
 1

A Whitebox Approach for Automated Security Testing of

Android Applications on the Cloud

Riyadh Mahmood, Naeem Esfahani, Thabet Kacem, Nariman Mirzaei, Sam Malek, Angelos Stavrou

Computer Science Department

George Mason University

{rmahmoo2, nesfaha2, tkacem, nmirzaei, smalek, astavrou}@gmu.edu

Abstract— By changing the way software is delivered to end-

users, markets for mobile apps create a false sense of security:

apps are downloaded from a market that can potentially be

regulated. In practice, this is far from truth and instead, there

has been evidence that security is not one of the primary design

tenets for the mobile app stores. Recent studies have indicated

mobile markets are harboring apps that are either malicious or

vulnerable leading to compromises of millions of devices. The

key technical obstacle for the organizations overseeing these

markets is the lack of practical and automated mechanisms to

assess the security of mobile apps, given that thousands of apps

are added and updated on a daily basis. In this paper, we

provide an overview of a multi-faceted project targeted at

automatically testing the security and robustness of Android

apps in a scalable manner. We describe an Android-specific

program analysis technique capable of generating a large

number of test cases for fuzzing an app, as well as a test bed

that given the generated test cases, executes them in parallel on

numerous emulated Androids running on the cloud.

Keywords-Android; Security Testing; Program Analysis

I. INTRODUCTION

Mobile App markets are creating a fundamental
paradigm shift in the way software is delivered to the end
users. The benefits of this software supply model are plenty,
including the ability to rapidly and effectively acquire,
introduce, maintain, and enhance software used by the
consumers. By providing a medium for reaching a large
consumer market at a nominal cost, app markets have
leveled the software development field, allowing small
entrepreneurs to compete head-to-head against prominent
software development companies. The result of this has been
an explosive growth in the number of new apps for
platforms, such as Mac, Android, and iPhone, that have
embraced this model.

This paradigm shift, however, has given rise to a new set
of security challenges. In parallel with the emergence of app
markets, we are witnessing an increase in the security threats
targeted at platforms that have embraced this paradigm. This
is nowhere more evident than in the Android market, where
many cases of apps infected with malwares and spywares
have been reported [1]. Numerous culprits are in play here,
and some are not even technical, such as the general lack of
an overseeing authority in the case of open markets and
inconsequential implication to those caught provisioning
applications with vulnerabilities or malicious capabilities.

From a technical standpoint, however, the key obstacle is
the lack of practical techniques to rapidly assess and test the

security of applications submitted to the market. Security
testing is generally a manual, expensive, and cumbersome
process. This is precisely the challenge that we have begun
to address through the development of a framework that aids
the analysts in testing the security of Android apps. The
framework is comprised of a tool-suite that given an app
automatically generates and executes numerous test cases,
and provides a report of uncovered security vulnerabilities to
the human analyst. We have focused our research on
Android as (1) it provides one of the most widely-used and at
the same time vulnerable app markets, (2) it dominates the
smartphone consumer market, and (3) it is open-source,
lending itself naturally for experimentation in the laboratory.

Security testing is a notoriously difficult task. This is
partly because unlike functional testing that aims to show a
software system complies with its specification, security
testing is a form of negative testing, i.e., showing that a
certain (often apriori unknown) behavior does not exist.

A form of security testing that does not require test case
specification or significant upfront effort is fuzz testing, or
simply fuzzing [2]. In short, fuzzing is a form of negative
testing that feeds malformed and unexpected input data to a
program with the objective of revealing security
vulnerabilities. Programs that are used to create and examine
fuzz tests are called fuzzers. Fuzzers have been employed in
the past by the hacking community as one of the
predominant ways of breaking into a system [2]. For
instance, an SMS protocol fuzzer [3] was recently shown to
be highly effective in finding severe security vulnerabilities
in all three major smartphone platforms. In the case of
Android, fuzzing found a security vulnerability triggered by
simply receiving a particular type of SMS message, which
not only kills the phone’s telephony process, but also kicks
the target device off the network [3].

Despite the individual success of fuzzing as a general
method of identifying vulnerabilities, fuzzing has
traditionally been used as a brute-force mechanism. There
has been a lack of sophisticated or guided techniques for fuzz
testing apps, in particular those targeted at smartphone
platforms. Using fuzzing for testing is generally a time
consuming and computationally expensive process, as the
space of possible inputs to any real-world program is often
unbounded. Existing fuzzing tools, such as Android’s
Monkey [4], generate purely random test case inputs, and
thus are often ineffective in practice.

In this paper, we are addressing these limitations by
developing a scalable approach for intelligent fuzz testing of
Android applications. Our approach scales in terms of code
size and number of test cases. We achieve that by leveraging

 2

the unprecedented computational power of cloud computing.
The framework employes numerous heuristics and software
analysis techniques to intelligently guide the generation of
test cases aiming to boost the likelihood of discovering
vulnerabilities. The proposed testing mechanisms empower
the broader app market community to harness the immense
computational power of cloud together with novel automated
testing techniques to quickly, accurately, and cheaply find
security vulnerabilities.

This paper is organized as follows. Section II provides a
background on Android and its security model. Section III
outlines an Android app that is used for illustrating the
research. Section IV provides an overview of our approach,
while Sections V to IX provide the details. The paper
concludes with an overview of the related research in Section
X and a discussion of our future work in Section XI.

II. BACKGROUND

In 2008, Google and Open Handset Alliance launched
Android Platform for mobile devices. Android is a
comprehensive software framework for mobile
communication devices including smart-phones and PDAs.

A. Android Architecture and its Security Model

The Android framework includes a full Linux operating
system based on the ARM processor, system libraries,
middleware, and a suite of pre-installed applications. Google
Android platform is based on Dalvik Virtual Machine (DVM)
[5] for executing and containing programs written in Java.
Android also comes with an application framework, which
provides a platform for application development and
includes services for building GUI applications, data access,
and other component types. The framework is designed to
simplify the reuse and integration of components.
Applications publish their capabilities and others can use
them, subject to security constraints described further below.

Android enforces its application security mechanisms at
two levels. The first level of security is achieved by forcing
each application to execute within its own secure sandbox,
which sets Android apart from other operating systems
present in the market. Thus, an instance of an application is
isolated from other applications in the memory.

A second level of security enforcement is achieved
through Android’s permission based security model. Android
uses Mandatory Access Control to regulate access to
applications and phone resources based on access permission
policies. These policies are implemented in the form of
permission labels that are assigned to components and
applications. The permissions granted to each application are
defined in its mandatory manifest file. The manifest file
values are bound to the application at compile time and
cannot be changed afterwards unless the application is
recompiled.

Android’s security mechanisms have been breached
numerous times in the past [1]. In general, once the user
installs an application infected with a malware, not much
protection can be achieved through Android’s standard
security mechanisms. Since the access permissions in

Android are coarse-grained (i.e., high-level all or nothing
permissions), a malware embedded in an application can use
all of the access permissions granted to the host application.
A malicious program can also quickly exhaust, or expose to
remote attacks, important system resources. At the same
time, unlike desktop computing, it is hard to employ a large,
resource intensive program (e.g., Antivirus) to detect,
monitor, and control malicious software. Finally, malwares
and attackers often leverage bad implementation choices and
unintentional bugs to realize their objectives [1].

B. Android Application Building Blocks

As mentioned earlier, each Android application has a
mandatory manifest file. This is a required XML file for
every application and provides essential information for
managing the life cycle of an application to the Android
platform. Examples of the kinds of information included in a
manifest file are descriptions of the application’s Activities,
Services, Broadcast Receivers, and Content Providers
among other architectural and configuration properties.

An Activity is a screen that is presented to the user and
contains a set of layouts (e.g., LinearLayout that organizes
items within the screen horizontally or vertically). The
layouts contain GUI controls, known as view widgets (e.g.,
TextView for viewing text and EditText for text inputs). The
layouts and its controls are usually described in a
configuration XML file with each layout and control having
a unique identifier. A Service is a component that runs in the
background and performs long running tasks, such as
playing music. Unlike an Activity, a Service does not present
the user with a screen for interaction. A Content Provider
manages structured data stored on the file system or
database, such as contact information. A Broadcast Receiver
responds to system wide announcement messages, such as
the screen has turned off or the battery is low. Activities,
Services, and Broadcast Receivers are activated via Intent
messages. An Intent message is an event for an action to be
performed along with the data that supports that action.
Intent messaging allows for late run-time binding between
components, where the calls are not explicit in the code,
rather connected through event messaging.

Activity and Service are required to follow prespecified
lifecycles [6]. For instance, Figure 1 shows the events in the
lifecycle of an Activity: onCreate(), onStart(), onResume(),
onPause(), onStop(), onRestart(), and onDestroy(). These
lifecycle events play an important role in our research as
explained later.

In addition to these components, a typical application
utilizes many resources. These resources include animation
files, graphics files, layout files, menu files, string constants,
styles for user interface controls. Most of these are described
using XML files. An example, as mentioned before are
layouts. The layout XML files define the architecture of user
interface controls that are used by Activities. The resources
each have a unique identifier that is used to distinguish and
get a reference to them in the application code.

III. ILLUSTRATIVE EXAMPLE

 3

We use a subset of a software system, called Emergency
Deployment System (EDS) [7], to illustrate our research.
EDS is a system previously developed in collaboration with
a government agency for the deployment of personnel in
emergency response scenarios. EDS is intended to allow a
search and rescue crew to share and obtain an assessment of
the situation in real-time (e.g., interactive overlay on maps),
coordinate with one another (e.g., send reports, chat, and
share video streams), and engage the headquarters (e.g.,
request resources).

EDS has several interrelated apps. One of them is a
Driving Direction app that can be used to calculate off-road
driving directions between two geographic points, while
considering objectives such as distance, time, and safety.
Figure 3a depicts the GUI for this app. This screen has four
input text boxes and three buttons. The input boxes are for
latitude/longitude pair and the buttons for alternative ways of
computing the directions. The latitude/longitude coordinates
can be typed in or selected from a map. The resulting turn-
by-turn directions are
shown in a separate
text box, and
optionally displayed
on a map.

IV. APPROACH

OVERVIEW

Figure 2 illustrates
an overview of our
approach. The parts of
the approach depicted

within a dotted bubble run on a cloud platform to allow for
the execution of large number of test cases on many
instances of a given application.

The input to our framework is an Android application
package file (APK). APKs are Java bytecode packages used
to distribute and install Android apps. If the source code is
not readily available, we first reverse engineer the APK file
using one of the available tools for this purpose (e.g., apktool
[8], dex2jar [9], smali [10], and dedexer [11]). We then
leverage JD-GUI [12] for decompiling the Java class files to
obtain the source files.

The first step is to discover the app’s Input Surface,
which corresponds to all the ways in which an application
can be initiated or accessed. We use MoDisco [13] to parse
the source code we obtained directly or via decompilation of
the bytecode. In addition, we process the resources and
configuration information including the manifest file. From
the generated data, we automatically construct two models of
the app: Call Graph Model and Architectural Model. We
base our analysis on these two models. The Call Graph
Model represents all possible method invocation sequences
(execution traces) within an application. The Architectural
Model represents the application’s architecture and user
interface layout constructed from the meta-data associated
with Android apps (i.e., recall manifest and layout XML files
from Section II).

The Test Case Generator uses these models together with
the Android specifications (for GUI controls, widgets, APIs,
etc.) and template Android test case skeletons to generate test
cases. A test case template is a skeleton Java file that
contains the common static portions of a test case. For
example, the JUnit methods such as setUp() and tearDown()
come standard as part of the template.

Following the generation of test cases, the Test Execution
Environment is activated to simultaneously execute the tests
on numerous instances of the same application. For
scalability, we harness the parallelism of a cloud-based
system to execute the tests on virtual nodes running the
Android Emulator. In addition to code coverage, several
other Android-specific Monitoring Facilities such as Intent
Sniffer [14] are instantiated and deployed to collect runtime
data as tests execute. These monitoring facilities record
program behavior and errors (e.g., crashes, exceptions,
access violations, resource thrashing) that arise during the
testing in the Output Repository.

 The Exception Analyzer engine then investigates the

Figure 2. Overview of the approach. Components contained in the dotted bubble execute in parallel on the cloud.

Figure 1. Lifecycle of Activity in Android from [6].

 4

Output Repository to correlate the executed tests cases to the
reported issues, and thus potential security vulnerabilities.
Moreover, the Exception Analyzer engine prunes the
collected data to filter any redundancy, since the same
vulnerability may be encountered by multiple test cases. It
also looks for anomalous behavior, such as performance
degradations, which may also indicate vulnerabilities (e.g.,
an input that could instigate a denial of service attack).

V. MODELS OF APP

As discussed in Section IV, our approach leverages two
types of models for generating the test cases. Figure 3
depicts an example of the models that are automatically
extracted for the Driving Direction app. The Architectural
Model, partially depicted in Figure 3b, is generated by
combining and correlating information containted in the
configuration files and meta-data included in Android APK
(i.e., manifest and layout XML files). Essentially, this model
represents the app’s architecture extracted from its
configuration and resource files.

In Figure 3b, we use stereotypes to classify the different
components types. Activity and Service are shown in orange
rectangles, whereas Intent is shown in dark orange circles.
Resources such as Layout, Value, and Drawable are shown
in light orange rectangles. An example in each is shown
using a triple tuple {Classification, Type, Instance}. For
example, a Layout could be an EditText control with
identifier latOneId. All of the resources used by an Activity
or Service are contained within it. The Intent messaging
between Activities and Services are represented by the dotted
lines with the arrowhead showing the direction. For
example, the Driving Directions Activity sends an Intent
called SOLVE to the Route Solver Service.

Initially, when the Architectural Model is built, the
associations between Layouts and Activities are not known
since they are set in code and are not present in the
configuration files. To extract these associations, we update
this model as described in the next section to associate the
Layouts of an Activity. Moreover, we parse the app’s source
code using MoDisco [13] and extract all of the method
invocation sequences. We use this information to derive the
app’s Call Graph Model as shown in Figure 3c. The Call
Graph Model contains a set of call trees showing the

different possible invocation sequences within a given
application. Each yellow box in Figure 3c represents a
method, and the lines represent the sequence of invocations.
In Tree 1, the DirectionsActivity’s onCreate() method is
called by the Android system, and it sets the layout of the
Activity using a unique identifier reference. Then it finds
each button using the button’s identifiers and attaches a click
listener for the button. Tree 2 begins on the event of a button
click. It calculates the appropriate driving directions and sets
the output text. The link between Tree 1 and Tree 2 is
implicit, and hence, shown as a dotted arrow. Initially this
link is not present in the model; it is updated as described in
the next section.

Notice that the controls within the application are
referenced across the models in Figure 3. For example,
“From Lat” input box in Figure 3a is listed as a layout
control with latOneId identifier in Figure 3b and accessed
using this id in Tree 2 of Figure 3c.

VI. DISCOVERING THE INPUT SURFACE

In order to automatically perform input fuzzing of an
app, we need to discover its input surface. We have
developed a technique for automatically identifying the ways
in which an Android app can be engaged as described next.

First, we identify the ways in which an app can be
started. From the Android specification, we know that the
main Activity launches when an app starts. We resolve this
using our Architectural Model, which shows the Intent
messages that each Activity is interested in receiving and
responding. As seen in Figure 3b, in the case of Driving
Direction app, the main Activity is DirectionsActivity that
handles the MAIN Intent. Android specification also tells us
that onCreate() method of the main Activity is the starting
point in the Call Graph Model (see Tree 1 in Figure 3c).

Second, we need to determine how to navigate within the
app to determine all the ways in which it can receive GUI
inputs, as well as how it resumes, receives system
notifications, and starts a Service. Unlike Activity, which
only accepts GUI inputs, Services may receive inputs from
other sources, which are also part of the input surface.

To resolve these, we use the Call Graph Model described
in the previous section. The root node of each tree is a
method call that no other part of the application logic

Figure 3. Driving direction app: (a) screen shot of the app, (b) subset of the Architectural Model, and (c) subset of the Call Graph Model.

 5

explicitly calls. Recall from Figure 1 that the lifecycle
methods are called by the Android framework only. When
these lifecycle methods are overridden in an app’s
implementation, they form the root nodes of that app’s Call
Graph Model. Similarly, the event methods of a Service,
onCreate() and onBind() for example, would be root nodes.
Some of these root nodes are the initiating points, where
input may be supplied to the app from within or outside.

Additionally, the controls on an Activity have handlers
for their events. For example, a Button often has a click
event associated with it. This event is handled by a class that
implements the OnClickListener interface and overrides the
onClick() method. We expect these sorts of handlers to be in
the root nodes of our call trees as well, since Android is
event driven and the event handlers are called by the Android
system as opposed to the application logic. For instance, as
depicted in Figure 3c, we see that Tree 1’s root is the
onCreate() event handler, and Tree 2’s root node is the
onClick() event handler.

From this point, we need to identify two additional
attributes. We need to resolve what layout/view is being used
by each Activity, since there can be many Activities with
many layout XML files and their respective controls.
Secondly, we also need to be able to link the implicit calls
between the trees (recall the dotted arrow in Figure 3c).

In order to resolve this information, we traverse the call
graph starting with the onCreate() root node of the main
Activity and look for what layout is used. From the Android
specification, we know this is achieved by calling the
setContentView() method and passing it a reference identifier
that describes the layout and controls. For instance, in the
Driving Direction app, the view is set to the Layout with
identifier layout.main (Figure 3c). Since this was set in the
DirectionsActivity, we associate this Activity with this Layout
in the Architectural Model. This means that the layout and
controls identified in this way are those that get rendered on
the screen when the corresponding Activity runs.

Finally, we continue down the graph and identify implicit
method calls in order to link the different trees. We know
that the links would have to be to other root nodes of trees,
and achieved through setting event handlers. For example,

system event handlers that handle notification events, such as
when a call is received, network is disconnected, or the
battery is running low. As trees are linked and connected, we
traverse them in a similar fashion. By doing so, we are able
to connect the entire call graph of the application, from
beginning to end. Both the Architectural Model and the Call
Graph Model are updated with the newly found information.
Using this algorithm we can discover all the ways an app can
be initiated, as well as the inputs it can receive.

VII. TEST CASE GENERATION

Now that the controls, their input value domain, the
events, and their handlers have been inferred, the next step is
to generate test cases for execution. We take a test case
template, substitute our inferred information, and output the
result as a Java file. Most of the generated text in the file is
from the template, while the dynamic parts are replaced with
the inferred information. For example, the class name is
replaced with activity under test (e.g., DirectionsActivity),
and the inputs are also generated as follows.

For the test cases, our goal is to obtain sufficient code
coverage, while generating inputs with security implications,
e.g., an input that makes an application unavailable or violate
access permissions. We attempt to generate our inputs so that
we start with the first Activity’s root node and traverse the
tree, including any implicit connections, in a recursive
manner. We monitor our code coverage by using EMMA
[15], an open source toolkit that monitors and reports Java
code coverage. By comparing the stack-trace reports
generated by EMMA with the Call Graph Model, we can
obtain an accurate assessment of code coverage.

We iteratively employ various fuzzers in order to
generate and improve the inputs. The initial input generation
for each fuzzer is based on using the Android specifications
for each control and includes commonly employed rules,
such as boundary values, very small or large values, special
characters, empty values, etc. The valid input domain for an
interface is derived by checking the specifications of a
control. For example, we can tell whether the input domain
of a text box is numerical, text, etc by referencing its
specification. Based on the input domain, we employ the
correct fuzzer. For instance, a fuzzer for numerical inputs
starts off with negative numbers, zero, large values, and so
on. In the case of text inputs, the text fuzzer generates null
values, special characters, UTF characters, etc.

We refine the inputs by using an iterative strategy, where
we run test cases in iterations. We assess the depth of the call
graph that a test case was able to penetrate. In the next
iteration, we revise the inputs in one direction (lower/higher
or negative/positive) and repeat the process. This way we are
able to observe if we are obtaining coverage in the parts of
the code that have not been tested.

As part of our ongoing activity, we are developing more
sophisticated input generation algorithms, which are further
discussed in Section XI. But even with the current approach
we have been very successful at generating a very large
number of test cases, achieving substantial code coverage,
and detecting real vulnerabilities.

public class DirectionsTest extends

 ActivityInstrumentationTestCase2<DirectionsActivity>

{

 private Solo solo;

 public DirectionsTest() {

 super("edu.gmu.android", DirectionsActivity.class);}

 public void setUp() throws Exception {

 solo = new Solo(getInstrumentation(), getActivity());}

 public void testDirections() throws Exception {

 solo.enterText(0, "38.95");

 solo.enterText(1, "77.46");

 solo.enterText(2, "38.95");

 solo.enterText(3, "77.46");

 solo.clickOnButton("Safest"); }

 public void tearDown() throws Exception {

 solo.finishOpenedActivities(); }

}

Listing 1. Sample auto generated test case.

 6

These test cases are stored inside of a test case repository
database as shown in Figure 2. Currently, the generated test
cases leverage the Robotium [16] framework. It is a testing
framework built on Android’s JUnit testing suite that
facilitates automated testing.

As an example, Listing 1 shows one of the many
Robotium test cases automatically generated using our
approach for the Driving Direction app. The name of the test
case is DirectionsTest and it extends
ActivityInstrumentationTestCase2, an Android Activity
testing class supplied by the Android testing framework,
which in turns extends from JUnit’s TestCase class. JUnit’s
setup() and tearDown() methods are overridden to set up and
finalize the Activities being tested. The test case has the
Robotium’s Solo object that is used to interact with the
application, such as sending inputs. Essentially Solo mimics
the human user of the app. Any method that starts with the
word “test” is run when the test case executes. The generated
testDirections() method uses the Solo instance to enter four
numbers (two pairs of lat/long) in the input text boxes and
then clicks on the Safest button. The input text is entered by
using the index of the input field.

In this test, note that both pairs of lat/long are set to the
same value. In fact, this particular input along with the Safest
combination exposed a bug in the routing algorithm: a divide
by zero exception. The result of running this test case on the
emulator is shown in Figure 4a. The integer divide by zero
exception makes the application unavailable, thus making
this test case a success for exposing a potential vulnerability.

VIII. TEST EXECUTION ENVIRONMENT

Fuzzing usually requires the execution of a large number
of tests. This is challenging on both traditional desktops as
well smartphones due to the limitation of resources and the
length of time it takes to execute a large set of test cases. To
mitigate this issue, we have developed a novel technique to
execute the tests in parallel and on the cloud. This allows us
to seamlessly scale up and down as necessary.

We have set up an instance of Amazon EC2 virtual
server running Windows Server 2008, and configured it with
Java SDK, Android SDK, Android Virtual Device, and a
custom test execution manager engine developed by us. The
execution manager is responsible for polling the test
repository and running the test cases on its host environment.
For each test, it launches the emulator, installs
the app, and installs and executes the test. It is
also responsible for persisting all results, along
with log and monitor data to the output
repository. We created a virtual machine image
from our base machine configured in this way
to be replicated on demand.

In order to execute the tests cases in
parallel, we launch a set number of virtual node
instances, built using our image template and
using Amazon’s EC2 API. The execution
manager on each instance polls our test case
repository database and executes the tests. As
an example, a batch execution output of Listing
1 is shown in Figure 4b.

Using the above setup, we were able to run 1,000 test
cases for the suite of apps shipped with EDS in less than 25
minutes by using 100 parallel instances (already running)
each processing 10 test cases. The same test cases took over
77 hours to complete on a single workstation executing the
tests sequentially. Note that the reported times are not just
the execution time of tests, but also the time associated with
loading the Android emulator, test setup, and clean up.

IX. TEST CASE RESULTS ANALYSIS

Currently, we categorize the observed/logged output
information into Interface, Interaction, Permissions, and
Resources types. Interface exceptions are caused by direct
inputs at the surface, usually to GUI controls. Interactions
exceptions are a result of communication failures with other
components within the application or with external
applications. Permissions exceptions are a result of access
violations, such as the application attempting to access
components or system APIs that it explicitly has not
requested. Resources exceptions are caused by abnormal
system usage causing resource depletion, unavailability, or
certain operation to time out.

Furthermore, we collect various attributes for each
exception such as the exact Java exception type and the
number of such exceptions, whether it was checked or
unchecked, and the Android system APIs that threw the
exception. Example APIs are Networking, Telephony,
Internet, Media, etc. We correlate exceptions information
with the method, class, and package that contained the
exception and the frequency with which the respective code
block was exercised during the testing. This helps us identify
and cluster the most defective components of the application,
which could potentially aid with bug fix prioritization.

We also analyze the code coverage by checking method
invocations. A lack of depth in tree traversal or being unable
to go beyond surface trees indicate that input is being
filtered, application is branching early in different directions,
or that only a certain input range is allowed. For example, in
the Driving Direction app, we noticed that only a subset of
test cases were able to penetrate deep into Tree 2 in Figure
3c. This is because of input validation at the beginning of
Tree 2 that prevents the execution from going further unless
valid latitude and longitude coordinates are entered. Since
we knew all the nodes in Tree 2, we revised the inputs in the

Figure 4. Sample Test Case Result: (a) Manual (b) Batch

 7

subsequent iterations, and honed in on the inputs that could
penetrate into Tree 2, and eventually all the way to the end of
it. The iterative strategy helps us with obtaining greater code
coverage, while at the same time be able to reason about
valid input ranges for an app. This knowledge also helps us
with finding inputs that are outside of the valid range, thus
enabling negative test cases as well.

X. RELATED WORK

The Android development environment ships with a
powerful testing framework [17] that is built on top of JUnit.
Robolectric [18] is another framework that separates the test
cases from the device or emulator and provides the ability to
run them directly by referencing their library files. While
these frameworks automate the execution of the tests, the test
cases themselves still have to be written by the engineers.

Traditionally fuzz testing tools use random inputs, but
modern approaches utilize grammars for representing
mutations of possible inputs [19][20] or achieve white-box
fuzz testing using symbolic execution and dynamic test
generation [21]. SPIKE, Peach, File-Fuzz, Autodaf´e are
examples of fuzzers that support some form of grammar
representation. Applying exhaustive approaches are typically
not feasible due to the path explosion problem.

Our research is related to the approaches described in
[22][23] for testing Android apps. In [22], a crawling-based
approach that leverages completely random inputs is
proposed to generate unique test cases. [23] presents a
random approach for generating GUI tests and uses the
Android Monkey platform to execute them. We are
leveraging reverse engineering techniques to obtain the app’s
implementation, and use program analysis to derive the test
generation process. This sets us apart from these works that
employ black-box testing techniques. Moreover, these
approaches have neither targeted security issues, nor have
they considered the scalability implications of their solutions.

There has been a recent interest in using cloud to validate
and verify software. TaaS is an automated testing framework
that automates software testing as a service on the cloud
[24]. Cloud9 provides a cloud-based symbolic execution
engine [25]. Similarly, our framework is leveraging the
computation power of cloud to scale fuzz testing. Unlike
prior research, however, by targetting our framework to
Android, we are able to achieve significant automation.

XI. CONCLUDING REMARKS

We have presented a novel framework for automated
security testing of Android applications on the cloud. The
key contributions of our work are (1) a fully automated test
case generation, (2) iterative feedback loop to generate and
guide our input in an intelligent manner that ensures code
coverage and uncovers potential security defects, and (3)
highly scalable fuzzing by leveraging the cloud.

In our on going work, we are exploring two approaches
for improving the test case generation facet of our
framework. First, we are developing an evolutionary
algorithm for generating tests, as part of which we are
modeling the problem of testing an Android app as a genetic

problem and developing an appropriate fitness function to
evaluate the quality of test cases. Second, we are developing
an Android-specific symbolic execution engine for
automatically generating test cases. We are extending Java
Pathfinder, which is capable of symbolically executing pure
Java code, to work on Android. In addition, we are creating a
graphical reporting environment that would allow the
security analyst to visually explore the results of the testing,
and in particular obtain metrics (e.g., achieved code
coverage, bugs per KSLOC) that could then be used for
making decisions as to the overall security and robustness.

ACKNOWLEDGMENTS

This research is supported by grant D11AP00282 from
Defense Advanced Research Projects Agency.

REFERENCES

[1] A. Shabtai, et al., “Google Android: A comprehensive security

assessment,” Security & Privacy, IEEE, 8(2), pp. 35–44, 2010.

[2] A. Takanen, J. DeMott, and C. Miller, Fuzzing for software security

testing and quality assurance. Artech House Publishers, 2008.

[3] C. Miller and C. Mulliner, “Fuzzing the Phone in your Phone,” in

Black Hat Technical Security Conference USA, 2009.

[4] “Android Monkey.” [Online]. Available:

http://developer.android.com/guide/developing/tools/monkey.html.

[5] “Dalvik - Code and documentation from Android’s VM team.”

[Online]. Available: http://code.google.com/p/dalvik/.

[6] “Android Developers Guide.” [Online]. Available:

http://developer.android.com/guide/topics/fundamentals.html.

[7] S. Malek, et al., “A style-aware architectural middleware for

resource-constrained, distributed systems,” Software Engineering,

IEEE Transactions on, vol. 31, no. 3, pp. 256–272, 2005.

[8] “Apktool.” [Online]. Available: http://code.google.com/p/android-

apktool/.

[9] “Dex2jar.” [Online]. Available: http://code.google.com/p/dex2jar/.

[10] “Smali.” [Online]. Available: http://code.google.com/p/smali/.

[11] “Dedexer.” [Online]. Available: http://dedexer.sourceforge.net/.

[12] “JD-GUI.” [Online]. Available:

http://java.decompiler.free.fr/?q=jdgui.

[13] “MoDisco.” [Online]. Available: http://www.eclipse.org/MoDisco/.

[14] “Intent Sniffer.” [Online]. Available:

http://www.isecpartners.com/mobile-security-tools/intent-

sniffer.html.

[15] “EMMA.” [Online]. Available: http://emma.sourceforge.net/.

[16] “Robotium.” [Online]. Available:

http://code.google.com/p/robotium/.

[17] “Android Testing Framework.” [Online]. Available:

http://developer.android.com/guide/topics/testing/index.html.

[18] “Robolectric.” [Online]. Available:

http://pivotal.github.com/robolectric/.

[19] K. Sen, D. Marinov, and G. Agha, CUTE: A concolic unit testing

engine for C, vol. 30. ACM, 2005.

[20] P. Godefroid, et al., “Grammar-based whitebox fuzzing,” in ACM

SIGPLAN Notices, 2008, vol. 43, pp. 206–215.

[21] P. Godefroid, et al., “Automated whitebox fuzz testing,” Network

and Distributed System Security Symposium, 2008, vol. 9.

[22] D. Amalfitano, et al., “A GUI Crawling-Based Technique for

Android Mobile Application Testing,” in Software Testing,

Verification and Validation Workshops (ICSTW), 2011, pp. 252–261.

[23] C. Hu and I. Neamtiu, “Automating gui testing for android

applications,” in Proceeding of the 6th international workshop on

Automation of software test, 2011, pp. 77–83.

[24] G. Candea, S. Bucur, and C. Zamfir, “Automated software testing as

a service,” ACM symposium on Cloud computing, 2010, pp. 155–160.

[25] L. Ciortea, et al., “Cloud9: A software testing service,” ACM

SIGOPS Operating Systems Review, vol. 43, no. 4, pp. 5–10, 2010.

