such efforts have
not aimed to replace the engineer’s experience and
knowledge, but to rather augment it through
provisioning of appropriate methods and tools.

While great strides have been made on this front,
the existing approaches do not systematically deal
with uncertainty [11]. In fact, there is no systematic

1
 While our definition of “early architecture” incorporates
decisions dealing with hardware, system, and software,
our focus in this paper is mainly on software decisions.

 2

method of even comparing two architectures under
uncertainty, let alone making the “right” decisions in
such circumstances [2][11].

In this paper, we present a framework aimed at
guiding the uncertainty-driven exploration of

architectural space, in short GuideArch. It allows the
architect to make informed decisions using imperfect
information. It does so by providing a number of key
capabilities, including the ability to rank the candidate
architectures based on their traits, and identifying the
most critical constraints and design decisions. This
alleviates the architect from manually sifting through
an often large solution space, and instead allows her to
focus on the decisions that are critical to the system’s
success.

Unlike any existing approach [2, 6, 12], GuideArch
explicitly represents the inherent uncertainty of the
knowledge and incorporates that in the analysis. It
enables an incremental method of making and refining
architectural decisions throughout the engineering
process. As the rough estimates in the early stages
give way to precise estimates in the later stages,
GuideArch allows the architect to refine the models
and explore other suitable alternatives.

GuideArch employs fuzzy mathematical methods
[21] to reason about uncertainty. We have devised a
novel fuzzy operator that forms the foundation for
quantitative comparison of architectural candidates
under uncertainty. The fuzzy operator is then used to
develop advanced analysis techniques, including
optimization and ranking of architectures, and
identification of critical design decisions.

Our experience with applying the approach in a
project consisting of numerous design choices and
constraints has been very positive. GuideArch allowed
the stakeholders to gain better insights into the
architectural alternatives and avoid risky solutions
early in the project.

The remainder of paper is organized as follows.
Section 2 describe a case study and uses it to motivate
the research. Section 3 provides an intuitive
description of our approach, while Sections 0 4 6- 6
formally present the details. Section 0 provides a
thorough evaluation of the research. Section 8 outlines
the related research. The paper concludes with a
discussion of future work.

2. Motivation

We use a software system, called Emergency
Deployment System (EDS) [16], to motivate, describe,
and evaluate our research. EDS was previously
developed in collaboration with a government agency

for the deployment of personnel in emergency
response scenarios. EDS consists of two subsystems:
Headquarters and Search & Rescue. The
Headquarters subsystem manages several Search &

Rescue subsystems. The Search & Rescue subsystem
is a mobile application that runs on ruggedized
smartphones and tablets, and used by emergency crew
members.

The original subsystem was relatively rudimentary,
providing support merely for sharing data with
Headquarters. The recent proliferation of mobile
technologies, standards (e.g., Open Handset Alliance
[18]), and platforms (e.g., Android [17]) presented an
opportunity to improve this part of the system.
Therefore, a project for clean slate re-architecting of
the subsystem was ensued. The new application was
intended to allow the crew to share and obtain an
assessment of the situation in real-time (e.g.,
interactive overlay on maps), coordinate with one
another (e.g., send reports, chat, and share video
streams), and engage with the Headquarters (e.g.,
receive commands).

We seized the revamping of this software system
as an opportunity to perform the following study. In
re-architecting the EDS application, a team, consisting
of academics and engineers from the agency was
formed, to decide among the early design decisions,
shown on the left most column of TABLE I. Each
decision consists of several viable alternatives, shown
on the second column from the left. The requirements
posed by the entities within the agency sponsoring the
project also called for several areas of concern, which
the team derived over several project meetings with
the various stakeholders. The concerns are shown on
the top most row of TABLE I, and referred to as
properties of the architecture/system. We will revisit
TABLE I and its details in Section 3.

Our experiences with EDS and other systems show
that precisely predicting the impact of an architectural
alternative on the system’s properties is extremely
difficult, particularly in early phases of engineering.
This observation is also corroborated by other
researchers and practitioners [12][2]. As a result, the
process of making early architectural choices is a risky
proposition mired with uncertainty.

Previous approaches (e.g., [12][2][15]) that support
the process of making decisions and optimizing the
system’s architecture ignore these challenges, which
hampers their adoption in real-world risk-averse
domains. We collectively refer to these as the
traditional approaches. We illustrate their
shortcoming using a problem in which the objective is
to choose from a pool of 16 candidate architectures,
such that Cost and Battery Usage are minimized.

TABLE I. EXPECTED EFFECT OF ARCHITECTURAL ALTERNATIVES ON PROPERTIES, AND PRIORITIES IN

RESCUE SUBSYSTEM. “<”, “^”, and “>”

3

. EXPECTED EFFECT OF ARCHITECTURAL ALTERNATIVES ON PROPERTIES, AND PRIORITIES IN

“>” COLUMNS INDICATE OPTIMISTIC, ANTICIPATED, AND PESSIMISTIC IMPACT,

RESPECTIVELY.

. EXPECTED EFFECT OF ARCHITECTURAL ALTERNATIVES ON PROPERTIES, AND PRIORITIES IN SEARCH &

AND PESSIMISTIC IMPACT,

 4

The traditional approaches assume that the
architect is able to precisely specify the impact of
candidate architectures on properties of interest. If that
was the case, then one could visualize the situation as
in Figure 1a. Here, for the sake of clarity, the values
for Cost and Battery Usage are normalized between
zero and one. Assuming both properties have the same
level of importance, to compare the 16 candidates, for
each architecture we first sum up the values obtained
in the two properties. Figure 1b achieves just that, as it
shows the overall value for the candidate architectures.
In this space, architectures can be compared with one
another. For example, we can see that A13 is the best
architecture, as it obtains the smallest total value. It is
also possible for several architectures to obtain the
same value, in which case the architect would need to
provide a prioritization scheme, such that more
emphasis is placed on certain properties. However, for
clarity we do not consider such cases in this section,
and revisit that later in the paper. While the
aforementioned approach is theoretically sound, it is
not useful in practice, as it does not incorporate the
underlying uncertainty in the impact of architectural
decisions on properties of interest.

The complexity of incorporating uncertainty in the
analysis is shown in Figure 1c. Here, the architect’s
uncertainty is represented in terms of range of impact
that an architectural candidate may have on the
properties of interest. For example, the impact of a
given architecture on Battery Usage is no longer a
single number, but rather a range of values. As a
result, each architectural candidate may obtain a value
anywhere within the area occupied by the
corresponding rectangle. Clearly, comparing two
architectures with overlapping rectangles is difficult. It
is not clear how the rectangles in Figure 1c can be
transformed to a space where the trade-off analysis
can be performed.

To gain a better appreciation for the complexity of
this problem consider that the simple example used in
Figure 1 consists of only 16 architectural candidates
and 2 properties of interest, but a typical software
system often consists of many more candidates and
properties. For instance, the EDS problem depicted in
TABLE I consists of a total of 6,912 potential
architectural solutions, each of which could present a
trade-off with respect to 7 properties of interest.2
Clearly, manually exploring such a large space is a big
burden. Incorporating uncertainty into the analysis
makes a problem that is already challenging so
overwhelmingly complex that a manual assessment
without the appropriate tools and techniques becomes
impossible.

3. Approach

We accept uncertainty as a natural component of
architecting a software system, particularly in the early
phases of engineering. Our objective is not to
eliminate uncertainty, but to provide techniques and
tools for making informed decisions in such
circumstances. This section provides an intuitive
description of our approach; the underlying details and
mathematics are then presented in Sections 4 6- 6.

3.1 Representing Uncertainty in Impact of

Alternatives

Instead of modeling the anticipated impact of an
architectural alternative on the system’s properties as a
point estimate, we represent it as a range of values.
Specifying the impact in terms of a range is aligned

2
 In Section 4, we describe how the number of candidate

architectures can be calculated.

Figure 1. Quantitatively assessing architectural candidates: (a) 16 candidate architecture in a cost vs. battery usage

trade-off, (b) simple additive approach to resolve the trade-offs, and (c) cost vs. battery usage under uncertainty, where

each rectangle represents the space of values that an architecture may take.

 5

with the way humans in general conceptualize
uncertainty and provides an intuitive method of
modeling the architect’s knowledge. TABLE I shows
these ranges in the EDS system, where for each
alternative, the optimistic (“<” column), anticipated
(“^” column), and pessimistic (“>” column) impact on
the properties are provided.
The range of impact may be estimated in a number of
ways, including the data available from similar
designs in other systems, architect’s prior knowledge,
prototype of the system, etc. For instance, from prior
experience with smartphones, the architect may
estimate that Location Finding using GPS has 10µJ of
anticipated battery usage, with 8µJ and 14µJ in
optimistic and pessimistic situations, respectively.
While there are other elaborate methods of
representing uncertainty, such as probability

distribution, our experience suggests that architects are
often not capable of expressing such models. We note,
however, that if such models of uncertainty are
available, then the range could be easily derived using
the techniques described in [9].

The key contribution of GuideArch is the ability to
provide quantitative analysis of the trade-offs given
such loose specifications. We achieve this by
representing the uncertain parameters as fuzzy

numbers. A fuzzy number is founded on the concept
of fuzzy set [20]. In a fuzzy set, the elements have a
degree of membership. Degree of membership is a
value between zero and one: a value of zero indicates

the element is certainly not a member of the set, a
value of one indicates the element is certainly a
member of the set, and a value in between indicates
the extent of certainty that the element is a member of
the set. Fuzzy math is grounded in possibility theory
[20], which provides an alternative interpretation of
uncertainty to that of probability theory. A common
misconception is that fuzzy math is imprecise. On the
contrary, fuzzy math, just like probability, provides a
precise and sound method of dealing with uncertainty.
Fuzzy decision making techniques are also often more
efficient than stochastic programming approaches
[21]. In addition, since uncertainty in our problem is
not due to statistical error or noise, but rather to the
imprecision in knowledge, we adopt possibility theory
as the foundation of dealing with uncertainty in
GuideArch.

We assign the possibility of one to the anticipated
value, and possibility of zero to the optimistic and
pessimistic, respectively. We use “^”, “<”, “>” to
represent anticipated, optimistic, and pessimistic,
respectively. We let the possibility to decrease linearly
from the anticipated to the optimistic and pessimistic
points. Thus, the effect of each design alternative on
each property is modeled as a triangular fuzzy value
[21]. For instance, Figure 2a depicts the fuzzy values
corresponding to the range of Cost and Battery Usage
for an architectural candidate. Due to uncertainty, the
actual value of the property may be anywhere in that
range.

3.2 Calculating Uncertainty in a

Candidate Architecture

Given the fuzzy impact of alternatives on properties,
we can now quantify the overall value of a given
architecture. Similar to the approach employed to
transform Figure 1a to Figure 1b, we can transform the
candidate solutions in Figure 1c to a scalar space, such
that they can be compared with one another. The total
value for each architecture can be calculated as fuzzy

summation of the impact of alternatives on the
properties. When fuzzy numbers are summed up, the
pessimistic, anticipated, and optimistic values are
added independently of each other, to arrive at a new
fuzzy value. For instance, adding fuzzy values for
Cost and Battery Usage in Figure 2a results in the
fuzzy value shown in Figure 2b, which represents the
total value of the corresponding architecture. Since an
architecture with a lower value is preferred, we call
the situation in which the actual value is between
anticipated and pessimistic the negative consequence
of uncertainty, and the situation in which the actual
value is between anticipated and optimistic the
positive consequence of uncertainty.

Figure 2. Uncertainty modeled as fuzzy values using

possibility theory: (a) the fuzzy values for Cost and

Battery usage, (b) their summation to determine the

architecture’s total value, and (c) the total value for three

hypothetical architectures.

 6

3.3 Comparing Candidate Architectures

under Uncertainty

Fuzzy summation allows us to transform the multi-
dimensional problem into a single scalar value, but
since the scalar value itself is fuzzy, comparing
solutions remains a challenge. When comparing two
fuzzy numbers, the one with the “better” range is
superior. We say the fuzzy value of one architecture is
better than another if it has a: (C1) smaller anticipated
value, (C2) larger positive consequence of uncertainty,
and (C3) smaller negative consequence of uncertainty.
Figure 2c shows the total value of the properties for
three hypothetical architectures (A, B, and C), which
are represented as fuzzy values. Using Figure 2c we
describe two possible scenarios that may occur in
comparing architectures this way. The first scenario
occurs when a given architecture is inferior to others
with respect to all three criteria. For instance, in Figure
2c, architecture A is inferior to architectures B and C

with respect to all three criteria. The second scenario
occurs when there are trade-offs. For instance,
architectures B and C present a trade-off, as
architecture B is superior to architecture C with
respect to C2 and C3, and inferior with respect to C1.
Section 5 describes in detail how we can resolve such
trade-offs. Section 6 describes how the ability to
compare architectures under uncertainty provides the
basis for exploration of the solution space, including
ranking, optimization, and identification of the critical
choices.

4. Specification of Architecture

Selection Problem

In this section, we formally specify the problem of
making early architectural decisions.

4.1 Decisions and Alternatives

We denote the set of architectural decisions as set �.
For instance, in TABLE I, Architectural Style is a

decision. Each decision � � � has several

alternatives, which we denote as set ��. For example,
the Architectural Style decision in TABLE I has three
alternatives: Peer-to-Peer, Client-Server, and Push-

Based. We define the set of all alternatives as

follows: � � � ����	
The architecture space is a proper subset of the

alternatives, where for each decision there exist one
and only one alternative that is selected as follows:

 �
 � �
��� � �|��� � �: �
 � ��:
�
���� � ��
 �
���,
 � ��: ��� ��: � �
 � � �
�����
Thus, the size of the architecture space is: ∏ |��|���	
For instance, for EDS problem in TABLE I, we have 6
decisions with 2 alternatives, 3 decisions with 3
alternatives, and one decision with 4 alternatives for a
total of 26×33×4=6,912 possible architectural
candidates.

For each design alternative
 � �, we introduce a
binary decision variable � , which is equal to 1 if the
alternative is selected, and 0 otherwise: � � 1 "
 �
���

4.2 Properties and Coefficients

We denote the properties that stakeholders are

interested in as set #. In TABLE I properties are
shown in the clustered columns (e.g., Cost). As
described in Section 3, each property is broken down
to three values quantifying the uncertainty in the
impact of an alternative on that property. For

alternative
 � � and property $ � # we use �̃&, to
denote the effect of design alternative
 on property $
and we call it a coefficient. The tilde accent “~”
indicates that the coefficient is a fuzzy value. The set

of properties # is partitioned into two subsets #'()
and #' *, representing properties that need to be
minimized (e.g., Cost) and maximized (e.g.,
Reliability), respectively.

We assess the contributions of property $ � # to a
given architecture
��� � �
 by summing the
coefficients of the selected alternatives as:
+&�
���� � ∑ -�̃&, � . � /01

The coefficients are included in the summation
when the corresponding alternative is selected. Note
that since we use fuzzy arithmetic, the result is also a
fuzzy number.

As detailed later in this paper, we would like to
reason about the impact of alternatives on several
properties with different units/scales, and thus we

normalize
+& as follows: 2
3 &�
���� �
+&�
���� 4
�&5

Where 4
�& is calculated as follows: �� � �, $ � #' *: 4
�&,� � 4
�6474� �89��&, : �� � �, $ � #'(): 4
�&,� � 4
�6474� �89��&, ; 4
�& � ∑ 4
�&,���	

That is, first, for each � � �, $ � #, we let 4
�&,� be
equal to the value of the alternative
 � �� that
achieves the maximum value for p; next, 4
�& is
calculated by summing all 4
�&,� values. Note that 4
�& needs to be calculated only once for each
property. In cases where the absolute maximum value

 7

is known (e.g., reliability, where maximum is 100%),
it could be simply used instead.

4.3 Priorities

Stakeholders are typically concerned about some
properties more than others. Identifying the
stakeholder concerns and prioritizing those in terms of
risk and importance is the centerpiece of modern
software engineering processes [19]. To that end, for

each property $ � #, we define an integer <& � =0,10?
indicating the priority of property p to stakeholders.
The higher the priority, the more important that
property is to the stakeholders. We chose this
particular representation of priority to be consistent
with the existing literature [2][19], which gives us
some confidence that stakeholders can indeed
priorities their concerns in this fashion. The last row in
TABLE I shows the priorities in our case study.

4.4 Total Value of a Candidate

Architecture

We let
+�
���� represent the total value of a candidate
architecture
��� � �
, which is calculated by
subtracting the total value of the properties that need
to be maximized from those that need to be
minimized as follows:
+�
���� �
∑ @<& 2
3 &�
����A&�BCDE F ∑ @<& 2
3 &�
����A&�BCGH

Finding an architecture
��� � �
 with the lowest
value of
+�
���� is desirable, since it results in
minimizing the #'() and maximizing the #' *
properties. Here contribution of each property is

controlled by its priority <&. Since fuzzy arithmetic is

closed under these operations, the total value is also a
triangular fuzzy number. From which the range of the

total value (
; and
:) and the anticipated value (
^)
can be determined.

4.5 Constraints

Some architectural candidates may not be valid. An
alternative from one decision may depend on
alternative(s) from other decisions, requiring them to
be enabled. An example of this constraint in EDS (see
TABLE I) was that the 3G alternatives for
Connectivity are dependent on the alternatives for
Hardware Platform. 3G has different battery
consumption estimates depending on the type of

hardware platform. We define function �J$: � KL��� that given an alternative returns a set of

alternatives with dependency relationship to it. The

dependency constraint for
��� � �
 is then formally
specified as follows �
 �
���: � M ∏ �NN � 	O&� �

An alternative may also conflict with alternative(s)
from other decisions requiring them to be disabled
first, and vice versa. For instance, in EDS (see TABLE
I), since MySQL could not be installed on
smartphones, it had a conflict with the Peer-to-Peer
alternative, which assumed only peers and no reliance
on database connectivity to the backend

(Headquarters). We define function PQR: � K L���
that given an alternative returns a set of conflicting
alternatives. We formalize these constraints for
��� � �
 as follows: �
 �
���: � ∑ �NN� ST)� � � 0

A property may have certain thresholds (i.e.,
limitations). For instance, Reliability may be required
to be greater than 90% or the Ramp up Time [5] may
be required to be less than 40 man-days. We use the

set U�� to represent those property constraints. We

formalize property constraints for
��� � �
 as
follows: �$ � #' * : U��& M
+&�
���� �$ � #'():
+&�
���� M U��&

4.6 Scope of Our Problem

It is important to note that the scope of uncertainty
dealt with in our paper has to do with not knowing the
exact impact of alternatives on properties. However,
there are other sources of uncertainty in early
architecting that are not tackled in our work. Consider
for instance the uncertainty introduced by the
following questions: Have all of the properties of
concern been elicited? Have all of the decisions and
alternatives been identified? Do the priorities indeed
represent the stakeholders’ true preferences? While the
ability to answer such questions is clearly crucial, they
fall outside the scope of this paper.

5. Comparing Architectures under

Uncertainty

Recall from Section 4.4 that a smaller value of
+

Figure 3. Intuition behind fuzzy comparison operator.

 8

indicates a better architecture. Thus, we say between

two valid architectures
���V,
���W � �
,
���V is
better than
���W, if:
+�
���V� M
+�
���W� Eq. 1

This is a fuzzy comparison, since the two sides are
fuzzy numbers. Here we are comparing the range of
possible values for the two architectures. We
formalize this by breaking down the fuzzy comparison
operator into three concurrent comparisons. Let X' �
^ represent the anticipated value, X& �|
^ F
;| represent the positive consequence of

uncertainty, and X) � |
: F
^| represent the
negative consequence of uncertainty. Figure 3
provides the intuition behind the three comparisons,
where a smaller value of zm and zn, and a larger value
of zp are collectively considered to be representative of
a smaller fuzzy value, and thus a better architecture.
We thus rewrite Eq. 1 as follows:
+�
���V� M
+�
���W� Y X'V M X'W, X&V Z X&W, X)V M X)W Eq. 2

The three comparisons on the right are formal
representations of the three criteria from Section 3.3.

Our fuzzy comparison operator is an instance of a
multi-dimensional comparison, and to decide which
range is lower, we first need to transform it to an
equivalent single-dimensional comparison. This is
necessary to allow us to reason about the trade-offs,
such as those depicted in Figure 2b. Intuitively, the
transformation process entails (1) normalizing the
values being compared, (2) combining the comparison
dimensions, and (3) if necessary, weighting the
comparisons differently. In the remainder of this
section, we describe the details of these three steps.

5.1 Normalizing the Values Being

Compared

Since the three X values are defined differently in
terms of
+�
����, their range may not be the same.
Therefore, to avoid one comparison to dominate the
other ones as we combine them, we first have to

normalize the X values. We use normalizing linear

membership function [13], which is a function [that
maps each X to a value between 0 and 1: �6 � �4, $, R�: -[\D: �Q4�X(�] =0,1?.
This allows us to have X values with the same range.

For defining each function [, we first need to
determine the two extremums for each X: the

extremum minimizing X is called Positive Ideal

Solution (#^
), and the one maximizing X is called
Negative Ideal Solution (2^
). We can obtain these
values by performing the following optimizations:

X'B_` �
�a46R� /01 � 8`� X' X'b_` �
�a4
�� /01 � 8`� X'X&B_` �
�a4
�� /01 � 8`� X&X&b_` �
�a46R� /01 � 8`� X&X)B_` �
�a46R� /01 � 8`� X)X)b_` �
�a4
�� /01 � 8`� X)

Note that the 2^
 and #^
 definitions for X' and X) are reverse of that of X& due to their semantic

differences (i.e., we prefer a solution with small X'

and X), and large X&). We specify [to return 0 for the #^
 value, 1 for the 2^
 value, and proportionally
linear between the two extremums:

[\C

cd
e
df

0 X' g X'B_`
 X' F X'B_`

X'b_` F X'B_`
X'B_` M X'X' M X'b_` 1 X' h X'b_`

i

 [\j

cd
e
df

0 X& h X&B_`
 X&B_` F X&X&B_` F X&b_`

X&b_` M X&X& M X&B_` 1 X& g X&b_`

i

Function [\E is specified similar to [\C. As the

definitions of 2^
 and #^
 are reversed, the

normalizing function [\C and [\E are increasing,
while [\jis decreasing.

Defining the normalization functions this way also

allows us to flip the comparison for X&. In other words, [\jk M [\jl becomes the normalized equivalent of

X&V Z X&W. Thus, we rewrite Eq. 2 using the

normalized values as follows:
+�
���V� M
+�
���W� Y [\Ck M [\Cl , [\jk M [\jl , [\Ek M [\El
Eq. 3

5.2 Combining the Comparisons

Given that now we are dealing with three comparisons
that have the same range and direction (i.e., less than
or equal), we use a conventional technique to
transform the multi-dimensional comparison of Eq. 3

to a single-dimensional form [10]. We define m to be
the sum of the three normalized values as follows: m � ∑ [\D(��',&,)� Eq. 4

Therefore,
+�
���V� M
+�
���W� n mV M mW.
While this does not alone result in Eq. 3 to hold, mV M mW is a collective approximation of the extent in

which
+�
���V� M
+�
���W� =10?[15]. In other words,
for all practical purposes, if the value of mV in
���V � �
 is less than the value of mW in
���W �

 9

�
, we say that
���V has a lower range, and
therefore, better.

5.3 Weighting the Comparisons

In the above formulation, the three comparisons have
the same importance, which is not necessarily the case
in certain domains. For instance, in risk-averse
domains, it is typically desirable to put more emphasis
on reducing the negative consequence of uncertainty
and achieve some level of assurance. Thus, a

conservative architecture, where minimizing X) takes
precedence over others, is preferable. We achieve this
by assigning weights wm, wp, wn, where wm+wp+wn=1,

to normalized values [\C, [\j, and [\E, respectively.
The weights specify the importance of each
comparison relative to others. Thus, we rewrite Eq. 4
by including the weights as follows: m � ∑ -o([\D.(��',&,)� Eq. 5

6. Exploring Solution Space under

Uncertainty

The ability to compare architectures under uncertainty
provides the foundation for architectural exploration
and decision making in early design. In this section,
we describe four ways in which GuideArch helps with
this process.

6.1 Identifying Valid Architectures and

Critical Constraints

GuideArch allows the architect to identify the subset
of architectural solutions that are “valid” even when
there is uncertainty in the knowledge. An architecture
is valid, if it satisfies the constraints presented in
Section 4.4. An issue is how to check the property
constraints, since they involve comparing the crisp

value (i.e., Thd) with a fuzzy value (i.e.,
+&�
����).
Consider for instance a constraint for the Cost of
realizing an architecture to be less than $10,000.
Determining whether this constraint is satisfied for a
candidate architecture is challenged by the fact that the
Cost of realizing that architecture is a fuzzy value.

Constraints, including those specified on
properties, are intended to be treated as absolute
limitations, and thus we consider the worst case,

which occurs at the pessimistic point (i.e.,
&;�. Thus,
we rewrite the property constraints from Section 4.4 as
follows: �$ � #' * : U��& M
&;�
����

�$ � #'():
&;�
���� M U��&
Comparing the threshold with the worst case

ensures an architectural candidate is valid, even when
the negative consequence of uncertainty takes effect.
The ability to identify valid architectures is not only
going to ensure the architect does not pick a solution
that is invalid, but can also be used to provide useful
statistical measures. For instance, GuideArch provides
the ratio of architectures comprising the solution space
that are disqualified by each constraint. This allows
the architect to identify both the limiting and loose
constraints. Such information is crucial, as it allows
the architect to explore the trade-offs in tightening or
relaxing some of those constraints. If certain trade-offs
are deemed appropriate, they could be communicated
to other stakeholders, which could result in revising
the constraints through appropriate negotiations.

6.2 Finding the Optimal Architecture

GuideArch could also be used to find the optimal
architecture under uncertainty. An architecture is
optimal for a given problem if it achieves the

minimum value of m and satisfies the three types of
constraints described in Section 4.5. We define this as
a linear programming problem:
�a46R� /01�8`� m /01
Subject to: �
 �
���: � M ∏ �NN � 	O&� � �
 �
���: � ∑ �NN� ST)� � � 0 �$ � #' *: U��& M
&;�
���� �$ � #'():
&:�
���� M U��&
Here, the solver uses the approach described in
Section 5 to compare the total value of properties
between the candidate solutions. The architecture with

the minimum value of m (recall Figure 3 and Eq. 5) is
the one that achieves the best combination of small
anticipated value, small negative consequence of
uncertainty, and large positive consequence of
uncertainty.

6.3 Ranking the Architectures

The ability to find the optimal solution is
complemented with the ability to see a ranking of
candidates in GuideArch. There are several reasons for
this. First of all, architects bring valuable domain
expertise and experience that cannot be represented in
existing tools, including GuideArch. Thus, it is
possible that an architect may select an architecture
that is slightly worse than optimal for reasons that are
not modeled in the tool. Reasons for such decisions
could range from unfounded biases (e.g., preference
not to purchase products from a particular company)
to technical intuitions (e.g., emerging standards).

 10

Secondly, the ability to see the top ranked candidates
allows the architect to gain insights into why
GuideArch selected a solution as optimal. In other
words, such rankings could help the architect gain a
better understanding of the trade-offs, and increase her
confidence in the analysis.

GuideArch uses the ability to compare
architectures, described in Section 5, to also rank them

from best (top) to worst (bottom). We let p represent
the ranking of top t architectures as an ordered list: p � q
���V , . . ,
���st where
���(� �
 �
@�
���(� p: �� � �
 � � u p:
+��� M
+�
���(�A �
@�
���(,
���v � p, 6 M w:
+�
���(� M
+�
���v�A

Value of t is a configurable threshold in GuideArch.
Here, candidates with better (lower) range appear at
the top.

6.4 Identifying and Ranking the Critical

Decisions

Modern software processes adopt an iterative process,
where in each iteration the decisions made in the
previous cycles are assessed and risks are mitigated
[19]. Generally, it is desirable to resolve decisions that
pose a high risk early on, and architecture is typically
considered to provide the appropriate level of
abstraction to enable such analysis [19].

GuideArch could help the architect identify
decisions that are likely to be most critical to the
success of a software engineering project, and thus
pose the greatest risk. The underlying insight is that a
decision is likely to be crucial if it satisfies the
following two criteria: (1) the alternatives selected
from that decision have a large impact on the
properties of architectures ranked at the top; and (2)
the impact of those alternatives is highly uncertain.
This is reasonable, since the architect is likely to select
one of the top ranked architectures. Moreover,
decisions with alternatives that have both large and
uncertain impact on properties of the top ranked
architectures introduce more error than others.

We quantify these two criteria as follows:
(1) Impact on system properties: We quantify the

impact of an alternative
 � � on the properties as
follows:

xy � ∑ @<& z{j,GCGHjA&�BCDE F ∑ @<& z{j,GCGHjA&�BCGH

We then define the impact of a decision � � � on
the properties of the top t ranked architectures as
follows: xy� � ∑ xy /|V:s , where
 �
���/ �
 � ��

The above approach gives equal weight to the
choices made in the ranked architectures. However,
since architect is more likely to select from

architectures that are ranked at the top, over those that
are ranked at the bottom, we discount the influence
based on the order. Thus, we reformulate the above
equation by incorporating a logarithmic decay to
discount the influence of alternatives as we traverse
from the top to bottom of ranked architectures: xy� � ∑ -xy J}~/./|V:s , where � is the decay factor
The larger �, the more emphasis is placed on the
alternatives appearing at the top of the ranking.

(2) Uncertainty in the impact: Unlike the ranking
of architectural candidates, where we were interested
in the best solutions, here we are interested in finding
the most critical (worst) decisions. We use the fuzzy
comparison operator to rank the decisions from worst

(top) to best (bottom). We let � represent the ranking
of n most critical decisions as an ordered list: � � q�V, . . , �)t where �(� � � ���(� �: �� � � �� u �: xy0 Z xy�D� � ���(, �v � �, 6 M w: xy�D Z xy��)

The top ranked decisions are good candidates to be
investigated further to mitigate risk. Based on this
information, the architect may take a number of
actions, such as expanding the critical decisions by
allowing for additional alternatives, or simply reduce
the uncertainty by investing resources and time (e.g.,
prototyping) to develop a better understanding of the
alternatives’ impact.

7. Evaluation

GuideArch was used by a team of engineers and
academics to explore the architectural space of the
EDS project (recall Section 2). In this section, we
describe some of the salient outcomes of this study, as
well as the results obtained through additional
experiments in the laboratory.

7.1 Critical Constraints

One of the early requirements posed by client in EDS
was to keep the cost of a single handheld device
(which includes the cost of the hardware and off-the-
shelf software packages) below $750. While the team
already had a hunch that the requirement was overly
constraining, there was no method of establishing the
extent of it. In particular, since the impact of most
alternatives on properties was uncertain, the team had
no way of knowing exactly what portion of the
architectural space would be disqualified by such a
constraint. Using the technique described in Section
 6.1, GuideArch was able to show that this constraint
alone disqualifies 5,040 candidates out of 6,912
potential solutions. This allowed the stakeholders to
obtain a quantitative, yet intuitive, assessment of the

 11

cost constraint on the choices. In a series of
negotiations the stakeholders agreed to relax the
constraint by increasing the limit to $1,000. This
increased the number of valid architectures, which in
turn resulted in finding better candidates. However,
even the relaxed constraint disqualified 4,032
architectures and remained as the critical constraint in
the project. In the remainder of project and
experiments reported here, the relaxed cost constraint
was used.

7.2 Ranking

Figure 4 shows the triangular fuzzy value of 10 sample
EDS architectures calculated by GuideArch. The
horizontal axis marks the architectures’ rankings.
TABLE II shows the selected alternatives for the
architectures in Figure 4. As you may recall from
Section 5, one architecture is better than another if it
has a lower zm and zn, and a larger zp. In EDS, we gave
equal weights to the satisfaction of each of those
conditions (i.e., wm=wn=wp=1/3). Looking at Figure 4
we can gain insights into the analysis performed by
GuideArch. For instance, 1st architecture, which is
picked as optimal by GuideArch, has the best

combination of three X values, i.e., it has a lower zm
and zn, and larger zp than the majority of
candidates. As a result, while 1st architecture may
be slightly inferior to some candidates with respect
to one of the three conditions, it achieves the best
set of trade-offs in total.

7.3 Optimal Architecture

Upon further analysis, we observed that the
traditional approaches would have selected the
486th candidate in Figure 4 as the optimal solution.
Recall from Section 2 that traditional approaches
do not consider uncertainty and only minimize the
anticipated value (i.e., zm). Comparing the
difference between 1st and 486th candidates sheds
light on the contributions of GuideArch. 486th

architecture achieves the lowest zm among all valid
architectures, including the 1st architecture. However,
486th architecture has a very large negative
consequence of uncertainty, which has been ignored
by the traditional approach. On the other hand,
GuideArch selects a solution that has a slightly
inferior zm but with a better range of uncertainty.

The difference between 1st and 486th architecture
could also be gleaned from the specific alternatives
selected by each approach. For instance, looking up
the two architectures in Tables II to find the selected
alternatives, and subsequently looking up the
alternatives in Table I, we can see that for the Chat

Protocol decision, GuideArch selects Openfire, while
traditional selects In house. Openfire is a COTS
implementation of the XMPP protocol, while In house
refers to the internal implementation of it. The EDS
team was less certain with the Response Time property
of In house, which had never been tested in large
deployments with many clients. Therefore, as shown
in Table I, In house had significantly larger pessimistic
value for its Response Time (200ms for In house
versus 70ms for Openfire). On the other hand, since
Openfire was not optimized for smartphones, it had a
slightly larger anticipated value for the Response Time
(40ms for In house versus 60ms for Openfire). As a
result, GuideArch selects Openfire, since it has a
better range, i.e., makes a small compromise on
anticipated value to prevent the large negative
consequence of uncertainty. On the other hand, the
traditional approach selects the solution with the best
anticipated value, and ignores the high possibility of
very bad Response Time.

7.4 Critical Decisions

GuideArch was also used to identify the critical
decisions. Figure 5a shows the estimated impact of

Figure 4. The triangular fuzzy value of 10 architectural

candidates in EDS.

TABLE II. THE ALTERNATIVES COMPRISING ARCHITECTURES
SHOWN IN FIGURE 4.

D
im

en
si

o
n

s

L
o
ca

ti
o

n
 F

in
d

in
g

H
a

rd
w

a
re

P
la

tf
o

rm

F
il

e
S

h
a
ri

n
g

P
a

ck
a
g

e

R
ep

o
rt

S
y

n
ch

ro
n

iz
a

ti
o

n

C
h

a
t

P
ro

to
co

l

M
a

p
 A

cc
es

s

C
o

n
n

ec
ti

v
it

y

D
a

ta
b

a
se

A
rc

h
it

ec
tu

ra
l

 S
ty

le

D
a

ta
 E

x
ch

a
n

g
e

fo
rm

a
t

Rank

1 2 1 2 1 1 3 1 1 3 3

2 2 1 2 1 1 3 1 1 3 1

3 2 1 1 1 1 3 1 1 3 3

10 2 2 2 1 1 3 1 1 3 1

20 2 2 2 1 1 3 1 1 3 2

30 2 1 1 1 2 3 1 1 3 1

100 2 1 1 1 1 3 1 2 3 1

200 2 1 2 2 1 3 4 1 2 2

300 2 1 2 1 1 1 1 2 1 2

486 2 2 1 1 2 3 4 1 2 3

 12

decisions (i.e., xy�) as well as the range of uncertainty
in those estimates, which as you may recall from
Section 6.4 determine their criticality. We can see
Location Finding is the most critical decision, since
(1) it has a large effect on the ranked architectures,
indicated by high y-axis position, and (2) has a very
large range of uncertainty, indicated by the span of the
arrow. In other words, if we use the fuzzy comparison

operator (recall Section 5), Location Finding’s xy� is
larger among all other decisions. The reason behind
this can be gleaned from Table I: both of Location

Finding’s alternatives (GPS and Radio Triangulation)
have a large and uncertain impact on two of the
properties with the highest priority (Battery Usage and
Response Time).

This analysis formed the first iteration of using
GuideArch. It helped the team identify the critical
decisions early on, and focus additional efforts on
them. As a result, the team came across an advanced
state-of-the-art variation of the traditional radio
triangulation [14] that presented the project with a new
alternative for Location Finding. Given that a
prototype of this solution had been developed,
evaluated, and published [14], the new alternative was
estimated to have significantly smaller Battery Usage,
faster Response Time, and smaller range of
uncertainty. GuideArch was applied to the revised
problem. Figure 5b shows the range of total value (i.e.,

the fuzzy value of
+) for the best candidate
architecture picked by GuideArch in this second

iteration, compared to the best candidate picked in the
first iteration. As Figure 5b shows, the introduction of
the new alternative (i.e., smart radio triangulation)
improved the total value of the optimal architecture
significantly.

7.5 Tuning GuideArch

In the EDS project we gave the same weight to the
three comparisons (i.e., wm=wn=wp=1/3). However,
recall from Section 5.3 that weights could be used to
tune GuideArch to be more conservative or bold in its
analysis. We performed a set of experiments on the
EDS model to assess the impact of weights on the
optimal architecture selected by GuideArch. Figure 6
shows the results executed in the model used in the
first iteration and before the introduction of additional
alternatives discussed in the previous section.

To allow for comparison, in Figure 6, we show the
result for the balanced weight assignment (i.e.,
[1/3,1/3,1/3]), which corresponds to the candidate
ranked 1st in Figure 4. Also note that when wm=1 and
wn=wp=0, GuideArch behaves exactly like the
traditional approach. Therefore, the optimal
architecture for that weight assignment in Figure 6
(i.e., [0,1,0]) is the same as candidate ranked 486th in
Figure 4. This is because the consequence of
uncertainty is ignored.

As expected, in the two experiments with high wn,
GuideArch selects a conservative solution, i.e., puts
more emphasis on minimizing the negative
consequence of uncertainty. In the two experiments
with high wp, GuideArch selects a risky solution, i.e.,
puts more emphasis on maximizing the positive
consequence of uncertainty. Both approaches come at
the cost of achieving mediocre anticipated total value.
It is important to note that no particular weight
assignment in Figure 6 is the best. We can envision
situations in which placing emphasis on one of the
comparisons may be more appropriate, which
GuideArch allows for naturally.

7.6 Performance Benchmark

Finding the optimal architecture in the EDS project
took 281ms. Fast response allowed the EDS team to
rapidly perform numerous “what if” scenario analyses
by making changes to the model. For a better
illustration of GuideArch’s performance, we
augmented our experience in EDS with benchmarks
depicted in Figure 7. Here we compare the execution
time of the traditional approach with that of
GuideArch on a PC with Intel® Core™ 2 Duo CPU
and 3.50 GB of RAM running Microsoft® Windows®
XP SP 3. It took GuideArch longer to find the optimal

Figure 6. The optimal architecture for different weight

assignments.

Figure 5. Critical decisions: (a) comparing the decisions

in the first iteration and (b) improvement in the optimal

architecture after revising the critical decision in the

subsequent iteration.

 13

solution, which is not surprising, since as you may
recall from Section 5.1, GuideArch requires 6

additional optimizations to calculate #^
 and 2^

value pairs for the three X values. Figure 7
corroborates this as the performance of GuideArch is
higher than the performance of traditional approach by
a constant factor of 7. While it takes longer to execute
GuideArch, we believe its performance to be
reasonably fast for most projects. It took 7.5 seconds
to find the optimal configuration in the largest
problem, consisting of 100 decisions and average of

20 alternatives per decision, for a total of 20V�� �1.2 � 10V�� possible combinations.

8. Related Work

Making architectural decisions is a problem that has
been studied from both design-time and run-time
perspectives. Here we discuss only those targeted at
design-time, since that has been the focus of our work:

• ArchDesigner [2] is a quality-driven approach to
find an optimal architecture that meets conflicting
stakeholders' quality goals. ArchDesigner uses
linear programming to find the optimal
architecture.

• CBAM [12] is a quantitative approach for
economic modeling of software engineering
decisions, which builds upon ATAM [6]. CBAM
provides the cost and benefit of different
architectural candidates.

• Cortellessa et al. dealt with the problem of COTS
selection in [7], which helps the architects decide
if a component should be purchased or developed
in house. They formulate this as an optimization
problem.

• ArcheOpterix [1] is a tool for optimizing an
embedded system’s architecture. It uses

evolutionary algorithms for multi-objective
optimization of such systems.

• In [15], we dealt with the problem of selecting a
deployment architecture (i.e., mapping of
components to hardware nodes), such that
multiple QoS objectives are maximized.
While many of the above approaches [12][2][15]

acknowledge the challenges posed by uncertainty,
none addresses it explicitly and in the form of a
mathematical framework for decision making.

A few approaches have considered uncertainty:

• Andreou and Papatheocharous [3] pass data from
past projects through Fuzzy Decision Trees to
build association rules that approximate the cost
of software.

• Palladio [4] uses information about components
comprising the architecture to derive analytical
models (e.g., Queueing Networks) and simulate
the system’s performance. Random variables are
used to specify uncertainty in service demands
and iterations.

[3][4] are complementary to GuideArch, as they could
be used to specify the range of cost and performance,
respectively. Unlike GuideArch, [3][4] neither
optimize a range of values, nor have the ability to
compare ranges of possible behaviors for different
architectures.

Finally, in [8], Doyle et al. present an approach to
compare alternative architectures, assuming the
availability of a probability distribution representing
the response time of each architecture. Instead of
fuzzy mathematics, they rely on extensive integration
to compare the probability distributions, which are
computationally expensive, making their approach
inapplicable to exploration of a large solution space.
Moreover, their approach is specific to response time.

9. Conclusion and Future Work

In any software project, early architectural decisions
represent some of the most important decisions
engineers ever make. Yet there is a lack of techniques
and tools for helping the engineers make those
decisions. We presented GuideArch, a novel
framework that guides the engineers in making the
best choices possible under uncertainty. It provides a
combination of capabilities, such as ranking of the
architectures, finding the optimal, and identifying the
critical decisions, that collectively help with the
exploration of the solution space. GuideArch is
tunable, allowing the engineer to set the analysis to be
as conservative as desired.

While thorough evaluation of GuideArch in a case
study as well as the laboratory experiments helped us
to experience its benefits firsthand, it also suggested

Figure 7. Performance of GuideArch compared to

traditional approaches. |D| is the number of decisions

and |A|/|D| is the average number of alternatives per

decision in the problem.

 14

several areas of future improvement. One area of
future work is to extend the current model from a
unified stakeholder perspective to a multiple
stakeholder perspective. In other words, we currently
assume all stakeholders have agreed on the estimated
impact of alternatives on properties and their
priorities. However, this may not always be the case,
presenting GuideArch with yet another source of
uncertainty. Another avenue of future work is to
extend GuideArch to the kinds of uncertainty
discussed in Section 4.6.

10. Acknowledgments

This work is partially supported by grant CCF-

0820060 from the National Science Foundation. We

want to thank Mr. Ehsan Kouroshfar and Mr. Thabet

Kaczem for their helps.

11. References

[1] Aleti, A., Bjornander, S., Grunske, L. and

Meedeniya, I. 2009. ArcheOpterix: An
extendable tool for architecture optimization of
AADL models. ICSE Workshop on Model-

Based Methodologies for Pervasive and

Embedded Software (Vancouver - Canada, May.
2009), 61–71.

[2] Al-Naeem, T., Gorton, I., Babar, M.A., Rabhi,
F. and Benatallah, B. 2005. A quality-driven
systematic approach for architecting distributed
software applications. Int’l Conf. on Software

Engineering (St. Louis, Missouri, May. 2005),
244–253.

[3] Andreou, A.S. and Papatheocharous, E. 2008.
Software Cost Estimation using Fuzzy Decision
Trees. Int’l Conf on Automated Software

Engineering (L’Aquila, Italy, Sep. 2008), 371–
374.

[4] Becker, S., Koziolek, H. and Reussner, R. 2009.
The Palladio component model for model-
driven performance prediction. J. Syst. Softw.
82, 1 (Jan. 2009), 3-22.

[5] Brooks, F.P. 1995. The Mythical Man-Month:

Essays on Software Engineering, Second

Edition. Addison-Wesley Professional.
[6] Clements, P., Kazman, R. and Klein, M. 2001.

Evaluating Software Architectures: Methods

and Case Studies. Addison-Wesley.
[7] Cortellessa, V., Marinelli, F. and Potena, P.

2008. An optimization framework for “build-or-
buy” decisions in software architecture.

Computers & Operations Research. 35, 10 (Oct.
2008), 3090-3106.

[8] Doyle, G.S. 2010. A Methodology for Making

Early Comparative Architecture Performance

Evaluations. PhD Dissertation, George Mason
University.

[9] Dubois, D., Prade, H. and Sandri, S. 1993. On
possibility/probability transformations. IFSA

Conference (Seoul, Korea, Jul. 1993).
[10] Facchinetti, G. and Ghiselli Ricci, R. 2004. A

characterization of a general class of ranking
functions on triangular fuzzy numbers. Fuzzy

Sets and Systems. 146, 2 (Sep. 2004), 297-312.
[11] Garlan, D. 2010. Software Engineering in an

Uncertain World. FSE/SDP Wrkshp. on the

Future of Software Engineering Research
(Santa Fe, New Mexico, Nov. 2010).

[12] Kazman, R., Asundi, J. and Klein, M. 2001.
Quantifying the costs and benefits of
architectural decisions. Int’l Conf on Software

Engineering (Toronto, Canada, May. 2001),
297–306.

[13] Lai, Y.-J. and Hwang, C.-L. 1992. A new
approach to some possibilistic linear
programming problems. Fuzzy Sets Syst. 49, 2
(Jul. 1992), 121-133.

[14] Lin, K., Kansal, A., Lymberopoulos, D. and
Zhao, F. 2010. Energy-accuracy trade-off for
continuous mobile device location. Proceedings

of the 8th international conference on Mobile

systems, applications, and services (San
Francisco, California, Jun. 2010), 285–298.

[15] Malek, S., Medvidovic, N. and Mikic-Rakic, M.
An Extensible Framework for Improving a
Distributed Software System’s Deployment
Architecture. accepted to appear in IEEE Trans.

Softw. Eng.
[16] Malek, S., Mikic-Rakic, M. and Medvidovic, N.

2005. A Style-Aware Architectural Middleware
for Resource-Constrained, Distributed Systems.
IEEE Trans. Softw. Eng. 31, 3 (Mar. 2005), 256-
272.

[17] Meier, R. 2008. Professional Android

application development. Wiley-India.
[18] Open Handset Alliance:

http://www.openhandsetalliance.com/.
[19] Yang, Y. and Boehm, B. 2007. Improving

process decisions in COTS-based development
via risk-based prioritization. Software Process:

Improvement and Practice. 12, 5 (Sep. 2007),
449-460.

[20] Zadeh, L.A. 1999. Fuzzy sets as a basis for a
theory of possibility. Fuzzy Sets Syst. 100, (Jun.
1999), 9-34.

[21] Zimmermann, H.-J. 2001. Fuzzy Set Theory and

its Applications (4th Edition). Springer.

