
A Framework for Managing Uncertainty in
Self-Adaptive Software Systems

Naeem Esfahani
Department of Computer Science

George Mason University
Fairfax, Virginia, USA

nesfaha2@gmu.edu

Abstract—Self-adaptation endows a software system with the
ability to satisfy certain objectives by automatically modifying its
behavior. While many promising approaches for the
construction of self-adaptive software systems have been
developed, the majority of them ignore the uncertainty
underlying the adaptation decisions. This has been one of the key
inhibitors to widespread adoption of self-adaption techniques in
risk-averse real-world settings. In this research abstract I outline
my ongoing effort in the development of a framework for
managing uncertainty in self-adaptation. This framework
employs state-of-the-art mathematical approaches to model and
assess uncertainty in adaptation decisions. Preliminary results
show that knowledge about uncertainty allows self-adaptive
software systems to make better decisions.

Keywords- uncertainty; self-adaptation; software architecture

I. INTRODUCTION
Self-adaptation is an effective approach in dealing with the

changing dynamics of many application domains, such as
mobile and pervasive systems. In response to changes in the
environment or requirements, a self-adaptive software system
modifies itself to satisfy certain objectives [1], [2]. While the
benefits of such systems are plenty, their development has
shown to be more challenging than traditional software
systems [1]. One key culprit is that self-adaptation is subject to
uncertainty [1].

Uncertainty can be observed in every facet of adaptation,
albeit at varying degrees. It follows from the fact that the
system’s user, adaptation logic, and business logic are loosely
coupled, introducing numerous sources of uncertainty [3].
Consider that users often find it difficult to accurately express
their quality preferences using complex utility functions,
sensors employed for monitoring often have uncontrollable
noise, analytical models used for assessing the system’s
quality attributes by definition make simplifying assumptions
that may not hold at runtime, and so on. All of these factors
challenge the confidence with which the adaptation decisions
are made. A key observation is that while the level of
uncertainty could vary, no self-adaptive software system is
ever completely free of it.

This is precisely the challenge I have aimed to address in
my PhD research. I highlight the overall intuitions behind my
research as follows:

• Uncertainty in self-adaptive software systems is due to
complexity and loose coupling between the components
of such systems.

• Models need to make simplifying assumptions to allow
abstraction. Therefore, they only provide an
approximation of system’s behavior.

• Analytical models use the information from the past to
predict the behavior of the system in the future.
Predictions are often prone to uncertainty.

• A range, which depicts the uncertainty, is a more
representative approach for presenting the behavior of
the system compared to a point estimate.

The research community has made great strides in tackling
the complexity of constructing self-adaptive software systems
[1], [2]. However, as corroborated by others [1], there is a
dearth of applicable techniques for handling uncertainty in this
setting. A few researchers have recently begun to address
uncertainty issues in requirements specification [4], [5] and
resource prediction [6], but no approach that I am aware of has
tackled the challenge posed by uncertainty in making
adaptation decisions. I believe this has been one of the primary
obstacles to widespread adoption of self-adaptation in risk-
averse domains.

This research abstract is organized as follows. Section II
motivates the problem using a robotic software system.
Section III outlines the hypotheses of this research. Section IV
provides an insight into the approach. Section V outlines the
evaluation framework. Section VI describes the current status
of the research. The research abstract concludes with a
discussion of remaining work and related work.

II. MOTIVATION
Similar to my recent publication [7], I use a robotic

software system to motivate and describe this research. The
robotic software is part of a distributed search and rescue
system aimed at supporting the government agencies in
dealing with emergency crises (e.g., fire, hurricane). Figure 1b
provides an abridged view of the robotic system’s architecture.
The software components comprising the robotic system range
from abstractions of the physical entities, such as software

controlled sensors and actuators on board the robot, to purely
logical functionalities, such as image detection and navigation.

The software components comprising this system are
customizable, meaning that they can be configured to operate
in different modes of operation. Figure 1a shows some of the
available configuration dimensions. For instance, Power is a
configuration dimension for the Controller component. A
Controller could operate in either Energy Saving or Full
Power mode. A component may have many configuration
dimensions.

The configuration of a software component determines its
quality attributes (e.g., response time) and resource usage (e.g.,
memory), which could also impact the properties of the entire
system. For instance, given the resource-constrained nature of
the mobile robots, the configuration decisions of each
component have a significant impact on the system’s
performance as well as its battery life. Such decisions can only
be effectively made at runtime, since the system properties
(e.g., available bandwidth) are often not known at design-time
and may change at runtime.

As shown in Figure 1c, for making runtime decisions,
utility functions capturing the user’s satisfaction with different
levels of quality attribute (e.g., availability) are used. The
adaptation logic uses analytical models to estimate the effect
of configuration decision on the system’s quality attributes,
and in turn the resulting utility. For example, given the
configuration of the robot’s components, an analytical model,
such as Queueing Network model [8], may be used to quantify
the response time of a particular scenario. The objective is to
find a configuration that achieves the maximum overall utility.

The above approach is rather myopic, since it does not
consider the uncertainty of information used in making
adaptation decisions. Consider that almost every facet of the
approach outlined above faces some form of uncertainty:

• Uncertainty in System Parameters: The monitoring data
obtained from a running system rarely corresponds to a
single value, but rather a distribution of values obtained
over the observation period. For instance, a sensor
monitoring the available network bandwidth may return
a slightly different number every time a sample is
collected. This variation could be either due to actual
changes in the bandwidth or the error (noise) in the
employed probes.

• Uncertainty in Analytical Models: Analytical models
often make simplifying assumptions, and thus provide
only estimates of the system’s behavior. For instance, an
analytical model quantifying the system’s response time
may account for the dominant factors, such as execution
time of components, and ignore others, such as the
transmission delay difference between TCP and UDP.
Response time estimates provisioned by such a
formulation are not only error-prone, but also the
magnitude of error varies depending on the
circumstances.

• Uncertainty in User Preferences: Eliciting user’s
preferences in terms of utility functions, such as those
depicted in Figure 1c, is a well-known challenge [1].
Often users have difficulty expressing their preferences
and thus the overall accuracy of the utility functions
remains subjective, making the analysis based on them
prone to uncertainty.

The uncertainty in these elements challenges the system’s
ability in making decisions that bring about the intended
effects.

III. RESEARCH HYPOTHESES
My PhD research can be described based on the following

hypotheses:

Hypothesis 1: The uncertainty in the knowledge and
information used to make adaptation decisions is inevitable.
There are several mathematical approaches for dealing with
uncertainty by considering a range of behavior instead of point
estimates. These approaches have been successfully used in
other fields (e.g., control theory, economy, and statistics). I
hypothesize that if the adaptation decisions are made based on
ranges of uncertainty instead of point estimates, the trade-offs
will be more accurate and as a result the system will be more
effective in achieving its objectives.

Hypothesis 2: Uncertainty in making adaptation decisions
is neglected partially due to the misconception that dealing
with uncertainty is computationally extensive. However, there
are modern mathematical approximation techniques that can
deal with uncertainty efficiently. I hypothesize that it is
possible to incorporate uncertainty in the decision-making
process in an efficient and timely manner for execution at run-
time.

Hypothesis 3: Precisely quantifying uncertainty is a
difficult task. For example, it is not very easy to exactly
quantify the uncertainty of network bandwidth in the robotic
system. I hypothesize that incorporating partial information
about the uncertainty in the analysis allows for better

Figure 1. A subset of the robotic software: (a) configuration dimensions and
alternatives for components of the robot, (b) software architecture, and (c)
utility functions defined in terms of quality attributes.

decisions compared to having no information at all (i.e.,
considering only point estimates).

Hypothesis 4: The uncertainty in the environment is not a
fixed value and may change over time. There are mathematical
approaches, such as time series analysis, for anticipating
trajectories for values of interest over time. I hypothesize that
by considering the impact of adaptation decisions over time,
the quality and stability of the software systems can be
improved.

IV. APPROACH
Figure 2a shows the typical behavior of a self-adaptive

system that does not incorporate uncertainty in its analysis.
We abstractly refer to this as the traditional approach. The
system is initially executing with utility !! prior to time !!. At
time !! , due to either an internal or external change, the
system’s utility drops to !!. By time !!, the self-adaptation
logic detects this drop in utility, finds and effects an optimal
configuration, which is conventionally defined as the one
achieving the maximum utility. As shown in Figure 2a, this
corresponds to !!, which represents the expected utility of the
best configuration for the system. In practice, however, the
actual utility of the system may vary between the two dashed
lines, representing the likely positive and negative
consequences of uncertainty during !!. By not accounting for
uncertainty in the analysis, the approach is vulnerable to gross
over- or under-estimation of the utility.

The centerpiece of my research, which is
detailed in [7], is the reconceptualization of
what is traditionally considered as the
optimal solution, such that the uncertainty is
incorporated into the analysis. I illustrate the
insights using Figure 2b. Similar to the
scenario of Figure 2a, a new configuration is
effected at time !!, except the strategy is to
select the configuration that concurrently
satisfies the following three objectives: (1)
maximizes !! , which represents the most
likely utility for the system under
uncertainty; (2) maximizes the positive
consequence of uncertainty, which
represents the likelihood of the solution
being better than !!; and (3) minimizes the
negative consequence of uncertainty, which
represents the likelihood of the solution

being worse than !!.

As depicted in Figure 2, concurrent satisfaction of the three
objectives may result in a smaller value of expected utility
(i.e., !!) compared to that of the traditional approach. But
since the information used to estimate the expected utility is
uncertain, expected utility is not guaranteed to occur in
practice. I argue that the range of possible utility determines
the true quality of a solution.

As depicted in Figure 3, the other aspect of my research is
the anticipation of the behavior of the selected solution over
time. Figure 3a depicts a configuration picked by traditional
approach in which the behavior over time is neglected. On the
other hand, my approach, which is depicted in Figure 3b,
considers the behavior of the selected configuration over time,
i.e., selects a configuration that has lower utility at the moment
in which the decision is made with expectation for
improvement in the future. Since the system is expected to do
better in the future, my approach decreases the number of
adaptations compared to traditional approach. Note that in
Figure 3 the behavior over time is depicted linearly, but in
general the behavior over time may have different shapes.

V. EVALUATION FRAMEWORK
For the experiments I have set up a controlled environment

to allow me to create and measure the effect of uncertainty in
the system. For that purpose, I used XTEAM [9], an
architectural modeling, analysis, and simulation environment

Figure 2. The utility of a self-adaptive system based on the decision using:
(a) traditional approach, where the uncertainty is not considered and (b) my
approach, which considers uncertainty.

Figure 3. The utility of a self-adaptive system based on the decision using:
(a) traditional approach, where the behavior over time is not considered and
(b) my approach, which considers the behavior over time.

Figure 4. The high-level XTEAM model of the robotic software system.

that is integrated with Prism-MW [10], which is a middleware
platform with extensive support for runtime monitoring and
adaptation.. Through this integration, the XTEAM models are
kept in sync with the software running on top of Prism-MW,
and vice versa. Moreover, XTEAM can also be used to control
the execution of the software running on Prism-MW, including
the ability to fix the workload, and configure the software and
hardware properties. I use XTEAM to simulate uncertainty by
controlling the extent of random changes in the system
parameters (e.g., available network bandwidth, and memory
consumption of configuration alternatives). However, neither
the system under study nor my algorithms will be controlled
by XTEAM, which will allow them to behave as they would in
practice. For the purpose of this research I will mainly use the
robotic software to evaluate my ideas and contributions.
Figure 4 depicts the high-level XTEAM model of the robotic
software system.

VI. CURRENT STATUS
I have developed a general quantitative approach for

tackling the complexity of automatically making adaptation
decisions under uncertainty [7]. In this part of framework
estimates of uncertainty in the elements comprising a self-
adaptation problem are incorporated in possibilistic analysis of
the adaptation choices. Possibilistic analysis is founded on the
principles of fuzzy mathematics [11], which provides a sound
basis for representing uncertainty, as well as dealing with its
negative and positive consequences on the adaptation choices.
As I mentioned before, my framework redefines the
conventional definition of optimal adaptation decision to one
that has the best range of behavior. In turn, the selected
solution has the highest likelihood of satisfying the system’s
quality objectives, even if due to uncertainty, properties
expected of the system are not borne out in practice.

I demonstrated my framework by applying it to the
problem of improving the robotic software system’s quality of
service via runtime reconfiguration of its customizable
software components. I evaluated the developed subset of my
framework under numerous circumstances and using a
prototype of a robotic software system described in Section II.
The results demonstrated my framework’s ability to deal with

uncertainty by making adaptation decisions that are superior to
those of the conventional approach. For instance, Figure 5
shows the preliminary results of comparing the quality of
solutions selected by my framework with the traditional
approach in 10 different experiments. For each experiment, I
applied both approaches on the same adaptation problem. I
then executed the software system in the selected
configuration, and observed the actual quality of the solution.
For a fair comparison, in each experiment, I used XTEAM to
fix the application workload, as well as the range of
uncertainty in the execution context (e.g., network bandwidth,
memory usage). “Fixing the range of uncertainty” means
controlling the range of random behavior within each source
of uncertainty. Thus, different executions still resulted in
different observed behaviors. The results show that in
comparison to the traditional approach, my framework is more
likely to select a solution with better overall utility.

The experiments in Figure 5 follow the description of
Figure 2: The worst-case quality of configurations selected by
my framework is comparable with the best-case quality of
configurations selected by traditional approach. In other
words, the overall range of behavior in my framework is
always better. This is expected, since traditional approach aims
to maximize the mean behavior of the system, while my
approach aims to maximize the range of behavior.

VII. REMAINING WORK
So far, my focus has been on uncertainty in monitoring and

user preferences, which are two examples of internal
uncertainties. I distinguish between the external and internal
uncertainty. External uncertainty arises from the environment
or domain in which the software is deployed. For example,
external uncertainty for a software system deployed in an
unmanned vehicle may include the likelihood of certain
weather conditions occurring. Software self-adaptation is one
approach in dealing with the effects of external uncertainty,
e.g., in a snowstorm the vehicle’s navigator component may
be replaced with a more conservative navigator to avoid a
collision. On the other hand, internal uncertainty is rooted in
the difficulty of determining the impact of adaptation on the
system’s quality objectives, e.g., determining the impact of
replacing a software component on the system’s
responsiveness, battery usage, etc.

Another venue of future work is investigation of the
applicability of my research ideas to external uncertainty. In
fact, learning for self-adaption, which was studied in FUSION
framework [12], is a way of mitigating the external
uncertainty.

My framework does not currently consider the behavior
over time in decision-making. I am currently studying
different approaches (e.g., time series analysis) for
incorporating such effects. I will be able to benefit from the
literature in control theory for this aspect of my research.
Moreover, I am investigating different approaches for merging
the two aspects of my research together. In other words, I am
studying the interactions of anticipation (which as depicted in
Figure 3 captures the uncertainty over time) with ranges
(which as depicted in Figure 2 capture the uncertainty in a
given time).

Figure 5. Comparison of my framework with traditional approach in 10
different experiments where 30 observations are collected for each
experiment.

Finally, up to this point, I have used fuzzy logic for
decision-making in the face of uncertainty because of its
efficiency (recall hypothesis 3). I plan to study other efficient
approaches for incorporating uncertainty in analysis, such as
probability theory and Bayesian networks.

VIII. RELATED WORK
The literature in the area of self-adaption is extensive. In

lieu of enumerating all of the related studies, I refer the reader
to [1], [2] for a comprehensive analysis of the state-of-the-art
in self-adaptation. I focus my discussion here to those works
that are of utmost relevance. The challenge posed by
uncertainty in the construction of dependable self-adaptive
software system is an established concept [1], [13]. A few
works [3-6], [12] have aimed to tackle the different facets of
this challenge as follows.

Whittle et al. [5] introduced RELAX, a formal
requirements specification language that relies on Fuzzy
Branching Temporal Logic to specify the uncertain
requirements in self-adaptive systems. In a subsequent
publication [4], Cheng et al. extended RELAX with goal
modeling to specify the uncertainty in the objectives. This
research is complementary to their work, as RELAX targets
requirements specification phase, while my framework targets
decision-making phase at runtime.

Dynamic configuration of resource-aware services was
studied by Poladian et al. [18], where they showed how to
select an appropriate set of services to carry out a user task,
and allocate resources among those services at runtime.
Subsequently, the work was extended to make anticipatory
decisions [6], and considered the inaccuracy of future resource
usage predictions. Unlike this research, their approach neither
aims to satisfy a utility range, nor employs analysis techniques
to incorporate the effect of uncertainty in decisions.

Cheng and Garlan [3] described three specific sources of
uncertainty (problem-state identification, strategy selection,
and strategy outcome) in self-adaptation and provided high-
level guidelines for mitigating them in Rainbow [14]. In this
research, I am proposing a novel approach for tackling the
challenge of strategy outcome, i.e., the impact of uncertainty
on the selected solution, and techniques to deal with it.

Finally, in a recent work from our group, we presented
FUSION [12], a learning based approach to engineering self-
adaptive systems. Instead of relying on static analytical models
that are subject to wrong assumptions, FUSION uses machine
learning to self-tune the adaptive behavior of the system to
unanticipated changes, but does not address making adaptation
decisions under uncertainty.

IX. CONCLUSION
In this research abstract I have described the overview of

my PhD research. I also presented a subset of my framework
that has been the latest outcome of my research. This subset
uses possibility theory and fuzzy logic to deal with uncertainty
in monitoring and user preferences. This research is being

expanded in three directions: (1) I am studying different
approaches for dealing with uncertainty efficiently; (2) I am
studying possible extensions to the approach so I can include
other kinds of uncertainties (both internal and external) in my
analysis; (3) I am studying possible techniques for anticipating
utility over time and their integration with the depiction of
behavior as a range.

ACKNOWLEDGEMENT
I would like to thank my advisor, Dr. Sam Malek, for his

support and advice during this research. This work is partially
supported by grant CCF-0820060 from the NSF.

REFERENCES
[1] B. Cheng et al., “Software Engineering for Self-Adaptive Systems: A

Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, LNCS Hot Topics, 2009, pp. 1-26.

[2] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” in Int’l Conf. on Software Engineering, Minneapolis,
Minnesota, 2007, pp. 259-268.

[3] S. W. Cheng and D. Garlan, “Handling uncertainty in autonomic
systems,” in Int’l Wrkshp. on Living with Uncertainty, Atlanta, Georgia,
2007.

[4] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle, “A Goal-Based
Modeling Approach to Develop Requirements of an Adaptive System
with Environmental Uncertainty,” in Int’l Conf. on Model Driven
Engineering Languages and Systems, Denver, Colorado, 2009.

[5] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel,
“RELAX: Incorporating Uncertainty into the Specification of Self-
Adaptive Systems,” in Int’l Requirements Engineering Conf., Atlanta,
Georgia, 2009, pp. 79-88.

[6] V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan, B. Schmerl, and
J. Sousa, “Leveraging Resource Prediction for Anticipatory Dynamic
Configuration,” in Int’l Conf. on Self-Adaptive and Self-Organizing
Systems, Boston, Massachusetts, 2007, pp. 214-223.

[7] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming Uncertainty in
Self-Adaptive Software,” in The joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Szeged, Hungary, 2011.

[8] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida, Performance by
Design: Computer Capacity Planning By Example. Prentice Hall PTR,
2004.

[9] G. Edwards, S. Malek, and N. Medvidovic, “Scenario-Driven Dynamic
Analysis of Distributed Architectures,” in Int’l Conf. on Fundamental
Approaches to Software Engineering, Braga, Portugal, 2007, vol. 4422,
pp. 125-139.

[10] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Style-Aware
Architectural Middleware for Resource-Constrained, Distributed
Systems,” IEEE Trans. Softw. Eng., vol. 31, no. 3, pp. 256-272, 2005.

[11] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, Jun. 1965.

[12] A. Elkhodary, N. Esfahani, and S. Malek, “FUSION: A Framework for
Engineering Self-Tuning Self-Adaptive Software Systems.,” in Int’l
Symp. on the Foundations of Software Engineering, Santa Fe, New
Mexico, 2010, pp. 7-16.

[13] D. Garlan, “Software Engineering in an Uncertain World,” in FSE/SDP
Wrkshp. on the Future of Software Engineering Research, Santa Fe,
New Mexico, 2010.

[14] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure,” IEEE Computer, vol. 37, no. 10, pp. 46-54, Oct. 2004.

