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Abstract—Self-adaptation endows a software system with the 
ability to satisfy certain objectives by automatically modifying its 
behavior.  While many promising approaches for the 
construction of self-adaptive software systems have been 
developed, the majority of them ignore the uncertainty 
underlying the adaptation decisions. This has been one of the key 
inhibitors to widespread adoption of self-adaption techniques in 
risk-averse real-world settings. In this research abstract I outline 
my ongoing effort in the development of a framework for 
managing uncertainty in self-adaptation. This framework 
employs state-of-the-art mathematical approaches to model and 
assess uncertainty in adaptation decisions. Preliminary results 
show that knowledge about uncertainty allows self-adaptive 
software systems to make better decisions. 
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I.  INTRODUCTION 
Self-adaptation is an effective approach in dealing with the 

changing dynamics of many application domains, such as 
mobile and pervasive systems. In response to changes in the 
environment or requirements, a self-adaptive software system 
modifies itself to satisfy certain objectives [1], [2]. While the 
benefits of such systems are plenty, their development has 
shown to be more challenging than traditional software 
systems [1]. One key culprit is that self-adaptation is subject to 
uncertainty [1]. 

Uncertainty can be observed in every facet of adaptation, 
albeit at varying degrees. It follows from the fact that the 
system’s user, adaptation logic, and business logic are loosely 
coupled, introducing numerous sources of uncertainty [3]. 
Consider that users often find it difficult to accurately express 
their quality preferences using complex utility functions, 
sensors employed for monitoring often have uncontrollable 
noise, analytical models used for assessing the system’s 
quality attributes by definition make simplifying assumptions 
that may not hold at runtime, and so on. All of these factors 
challenge the confidence with which the adaptation decisions 
are made. A key observation is that while the level of 
uncertainty could vary, no self-adaptive software system is 
ever completely free of it.  

This is precisely the challenge I have aimed to address in 
my PhD research. I highlight the overall intuitions behind my 
research as follows: 

• Uncertainty in self-adaptive software systems is due to 
complexity and loose coupling between the components 
of such systems. 

• Models need to make simplifying assumptions to allow 
abstraction. Therefore, they only provide an 
approximation of system’s behavior.     

• Analytical models use the information from the past to 
predict the behavior of the system in the future. 
Predictions are often prone to uncertainty. 

• A range, which depicts the uncertainty, is a more 
representative approach for presenting the behavior of 
the system compared to a point estimate. 

The research community has made great strides in tackling 
the complexity of constructing self-adaptive software systems 
[1], [2]. However, as corroborated by others [1], there is a 
dearth of applicable techniques for handling uncertainty in this 
setting. A few researchers have recently begun to address 
uncertainty issues in requirements specification [4], [5] and 
resource prediction [6], but no approach that I am aware of has 
tackled the challenge posed by uncertainty in making 
adaptation decisions. I believe this has been one of the primary 
obstacles to widespread adoption of self-adaptation in risk-
averse domains.   

This research abstract is organized as follows. Section II 
motivates the problem using a robotic software system. 
Section III outlines the hypotheses of this research. Section IV 
provides an insight into the approach. Section V outlines the 
evaluation framework. Section VI describes the current status 
of the research. The research abstract concludes with a 
discussion of remaining work and related work. 

II. MOTIVATION 
Similar to my recent publication [7], I use a robotic 

software system to motivate and describe this research. The 
robotic software is part of a distributed search and rescue 
system aimed at supporting the government agencies in 
dealing with emergency crises (e.g., fire, hurricane). Figure 1b 
provides an abridged view of the robotic system’s architecture. 
The software components comprising the robotic system range 
from abstractions of the physical entities, such as software 



 

controlled sensors and actuators on board the robot, to purely 
logical functionalities, such as image detection and navigation.  

The software components comprising this system are 
customizable, meaning that they can be configured to operate 
in different modes of operation. Figure 1a shows some of the 
available configuration dimensions. For instance, Power is a 
configuration dimension for the Controller component. A 
Controller could operate in either Energy Saving or Full 
Power mode. A component may have many configuration 
dimensions.  

The configuration of a software component determines its 
quality attributes (e.g., response time) and resource usage (e.g., 
memory), which could also impact the properties of the entire 
system. For instance, given the resource-constrained nature of 
the mobile robots, the configuration decisions of each 
component have a significant impact on the system’s 
performance as well as its battery life. Such decisions can only 
be effectively made at runtime, since the system properties 
(e.g., available bandwidth) are often not known at design-time 
and may change at runtime.  

As shown in Figure 1c, for making runtime decisions, 
utility functions capturing the user’s satisfaction with different 
levels of quality attribute (e.g., availability) are used. The 
adaptation logic uses analytical models to estimate the effect 
of configuration decision on the system’s quality attributes, 
and in turn the resulting utility. For example, given the 
configuration of the robot’s components, an analytical model, 
such as Queueing Network model [8], may be used to quantify 
the response time of a particular scenario. The objective is to 
find a configuration that achieves the maximum overall utility.  

The above approach is rather myopic, since it does not 
consider the uncertainty of information used in making 
adaptation decisions. Consider that almost every facet of the 
approach outlined above faces some form of uncertainty:  

• Uncertainty in System Parameters: The monitoring data 
obtained from a running system rarely corresponds to a 
single value, but rather a distribution of values obtained 
over the observation period.  For instance, a sensor 
monitoring the available network bandwidth may return 
a slightly different number every time a sample is 
collected. This variation could be either due to actual 
changes in the bandwidth or the error (noise) in the 
employed probes.   

• Uncertainty in Analytical Models: Analytical models 
often make simplifying assumptions, and thus provide 
only estimates of the system’s behavior. For instance, an 
analytical model quantifying the system’s response time 
may account for the dominant factors, such as execution 
time of components, and ignore others, such as the 
transmission delay difference between TCP and UDP. 
Response time estimates provisioned by such a 
formulation are not only error-prone, but also the 
magnitude of error varies depending on the 
circumstances.  

• Uncertainty in User Preferences: Eliciting user’s 
preferences in terms of utility functions, such as those 
depicted in Figure 1c, is a well-known challenge [1]. 
Often users have difficulty expressing their preferences 
and thus the overall accuracy of the utility functions 
remains subjective, making the analysis based on them 
prone to uncertainty. 

The uncertainty in these elements challenges the system’s 
ability in making decisions that bring about the intended 
effects. 

III. RESEARCH HYPOTHESES 
My PhD research can be described based on the following 

hypotheses: 

Hypothesis 1: The uncertainty in the knowledge and 
information used to make adaptation decisions is inevitable. 
There are several mathematical approaches for dealing with 
uncertainty by considering a range of behavior instead of point 
estimates. These approaches have been successfully used in 
other fields (e.g., control theory, economy, and statistics). I 
hypothesize that if the adaptation decisions are made based on 
ranges of uncertainty instead of point estimates, the trade-offs 
will be more accurate and as a result the system will be more 
effective in achieving its objectives. 

Hypothesis 2: Uncertainty in making adaptation decisions 
is neglected partially due to the misconception that dealing 
with uncertainty is computationally extensive. However, there 
are modern mathematical approximation techniques that can 
deal with uncertainty efficiently. I hypothesize that it is 
possible to incorporate uncertainty in the decision-making 
process in an efficient and timely manner for execution at run-
time. 

Hypothesis 3: Precisely quantifying uncertainty is a 
difficult task. For example, it is not very easy to exactly 
quantify the uncertainty of network bandwidth in the robotic 
system. I hypothesize that incorporating partial information 
about the uncertainty in the analysis allows for better 

 
Figure 1. A subset of the robotic software: (a) configuration dimensions and 
alternatives for components of the robot, (b) software architecture, and (c) 
utility functions defined in terms of quality attributes. 



 

decisions compared to having no information at all (i.e., 
considering only point estimates). 

Hypothesis 4: The uncertainty in the environment is not a 
fixed value and may change over time. There are mathematical 
approaches, such as time series analysis, for anticipating 
trajectories for values of interest over time. I hypothesize that 
by considering the impact of adaptation decisions over time, 
the quality and stability of the software systems can be 
improved. 

IV.  APPROACH 
Figure 2a shows the typical behavior of a self-adaptive 

system that does not incorporate uncertainty in its analysis. 
We abstractly refer to this as the traditional approach. The 
system is initially executing with utility !! prior to time !!. At 
time !! , due to either an internal or external change, the 
system’s utility drops to !!. By time !!, the self-adaptation 
logic detects this drop in utility, finds and effects an optimal 
configuration, which is conventionally defined as the one 
achieving the maximum utility. As shown in Figure 2a, this 
corresponds to !!, which represents the expected utility of the 
best configuration for the system. In practice, however, the 
actual utility of the system may vary between the two dashed 
lines, representing the likely positive and negative 
consequences of uncertainty during !!. By not accounting for 
uncertainty in the analysis, the approach is vulnerable to gross 
over- or under-estimation of the utility.  

The centerpiece of my research, which is 
detailed in [7], is the reconceptualization of 
what is traditionally considered as the 
optimal solution, such that the uncertainty is 
incorporated into the analysis. I illustrate the 
insights using Figure 2b. Similar to the 
scenario of Figure 2a, a new configuration is 
effected at time !!, except the strategy is to 
select the configuration that concurrently 
satisfies the following three objectives: (1) 
maximizes !! , which represents the most 
likely utility for the system under 
uncertainty; (2) maximizes the positive 
consequence of uncertainty, which 
represents the likelihood of the solution 
being better than !!; and (3) minimizes the 
negative consequence of uncertainty, which 
represents the likelihood of the solution 

being worse than !!.  

As depicted in Figure 2, concurrent satisfaction of the three 
objectives may result in a smaller value of expected utility 
(i.e., !!) compared to that of the traditional approach. But 
since the information used to estimate the expected utility is 
uncertain, expected utility is not guaranteed to occur in 
practice. I argue that the range of possible utility determines 
the true quality of a solution. 

As depicted in Figure 3, the other aspect of my research is 
the anticipation of the behavior of the selected solution over 
time. Figure 3a depicts a configuration picked by traditional 
approach in which the behavior over time is neglected. On the 
other hand, my approach, which is depicted in Figure 3b, 
considers the behavior of the selected configuration over time, 
i.e., selects a configuration that has lower utility at the moment 
in which the decision is made with expectation for 
improvement in the future. Since the system is expected to do 
better in the future, my approach decreases the number of 
adaptations compared to traditional approach. Note that in 
Figure 3 the behavior over time is depicted linearly, but in 
general the behavior over time may have different shapes. 

V. EVALUATION FRAMEWORK 
For the experiments I have set up a controlled environment 

to allow me to create and measure the effect of uncertainty in 
the system. For that purpose, I used XTEAM [9], an 
architectural modeling, analysis, and simulation environment 

 
Figure 2. The utility of a self-adaptive system based on the decision using: 
(a) traditional approach, where the uncertainty is not considered and (b) my 
approach, which considers uncertainty. 

 
Figure 3. The utility of a self-adaptive system based on the decision using: 
(a) traditional approach, where the behavior over time is not considered and 
(b) my approach, which considers the behavior over time. 

 
Figure 4. The high-level XTEAM model of the robotic software system. 



 

that is integrated with Prism-MW [10], which is a middleware 
platform with extensive support for runtime monitoring and 
adaptation.. Through this integration, the XTEAM models are 
kept in sync with the software running on top of Prism-MW, 
and vice versa. Moreover, XTEAM can also be used to control 
the execution of the software running on Prism-MW, including 
the ability to fix the workload, and configure the software and 
hardware properties. I use XTEAM to simulate uncertainty by 
controlling the extent of random changes in the system 
parameters (e.g., available network bandwidth, and memory 
consumption of configuration alternatives). However, neither 
the system under study nor my algorithms will be controlled 
by XTEAM, which will allow them to behave as they would in 
practice. For the purpose of this research I will mainly use the 
robotic software to evaluate my ideas and contributions. 
Figure 4 depicts the high-level XTEAM model of the robotic 
software system. 

VI. CURRENT STATUS 
I have developed a general quantitative approach for 

tackling the complexity of automatically making adaptation 
decisions under uncertainty [7]. In this part of framework 
estimates of uncertainty in the elements comprising a self-
adaptation problem are incorporated in possibilistic analysis of 
the adaptation choices. Possibilistic analysis is founded on the 
principles of fuzzy mathematics [11], which provides a sound 
basis for representing uncertainty, as well as dealing with its 
negative and positive consequences on the adaptation choices. 
As I mentioned before, my framework redefines the 
conventional definition of optimal adaptation decision to one 
that has the best range of behavior. In turn, the selected 
solution has the highest likelihood of satisfying the system’s 
quality objectives, even if due to uncertainty, properties 
expected of the system are not borne out in practice.  

I demonstrated my framework by applying it to the 
problem of improving the robotic software system’s quality of 
service via runtime reconfiguration of its customizable 
software components. I evaluated the developed subset of my 
framework under numerous circumstances and using a 
prototype of a robotic software system described in Section II. 
The results demonstrated my framework’s ability to deal with 

uncertainty by making adaptation decisions that are superior to 
those of the conventional approach. For instance, Figure 5 
shows the preliminary results of comparing the quality of 
solutions selected by my framework with the traditional 
approach in 10 different experiments. For each experiment, I 
applied both approaches on the same adaptation problem. I 
then executed the software system in the selected 
configuration, and observed the actual quality of the solution. 
For a fair comparison, in each experiment, I used XTEAM to 
fix the application workload, as well as the range of 
uncertainty in the execution context (e.g., network bandwidth, 
memory usage). “Fixing the range of uncertainty” means 
controlling the range of random behavior within each source 
of uncertainty. Thus, different executions still resulted in 
different observed behaviors. The results show that in 
comparison to the traditional approach, my framework is more 
likely to select a solution with better overall utility. 

The experiments in Figure 5 follow the description of 
Figure 2: The worst-case quality of configurations selected by 
my framework is comparable with the best-case quality of 
configurations selected by traditional approach. In other 
words, the overall range of behavior in my framework is 
always better. This is expected, since traditional approach aims 
to maximize the mean behavior of the system, while my 
approach aims to maximize the range of behavior.  

VII. REMAINING WORK 
So far, my focus has been on uncertainty in monitoring and 

user preferences, which are two examples of internal 
uncertainties. I distinguish between the external and internal 
uncertainty. External uncertainty arises from the environment 
or domain in which the software is deployed. For example, 
external uncertainty for a software system deployed in an 
unmanned vehicle may include the likelihood of certain 
weather conditions occurring. Software self-adaptation is one 
approach in dealing with the effects of external uncertainty, 
e.g., in a snowstorm the vehicle’s navigator component may 
be replaced with a more conservative navigator to avoid a 
collision. On the other hand, internal uncertainty is rooted in 
the difficulty of determining the impact of adaptation on the 
system’s quality objectives, e.g., determining the impact of 
replacing a software component on the system’s 
responsiveness, battery usage, etc. 

Another venue of future work is investigation of the 
applicability of my research ideas to external uncertainty. In 
fact, learning for self-adaption, which was studied in FUSION 
framework [12], is a way of mitigating the external 
uncertainty. 

My framework does not currently consider the behavior 
over time in decision-making. I am currently studying 
different approaches (e.g., time series analysis) for 
incorporating such effects. I will be able to benefit from the 
literature in control theory for this aspect of my research. 
Moreover, I am investigating different approaches for merging 
the two aspects of my research together. In other words, I am 
studying the interactions of anticipation (which as depicted in 
Figure 3 captures the uncertainty over time) with ranges 
(which as depicted in Figure 2 capture the uncertainty in a 
given time). 

 
Figure 5. Comparison of my framework with traditional approach in 10 
different experiments where 30 observations are collected for each 
experiment. 



 

Finally, up to this point, I have used fuzzy logic for 
decision-making in the face of uncertainty because of its 
efficiency (recall hypothesis 3). I plan to study other efficient 
approaches for incorporating uncertainty in analysis, such as 
probability theory and Bayesian networks.  

VIII. RELATED WORK 
The literature in the area of self-adaption is extensive. In 

lieu of enumerating all of the related studies, I refer the reader 
to [1], [2] for a comprehensive analysis of the state-of-the-art 
in self-adaptation. I focus my discussion here to those works 
that are of utmost relevance. The challenge posed by 
uncertainty in the construction of dependable self-adaptive 
software system is an established concept [1], [13]. A few 
works [3-6], [12] have aimed to tackle the different facets of 
this challenge as follows. 

Whittle et al. [5] introduced RELAX, a formal 
requirements specification language that relies on Fuzzy 
Branching Temporal Logic to specify the uncertain 
requirements in self-adaptive systems. In a subsequent 
publication [4], Cheng et al. extended RELAX with goal 
modeling to specify the uncertainty in the objectives. This 
research is complementary to their work, as RELAX targets 
requirements specification phase, while my framework targets 
decision-making phase at runtime. 

Dynamic configuration of resource-aware services was 
studied by Poladian et al. [18], where they showed how to 
select an appropriate set of services to carry out a user task, 
and allocate resources among those services at runtime. 
Subsequently, the work was extended to make anticipatory 
decisions [6], and considered the inaccuracy of future resource 
usage predictions. Unlike this research, their approach neither 
aims to satisfy a utility range, nor employs analysis techniques 
to incorporate the effect of uncertainty in decisions.   

Cheng and Garlan [3] described three specific sources of 
uncertainty (problem-state identification, strategy selection, 
and strategy outcome) in self-adaptation and provided high-
level guidelines for mitigating them in Rainbow [14]. In this 
research, I am proposing a novel approach for tackling the 
challenge of strategy outcome, i.e., the impact of uncertainty 
on the selected solution, and techniques to deal with it.  

Finally, in a recent work from our group, we presented 
FUSION [12], a learning based approach to engineering self-
adaptive systems. Instead of relying on static analytical models 
that are subject to wrong assumptions, FUSION uses machine 
learning to self-tune the adaptive behavior of the system to 
unanticipated changes, but does not address making adaptation 
decisions under uncertainty. 

IX. CONCLUSION 
In this research abstract I have described the overview of 

my PhD research. I also presented a subset of my framework 
that has been the latest outcome of my research. This subset 
uses possibility theory and fuzzy logic to deal with uncertainty 
in monitoring and user preferences. This research is being 

expanded in three directions: (1) I am studying different 
approaches for dealing with uncertainty efficiently; (2) I am 
studying possible extensions to the approach so I can include 
other kinds of uncertainties (both internal and external) in my 
analysis; (3) I am studying possible techniques for anticipating 
utility over time and their integration with the depiction of 
behavior as a range. 
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