
MicroLab, risc01 (1/96)

JMM v1.0

RISC Processor Design
RISC Theory

(Course No 580, by Dr. Marcel Jacomet)

Goal: You are able to understand the role of
performance, the machine language as well as basic
arithmetic for computers. You know the principles
of the data-path and control path of a RISC
processor and are able to enhance the performance
with pipelining – and last but not least, you
managed to design your first RISC processor.

My first processor
could it be something

more challenging
than Intel‘s 4004 !

1971: first microprocessor

MicroLab, risc01 (2/96)

JMM v1.0

Outline

? Computer Organization & Design: The hardware /
software interface, David A. Patterson & John L.
Hennessy, Morgan Kaufmann Publishers Inc. (ISBN
1-55860-491-X)
? Computer Abstraction and Terminology (chap 1)
? The Role of Performance (chap 2)
? Instructions: Language of the Machine (chap 3)
? Arithmetic for Computers (chap 4)
? The Processor: Datapath and Control (chap 5)
? Enhancing Performance with Pipelining (chap 6)

? ASIP Meister IP-Core Tool (several universities
from Japan) www.ed-meister.org
? Design of MyRISC Instruction Set
? Design of MyRISC Architecture
? Simulation with Assembler Code Program
? Realization of MyRISC Processor into FPGA
? Optional: Discussion for MyRISC C/Java Compiler & OP

System

? This course is based on the above textbook and also
uses most of the provided slides from the authors

Part I: RISC Theory

Part II: MyRISC Project

MicroLab, risc01 (3/96)

JMM v1.0

Computer Abstraction and
Terminology #1

?C program compiled into assembly language and then assembled into
binary machine language
?Abstraction:

?Delving into depths reveals more details
?An abstraction omits unneeded detail, helps us cope with complexity

Chapter 1 (Paterson & Hennessy)

Assembly
Language
Program
(for MIPS)

High-level
Language
Program
(in C)

Swap (int v[], int k
{int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1]= temp;

}

C complier

Swap:
muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

Binary Machine
Language
Program
(for MIPS)

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Assembler

MicroLab, risc01 (4/96)

JMM v1.0

Computer Abstraction and
Terminology #2

? instruction set architecture
? Interface between low-level software and hardware
? Standardizes instructions, machine language bit patterns
? Advantage: different implementation of the same architecture
? Disadvantage: sometimes prevents us from new innovations

Hardware

Applications Software

Systems Software

Software

Applications
software

Systems
software

Compliers Operating
systems

Assemblers
...

...gcc as ...

Virtual
memory

File
system

I/O device
driver

...

XElaT

MicroLab, risc01 (5/96)

JMM v1.0

Performance

? Measure, report and summarize
? Make intelligent choices
? See through the marketing hype
? Key to understand the organizational motivation

? Why is some hardware better than others for
different programs?

? What factors of system performance are hardware
related? (do we need a new machine or new
operating system?)

? How does the machine‘s instruction set affect
performance?

Chapter 2 (Paterson & Hennessy)

MicroLab, risc01 (6/96)

JMM v1.0

Airplane performance

? Which of these airplanes has the best performance
? How much faster is the concorde compared to the 747
? How much bigger is the 747 compared to the DC-8

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

MicroLab, risc01 (7/96)

JMM v1.0

Computer performance

? Response time (latency)
? How long does it take for my job to run ?
? How long does it take to execute a job ?
? How long must I wait for the database query ?

? Throughput
? How many jobs can the machine run at once ?
? What is the average execution rate ?
? How much work is getting done ?

? If we upgrade a machine with a new processor what
do we increase ?

? If we add a new machine to the lab what do we
increase ?

MicroLab, risc01 (8/96)

JMM v1.0

Execution time

? Elapsed time
? Counts everything (disk and memory access, I/O, etc)
? A useful number but often not good for comparison purposes

? CPU time
? Doesn‘t count I/O or time spend running other programs
? Can be broken up into system time and user time

? Our focus: user CPU time
? Time spend executing the lines that are „in“ our program

MicroLab, risc01 (9/96)

JMM v1.0

Book‘s definition of performance

? For some program running on machine „X“
? performancex = 1 / execution timex

? „X“ is n times faster than „Y“
? performancex / performancey = n

? Problem:
? Machine A runs a program in 20 sec
? Machine B runs same program in 25 sec

MicroLab, risc01 (10/96)

JMM v1.0

Clock cycles

?Instead of reporting execution time in seconds, we often use
cycles

?How to improve the performance ?

?Different instructions take different amount of time on different
machines

?Multiplication takes more than one addition
?Floating point operations take longer than integer ones
?Accessing memory takes longer than accesing registers

?Important: changing the cycle time often changes the number of
cycles required for various instructions (see later)

cycle
seconds

program
cycles

program
seconds

??

MicroLab, risc01 (11/96)

JMM v1.0

Cycles per instruction (CPI)
?Vocabulary

?Cycle time (second per cycle)
?Clock rate (cycles per second)
?CPI (cycles per instruction, an average value)
?A floating point intensive application might have a higher CPI
?MIPS (millions of instructions per second)
?This would be higher for a program using simple instructions

?Performance is determined by execution time
?Do any of the other variables equal performance

?# of cycles to execute a program
?# of instructions in a program
?# of cycles per second
?Average # of cycles per instruction
?Average # of instructions per second

?Common pitfall: thinking one of the variables is
indicative of the performance when it really isn‘t

cycleclock
seconds

ninstructio
cyclesclock

program
nsinstructio

Time ???

MicroLab, risc01 (12/96)

JMM v1.0

CPI example

Example (difficulty: easy): Suppose we have two
implementations of the same instruction set
architecture (ISA). For some program

- Machine A has a clock cycle time of 10 ns and a CPI of 2.0
- Machine B has a clock cycle time of 20 ns and a CPI of 1.2

 What machine is faster for this program and by what
factor?

 If two machines have the same ISA, which of our
quantities (clock rate, CPI, execution time, # of
instructions, MIPS) will always be identical?

MicroLab, risc01 (13/96)

JMM v1.0

of instructions example

Example (difficulty: easy): A compiler designer is trying
to decide between two code sequences for a particular
machine. Based on the hardware implementation, there
are three different classes of instructions: Class A,
Class B, and Class C, and they require one, two, and
three cycles respectively.

- The first code sequence has 5 instructions: 2 of A, 1 of B,
and 2 of C

- The second sequence has 6 instructions: 4 of A, 1 of B, and
1 of C

 Which sequence will be faster? How much?
What is the CPI for each sequence?

MicroLab, risc01 (14/96)

JMM v1.0

MIPS example

Example (difficulty: easy): Two different compilers are
being tested for a 100 MHz machine with
three different classes of instructions: Class A, Class
B, and Class C, which require one, two, and three
cycles respectively. Both compilers are used to
produce code for a large piece of software.

- The first compiler's code uses 5 million Class A
instructions, 1 million Class B instructions, and 1 million
Class C instructions.

- The second compiler's code uses 10 million Class A
instructions, 1 million Class B instructions, and 1 million
Class C instructions.

 Which sequence will be faster according to MIPS?
Which sequence will be faster according to execution
time?

MicroLab, risc01 (15/96)

JMM v1.0

Admahl‘s law example

Example (difficulty: easy): Suppose we enhance a
machine making all floating-point instructions run five
times faster. If the execution time of some benchmark
before the floating-point enhancement is 10 seconds,
what will the speedup be if half of the 10 seconds is
spent executing floating-point instructions?

Example (difficulty: easy): We are looking for a
benchmark to show off the new floating-point unit
described above, and want the overall benchmark to
show a speedup of 3. One benchmark we are
considering runs for 100 seconds with the old
floating-point hardware. How much of the execution
time would floating-point instructions have to account
for in this program in order to yield our desired
speedup on this benchmark?

MicroLab, risc01 (16/96)

JMM v1.0

Benchmarks

? Performance best determined by running a real
application
? Use programs typical of expected workload
? Or, typical of expected class of applications

e.g., compilers/editors, scientific applications, graphics,
etc.

? Small benchmarks
? nice for architects and designers
? easy to standardize
? can be abused

? SPEC (System Performance Evaluation Cooperative)
? companies have agreed on a set of real program and inputs
? can still be abused (Intel’s “other” bug)
? valuable indicator of performance (and compiler technology)
? Spec89, spec95,

MicroLab, risc01 (17/96)

JMM v1.0

Remember

? Performance is specific to a particular program/s
? Total execution time is a consistent summary of

performance

? For a given architecture performance increases
come from:
? increases in clock rate (without adverse CPI affects)
? improvements in processor organization that lower CPI
? compiler enhancements that lower CPI and/or instruction

count

? Pitfall: expecting improvement in one aspect of a
machine’s performance to affect the total
performance

? You should not always believe everything you read!
Read carefully!

MicroLab, risc01 (18/96)

JMM v1.0

Instructions

? Instructions: language of the machine
? More primitive than higher level languages

e.g., no sophisticated control flow

? Very restrictive
e.g., MIPS Arithmetic Instructions

? We’ll be working with the MIPS instruction set
architecture

? Design goals: maximize performance
and minimize cost, reduce design time

Chapter 3 (Paterson & Hennessy)

MicroLab, risc01 (19/96)

JMM v1.0

MIPS Arithmetic

? All instructions have 3 operands
? Operand order is fixed (destination first)

? Example:
? C Code A = B + C
? MIPS Code add $s0, $s1, $s2

(associated with variables by compiler)

? Design Principle: simplicity favors regularity
? Of course this complicates some things...

? C Code A = B + C + D
E = F – A

? MIPS Code add $t0, $s1, $s2
? add $s0, $t0, $s3

sub $s4, $s5, $s0

? Operands must be registers, only 32 registers provided
? Design Principle: smaller is faster

MicroLab, risc01 (20/96)

JMM v1.0

Registers vs. Memory

? Arithmetic instructions operands must be registers
? Compiler associates variables with registers
? What about programs with lots of variables

Processor I/O

Control

Datapath

Register

Input

Output

Memory

MicroLab, risc01 (21/96)

JMM v1.0

Memory organization

? Viewed as a large, single-dimension array, with an
address

? A memory address is an index into the array
? "Byte addressing" means that the index points to a byte

of memory

? Bytes are nice, but most data items use larger "words“
? For MIPS, a word is 32 bits or 4 bytes

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

0
4
8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

MicroLab, risc01 (22/96)

JMM v1.0

Load & Store Instructions

? Load and store instructions

? Example:
? C Code A[8] = h + A[8];
? MIPS Code lw $t0, 32($s3)

? add $t0, $s2, $t0
? sw $t0, 32($s3)

(store word has destination last)

? MIPS
? loading words but addressing bytes
? arithmetic on registers only

instruction meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 - $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1

MicroLab, risc01 (23/96)

JMM v1.0

Machine Language (R-Type format)

? Instructions, like registers and words of data, are also
32 bits long

Example: add $t0, $s1, $s2
registers have numbers, $t0=8, $s1=17, $s2=18

? Instruction Format (R-Type)

? 000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

? 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

- op: basic operation of the instruction, traditionally called
opcode

- rs: the first register source operand
- rt: the second register source operand
- rd: the register destination operand, it gets the result of the

operation
- shamt: shift amount
- funct: This field selects the specific variant of the

operation in the op field, and sometimes called function code

MicroLab, risc01 (24/96)

JMM v1.0

Machine Language (I-Type format)

? Consider the load-word and store-word instructions
? What would the regularity principle have us do?
? New principle: Good design demands a compromise
Example: lw $t0, 32($s2)

? Instruction Format (I-Type)

? 35 18 8 32

op rs rt 16 bit address

? 6 bits 5 bits 5 bits 16 bits

MicroLab, risc01 (25/96)

JMM v1.0

Machine Language (J-Type format)

? Decision making instructions
? alter the control flow
? i.e., change the "next" instruction to be executed
? conditional branch instructions (bne, beq, etc)
? unconditional branch instructions (j)
Example:

C code MIPS code

if (i!=j) beq $s4, $s5, lab1
h=i+1; add $s3, $s4, $s5

else j lab2
h=i-j; lab1:sub $s3,$s4,$s5

lab2: …

? Instruction Format (J-Type)

? 2

op 26 bit address

? 6 bits 26 bits

MicroLab, risc01 (26/96)

JMM v1.0

Policy of Use Convention
?Decision making instructions

?We have: beq,bne, what about branch-if-less-than?
?New instruction
Example:

C code if ($s1<$s2) $t1=1;else $t1=0;
MIPS code slt $t0, $s1, $s2

?Can use this instruction to build
?blt $s1, $s2, Label
?can now build general control structures

?Note that the assembler needs a register to do this
?there are policy of use conventions for registers

Name Reg Num Usage
$zero 0 the constant value 0
$v0 - $v1 2 – 3 values for results & expression eval
$a0 - $a3 4 – 7 arguments
$t0 - $t7 8 – 15 temporaries
$s0 - $s7 16 – 23 saved
$t8 - $t9 24 – 25 more temporaries
$qp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return pointer

MicroLab, risc01 (27/96)

JMM v1.0

Constants

? Small constants are used quite frequently (50% of
operands)
? eg: A = A + 5;

? Solutions? Why not?
? put 'typical constants' in memory and load them
? create hard-wired registers (like $zero) for constants like

one

? MIPS instructions
? addi $29, $29, 4
? slti $8, $18, 10

? We'd like to be able to load a 32 bit constant into a
register
? Must use two instructions, new "load upper immediate"

instruction
? lui $t0, 1010101010101010
? Then must get the lower order bits right, i.e.,
? ori $t0, $t0, 1010101010101010

MicroLab, risc01 (28/96)

JMM v1.0

Assembly vs.Machine Language

? Assembly provides convenient symbolic representation
? much easier than writing down numbers
? e.g., destination first

? Machine language is the underlying reality
? e.g., destination is no longer first

? Assembly can provide 'pseudoinstructions‘
? e.g., move $t0, $t1 exists only in assembly
? would be implemented using add $t0,$t1,$zero

? When considering performance you should count real
instructions

MicroLab, risc01 (29/96)

JMM v1.0

Overview of MIPS Instruction
Formats

? simple instructions all 32 bits wide
? very structured, no unnecessary baggage
? only three instruction formats

? rely on compiler to achieve performance
? help compiler where we can

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

MicroLab, risc01 (30/96)

JMM v1.0

To Summarize: Instructions

MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For switch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

MicroLab, risc01 (31/96)

JMM v1.0

To Summarize: Addressing Modes

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

MicroLab, risc01 (32/96)

JMM v1.0

Summary

? Instruction complexity is only one variable
? lower instruction count vs. higher CPI / lower clock rate

? Design Principles:
? simplicity favors regularity
? smaller is faster
? good design demands compromise
? make the common case fast

? Instruction set architecture:
? a very important abstraction indeed!

MicroLab, risc01 (33/96)

JMM v1.0

Compiling #1

? Compiling a C assignment using registers

C-code
F = (g + h) – (i + j);

MIPS-code
add $t0, $s1, $s2 # register $t0 contains g+h
add $t1, $s3, $s4 # register $t1 contains i+j
sub $s0, $t0, $t1 # register $s0 contains (g+h)-(i+j)

MicroLab, risc01 (34/96)

JMM v1.0

Compiling #2

? Compiling using a variable index

C-code
g = h + A[i];

MIPS-code
add $t1, $s4, $s4 # temp register $t1 = 2 * i
add $t1, $t1, $t1 # temp register $t1 = 4 * i
add $t1, $t1, $s3 # $t1 = address of A[i] (4*i+$s3)
lw $t0, 0($t1) # temp register $t0=A[i]
add $s1, $s2, $t0 # g=h+ A[i]

? Compiling using load and store

C-code
A[12] = h + A[8];

MIPS-code
lw $t0, 32($s3) # temp register $t0 gets A[8]
add $t0, $s2, $t0 # temp register $t0 gets h+A[8]
sw $t0, 48($s3) # stores h+A[8] into A[12]

MicroLab, risc01 (35/96)

JMM v1.0

Compiling #3

? Compiling if-then-else into conditional branch

C-code
If (i==j) f = g + h; else f = g - h;

MIPS-code
bne $s3,$s4,else # goto else if i not equal j
add $s0,$s1,$s2 # f = g + h (skipped if i !=j)
j exit # goto exit

else: sub $s0,$s1,$s2 # f = g – h (skipped if i = j)
exit:

? Compiling an if statement into a conditional branch

C-code
If (i==j) go to L1;
f = g + h;

L1: f = f – i;

MIPS-code
beq $s3,$s4,L1 # goto L1 if i equals j
add $t0,$s1,$s2 # f = g + h (skipped if i equals j)

L1: sub $s0,$s0,$s3 # f=f – i (always executed)

MicroLab, risc01 (36/96)

JMM v1.0

Compiling #4

? Compiling a loop with a variable index

C-code
Loop: g = g + A[i];

i = i + j;
if (i != h) goto loop;

MIPS-code
loop: add $t1,$s3,$s3 # temp reg $t1 = 2 * i

add $t1,$t1,$t1 # temp reg $t1 = 4 * i
add $t1,$t1,$s5 # $t1 = address of A[i]
lw $t0,0($t1) # temp reg $t0 = A[i]
add $s1,$s1,$t0 # g = g +A[i]
add $s3,$s3,$s4 # i = i + j
bne $s3,$s2,loop # go to loop if i !=h

MicroLab, risc01 (37/96)

JMM v1.0

Compiling #5

? Compiling a while loop

C-code
while (save[i] == k)

i = i + j;

MIPS-code
loop: add $t1,$s3,$s3 # temp reg $t1 = 2 * i

add $t1,$t1,$t1 # temp reg $t1 = 4 * i
add $t1,$t1,$s6 # $t1 = address of save[i]
lw $t0,0($t1) # temp reg $t0 = save[i]
bne $t0,$s5,exit # goto exit if save[i] !=k
add $s3,$s3,$s4 # i = i + j
j loop # go to loop

exit:

(MIPS code can be optimized)

MicroLab, risc01 (38/96)

JMM v1.0

Compiling #6
? Compiling a case/switch statement

C-code
switch (k) {

case 0: f = i + j; break;
case 1: f = g + h; break;
case 2: f = g - h; break;
case 3: f = i - j; break;

}

MIPS-code
slt $t3,$s5,$zero # test if k < 0
bne $t3,$zero,exit # if k<0, goto exit
slt $t3,$s5,$t2 # test if k<4
beq $t3,$zero,exit # if k>=4, goto exit
add $t1,$s5,$s5 # temp reg $t1=2*k
add $t1,$t1,$t1 # temp reg $t1=4*k
add $t1,$t1,$t4 # $t1 = address of JumpTable[k]
lw $t0,0($t1) # temp reg $t0 = JumpTable[k]
jr $t0 # jump based on reg $t0

L0: add $s0,$s3,$s4 # k=0 so f gets i+j
j exit # end of this case so goto exit

L1: add $s0,$s1,$s2 # k=1 so f gets g+h
j exit # end of this case so goto exit

L2: sub $s0,$s1,$s2 # k=2 so f gets g-h
j exit # end of this case so goto exit

L3: sub $s0,$s3,$s4 # k=3 so f gets i-j
exit: # end of switch statement

MicroLab, risc01 (39/96)

JMM v1.0

Arithmetic for Computers

? Where we have been
? performance (seconds, cycles, instructions)
? abstractions

? instruction set architecture
? assembly language and machine language

? What‘s up ahead
? implementing the architecture

Chapter 4 (Paterson & Hennessy)

32

32

32

operation

result

a

b

ALU

MicroLab, risc01 (40/96)

JMM v1.0

Numbers

Integers:
? unsiged numbers
? signed numbers

? two‘s complement numbers
? 32 bit numbers: -2‘147‘483‘648 ... 2‘147‘483‘647
? converting to negativ numbers: invert all bits and add 1
? converting n bit numbers in numbers with more than n bits:

copy the most significant bit (sign bit) into the other bits
? 0010 -> 0000 0010
? 1010 -> 1111 1010
? sign extension „lbu“ vs. „lb“

Floats:
? what

MicroLab, risc01 (41/96)

JMM v1.0

Addition & Subtraction

? just like in primary school (carry/borrow 1s)
0111 0111 0110

+ 0001 - 0110 - 0101

? two‘s complement operations (easy)
0111

+ 1010
0001

? overflow (results too large for finit word length)
0111

+ 0001
1000

MicroLab, risc01 (42/96)

JMM v1.0

Overflow
? detecting overflow

? overflow occurs when the value affects the sign:
? overflow when adding two positives yields a negative
? or, adding two negatives gives a positive
? or, adding two positives gives a negative
? or, subtracting a negative from a positive gives a negative
? or, subtracting a positive from a negative gives a positive

? consider the operation A-B, can overflow occur if A=0

? effects of overflow:
? an exception (interrupt) occurs

? control jumps to predefined address for exception
? interrupted address is saved for possible resumption
? add (add), add immediate (addi), subtract (sub)

? don‘t always want to detect overflow
? C ignores overflows
? unsigned integers are commonly used for memory addresses

where overflows are ignored
? add unsigned (addu), add immediate unsigned (addiu),

subtract unsigned (subu)
? set less than unsigned (sltu), set less than immediate

unsigned (sltiu)

still sign extends!

MicroLab, risc01 (43/96)

JMM v1.0

Arithmetic Logic Unit #1

? ALU operations: and, or, add, sub
(signed and unsigned)

Result

Operation

a

b

CarryOut

Carryln

+

Binvert

0

1

20

1

MicroLab, risc01 (44/96)

JMM v1.0

Arithmetic Logic Unit #2
? tailoring the ALU to the MIPS

? need to support set-on-less-than slt
? produces a 1 if rs < rt and 0 otherwise
? use substraction (a-b)<0 implies a<b

? need to support test on equality beq
? use substraction (a-b)=0 implies a=b

Result

Operation

a

b

CarryOut

CarrylnBinvert

0

1

2

3

0

1
Less

overflow
detection

+

Set

Result

Operation

a

b

CarryOut

Carryln

+

Binvert

0

1

2

3

0

1
Less

...

CarrylnBinvert Operation

Overflow

Carryln
ALUO
Less

CarryOut

Carryln
ALU1
Less

CarryOut

Carryln
ALU2
Less

CarryOut

Carryln
ALU31
Less

CarryOut

...
...

...Carryln

ao
bo

a1
b1
0

a2
b2
0

a31
b31

0
Set

Result31

Result2

Result1

Result0

MicroLab, risc01 (45/96)

JMM v1.0

Adders

CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead unit

? ripple-carry adders are too slow for 32 bit
? use carry lookahead or even hierarchical carry

lookahead technique (see VLSI course)

MicroLab, risc01 (46/96)

JMM v1.0

Multiplication
?multiplication is more complicated than addition:

?implementation by shift and addition (time vs area)
?implementation by booth recoding algorithm (see VLSI)
?negative numbers: convert and then multiply

optimized version
(serial implementation)

? MIPS provides a separata pair or 32 bit registers containing
the 64 bit product called „Hi“ and „Lo“
? signed (mult), unsigned multiplicstion (multu)
? MIPS pseudosinstruction are used to fetch the 32 bit integer

product move from lo (mflo) and move from hi (mfhi)

Multiplicand

Write
Control test

64 bits

32-bit ALU

32 bits

Shift rightProduct

Multiplicand
Shift left

Product
Write Control test

Multiplier
Shift right

32 bits

64 bits

64-bit ALU

64 bits

1a. Add multiplicand to the left half
of the product and place the result

in the left half of the Product register

Start

Multiplier0= 1 Multiplier0 = 01. Test
Multiplier0

32nd repetition?

Done

2. Shift the Product register right 1 bit

< 32 repetitions

= 32 repetitions

MicroLab, risc01 (47/96)

JMM v1.0

Floating Point

? We need a way to represent
? numbers with a fraction: e.g. 5.1916
? very small numbers: e.g. 0.000000012
? very large numbers: e.g: 3.1577 x 1012

? Representation
? sign, exponent, significant:
? (-1)sign x significant x 10exponent

? more bits for significant increases accuracy
? more bits for exponent increases range

? IEEE 754 floating point standard
? single precision: 8 bit exponent, 23 bit significant
? double precision: 11 bit exponent, 52 bit significant

MicroLab, risc01 (48/96)

JMM v1.0

IEEE 754 Floating Point Standard

? leading „1“ bit of significant is implicit
? exponent is „biased“ to make sorting easier

? all 0 is smallest exponent, all 1 is largest
? bias 127 for single precision, 1023 for double precision

(-1)sign x (1+significant) x 10exponent-bias

? examples:
? decimal: -0.75 =-3/22

? binary: -0.11 = -1.1 x2-1

? floating point exponent: exponent=126=01111110
? IEEE 754 single precision:
? 10111111010000000000000000000000

? in addition to overflow we can have underflow
? accuracy can be a big problem

? IEEE 754 keeps to extra bits: guard and round
? four rounding modes
? positive divided by zero gives „infinity“
? zero divided by zero yields „not a number“
? other complexities

s exponent significant

MicroLab, risc01 (49/96)

JMM v1.0

MIPS Core Instructions (Arithmetic)
ins

tru
cti

on
ex

am
ple

me

an
ing

co
mm

en
ts

ad
d

ad
d
$s
1,
$s
2,
$s
3

$s
1=
$s
2+
$s
3

ov
erf

low
 de

tec
ted

ad
d i

mm
ed

iat
e

ad
di
 $
s1
,$
s2
,1
00

$s
1=
$s
2+
10
0

+
co

ns
t,

ov
erf

l d
ete

cte
d

ad
d u

ns
ign

ed
ad
du
 $
s1
,$
s2
,$
s3

$s
1=
$s
2+
$s
3

ov
erf

low
 un

de
tec

ted
ad

d i
mm

ed
iat

e
ad
di
u
$s
1,
$s
2,
10
0
$s
1=
$s
2+
10
0

+
 co

ns
tan

t
un

sig
ne

d
ov

erf
low

 un
de

tec
ted

su
b

su
b
$s
1,
$s
2,
$s
3

$s
1=
$s
2-
$s
3

ov
erf

low
 de

tec
ted

su
b u

ns
ign

ed
su
bu
 $
s1
,$
s2
,$
s3

$s
1=
$s
2-
$s
3

ov
erf

low
 un

de
tec

ted
mo

ve
 fr

om
mf
c0
 $
s1
,$
ep
c

$s
1=
$e
pc

us
ed

 to
 co

py
 ex

ce
pt

ion
co

pr
oc

 re
g

PC
 pl

us
 ot

he
r s

pe
c r

eg
mu

lti
ply

mu
lt
 $
s2
,$
s3

Hi
,L
o=
$s
2x
$s
3

64
 bi

t s
ign

ed
 in

 H
i,L

o
mu

lti
ply

 un
sig

mu
lt
u
$s
2,
$s
3

Hi
,L
o=
$s
2x
$s
3

64
 bi

t u
ns

ig
in

Hi
,Lo

div

ide
di
v
$s
2,
$s
3

Lo
=$
s2
/$
s3

Lo
 =

 qu
oti

en
t

Hi
=$
s2
 m
od
 $
s3

Hi
 =

 re
mi

nd
er

div
ide

 un
sig

di
vu
 $
s2
,$
s3

Lo
=$
s2
/$
s3

Lo
 =

 un
sig

ne
d q

uo
tie

nt
Hi
=$
s2
 m
od
 $
s3

Hi
 =

 un
sig

ne
d r

em
ind

er
mo

ve
 fr

om
 H

i
mf
hi
 $
s1

$s
1=
Hi

us
ed

 to
 ge

t c
op

y o
f H

i
mo

ve
 fr

om
 Lo

mf
lo
 $
s1

$s
1=
Lo

us
ed

 to
 ge

t c
op

y o
f L

o

MicroLab, risc01 (50/96)

JMM v1.0

Core Instructions (logical, data transfer)
ins

tru
cti

on
ex

am
ple

me

an
ing

co
mm

en
ts

an
d

an
d
$s
1,
$s
2,
$s
3

$s
1=
$s
2&
$s
3

log
ica

l A
ND

or
or
 $
s1
,$
s2
,$
s3

$s
1=
$s
2¦
$s
3

log
ica

l O
R

an
di

an
di
 $
s1
,$
s2
,1
00

$s
1=
$s
2&
10
0

log
ica

l A
ND

 re
g c

on
st

ori
or
i
$s
1,
$s
2,
10
0

$s
1=
$s
2¦
10
0

log
ica

l O
R

sh
ift

 le
ft

log
ic
sl
l
$s
1,
$s
2,
10

$s
1=
$s
2<
<1
0

sh
ift

 le
ft

by
 co

ns
t

sh
ift

 ri
gh

t l
og

sr
l
$s
1,
$s
2,
10

$s
1=
$s
2>
>1
0

sh
ift

 ri
gh

t b
y c

on
st

loa
d w

ord
lw
 $
s1
,1
00
($
s2
)

$s
1=
me
m[
$s
2+
10
0]

wo
rd

fro
m

me
m

to
reg

sto
re

wo
rd

sw
 $
s1
,1
00
($
s2
)

me
m[
$s
2+
10
0]
=$
s1

wo
rd

fro
m

reg
 to

 m
em

loa
d b

yte
 un

sig
lb
u
$s
1,
10
0(
$s
2)

$s
1=
me
m[
$s
2+
10
0]

by
te

fro
m

me
m

to
reg

sto
re

by
te

sb
u
$s
1,
10
0(
$s
2)

me
m[
$s
2+
10
0]
=$
s1

by
te

fro
m

reg
un

sig
ne

d
to

me
mo

ry
loa

d u
pp

er
lu
i
$s
1,
10
0

$s
1=
10
0*
21

6
loa

d c
on

st
in

im
me

dia
te

up
pe

r 1
6

bit
s

MicroLab, risc01 (51/96)

JMM v1.0

Core Instructions (conditional branch, jump)
ins

tru
cti

on
ex

am
ple

me

an
ing

co
mm

en
ts

br
an

ch
 on

be
q
$s
1,
$s
2,
25

if
 (
$s
1=
=$
s2
)

eq
ua

l t
es

t;
eq

ua
l

go
 t
o
PC
+4
+1
00

PC
 re

lat
ive

 br
an

ch
br

an
ch

 on

bn
e
$s
1,
$s
2,
25

if
 (
$s
1!
=$
s2
)

no
t e

qu
al

tes
t;

no
t e

qu
al

go
 t
o
PC
+4
+1
00

PC
 re

lat
ive

 br
an

ch

se
t o

n
sl
t
$s
1,
$s
2,
$s
3

if
 (
$s
2<
$s
3)

co
mp

are
 le

ss
 th

an
les

s t
ha

n
$s
1=
1
el
se
 $
s1
=0

tw
o‘s

 co
mp

lem
en

t
se

t o
n l

es
s

sl
ti
 $
s1
,$
s2
,1
00

if
 (
$s
2<
10
0)

co
mp

are
<

co
ns

t
th

an
 im

me
di

$s
1=
1
el
se
 $
s1
=0

tw
o‘s

 co
mp

lem
en

t
se

t l
es

s t
ha

n
sl
tu
 $
s1
,$
s2
,$
s3

if
 (
$s
2<
$s
3)

co
mp

are
 le

ss
 th

an
un

sig
ne

d
$s
1=
1
el
se
 $
s1
=0

na
tur

al
nu

mb
ers

se
t l

es
s t

ha
n

sl
ti
u
$s
1,
$s
2,
10
0
if
 (
$s
2<
10
0)

co
mp

are
<

co
ns

t
im

m
un

sig
ne

d
$s
1=
1
el
se
 $
s1
=0

na
tur

al
nu

mb
ers

jum
p

j
25
00

go
 t
o
10
00
0

jum
p t

o t
arg

et
ad

dr
jum

p r
eg

ist
jr
 $
ra

go
 t
o
$r
a

for
 sw

itc
h,p

roc
ed

 re
t

jum
p a

nd
 li

nk
ja
l
25
00

$r
a=
PC
+4
,g
ot
o
10
00
0

for
 pr

oc
 ca

ll

MicroLab, risc01 (52/96)

JMM v1.0

Arithmetic Core Instructions (floating point)
ins

tru
cti

on
ex

am
ple

me

an
ing

co
mm

en
ts

fp
 ad

d s
ing

le
ad
d.
s
$f
2,
$f
4,
$f
6
$f
2=
$f
4+
$f
6

flo
ati

ng
 po

int
 si

ng
le

pr
ec

fp
 su

b s
ing

le
su
b.
s
$f
2,
$f
4,
$f
6
$f
2=
$f
4-
$f
6

fp
 si

ng
le

pr
ec

 su
b

fp
 m

uli
ply

 si
n

mu
l.
s
$f
2,
$f
4,
$f
6
$f
2=
$f
4*
$f
6

fp
 si

ng
le

pr
ec

 m
uli

tp
ly

fp
 di

vid
e s

in
di
v.
s
$f
2,
$f
4,
$f
6
$f
2=
$f
4/
$f
6

fp
 si

ng
le

pr
ec

 di
vid

e
fp

 ad
d d

ou
ble

ad
d.
d
$f
2,
$f
4,
$f
6
$f
2=
$f
4+
$f
6

fp
 do

ub
le

pr
ec

 ad
d

fp
 su

b d
ou

ble
su
b.
d
$f
2,
$f
4,
$f
6
$f
2=
$f
4-
$f
6

fp
 do

ub
le

pr
ec

 su
b

fp
 m

uli
ply

 do
u

mu
l.
d
$f
2,
$f
4,
$f
6
$f
2=
$f
4*
$f
6

fp
 do

ub
le

pr
ec

 m
uli

tp
ly

fp
 di

vid
e d

ou
b

di
v.
d
$f
2,
$f
4,
$f
6
$f
2=
$f
4/
$f
6

fp
 do

ub
le

pr
ec

 di
vid

e
loa

d w
ord

 co
pr

lw
c1
 $
f1
,1
00
($
f2
)
$f
1=
me
m[
$s
2+
10
0]

32
 bi

t d
ata

 to
 fp

sto
re

wo
rd

co
pr

sw
c1
 $
f1
,1
00
($
f2
)
me
m[
$s
2+
10
0]
=$
f1

32
 bi

t d
ata

 to
 m

em
br

an
ch

 on
 fp

 tr
ue

bc
1t
 2
5

if
(c
on
d=
=1
)g
o

PC
 re

lat
ive

 br
an

ch
to
 P
C+
4+
10
0

if
fp

 co
nd

iti
on

br
an

ch
 on

 fp
 fa

lse
bc
1f
 2
5

if
(c
on
d=
=0
)g
o

PC
 re

lat
ive

 br
an

ch
to
 P
C+
4+
10
0

if
fp

 no
t c

on
dit

ion
fp

 co
mp

are
 si

ng
le

c.
le
.s
 $
f2
,$
f4

if
($
f2
<$
f4
)

fp
 co

mp
are

 le
ss

(e
q,n

e,l
t,l

e,g
t,g

e)
co
nd
=1
 e
ls
e
0

th
an

 si
ng

le
pr

ec
fp

 co
mp

are
 do

ub
le
c.
x.
d
$f
2,
$f
4

if
($
f2
<$
f4
)

fp
 co

mp
are

 le
ss

(e
q,n

e,l
t,l

e,g
t,g

e)
co
nd
=1
 e
ls
e
0

th
an

 do
ub

le
pr

ec

MicroLab, risc01 (53/96)

JMM v1.0

Datapath and Control

? We are ready to look at an implementation of the
RISC processor (MIPS compliant)

? Simplified version to contain only:
? memory reference instructions: lw,sw
? arithmetic-logic instructions:
add,sub,and,or,slt

? control flow instructions: beq,j

? Generic implementation:
? use the program counter (PC) to supply instruction

address
? get the instruction from memory
? read registers
? use the instruction to decide exactly what to do

? All instructions use the ALU after reading the
register
? why? Memory reference? Arithmetic? Control flow?

? Make the common sense fast
? Simplicity favors regularity

Chapter 5 (Paterson & Hennessy)

MicroLab, risc01 (54/96)

JMM v1.0

The Processor: Abstract View

? Two types of functionl units:
? elements that operate on data (combinatorial)
? elements that contain state (sequential)

PC address instruction

Instruction
Memory

address

data

Data
Memory

data

register #

register #

register #

Registers
ALU

MicroLab, risc01 (55/96)

JMM v1.0

Functional Units

Instruction
address

Instruction
Instruction
memory

PC
Add Sum

Instruction Memory Program Counter Adder

Register
numbers

Read
Register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 1

Registers
5

5

5

Data

Data

ALU
zero

result

3

RegWrite

Register File

ALU

Sign
Extend

Address

Write
data

Read
data

Data
Memory

MemWrite

MemRead

Data Memory Unit
Sign-Extension Unit

16 32

MicroLab, risc01 (56/96)

JMM v1.0

Building the Data-Path

PC

Sign
extend

Shift
Left 2

Registers
read
register 1
read
register 2

write
register

read
data 1

read
data2

RegWrite

Add ALU

result

ALU
Zero
ALU

result

ALUsrc

4

ALUoperation

write
data

M
u
x

M
u
x

M
u
x

PCsrc

MemWrite

MemtoReg

MemRead

3

3216

read
address

instruction

Instruction
Memory

address
Read
data

Write
data

Data
Memory

Add

MicroLab, risc01 (57/96)

JMM v1.0

Control #1

? Selecting the operations to perform (ALU, read,
write, etc)

? Controling the flow of data (multiplexor inputs)
? Information comes from the 32 bits of instruction
? Example:

? ALU‘s operation based on instruction type and
function

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

instruction format
add $8,$17,$18

MicroLab, risc01 (58/96)

JMM v1.0

ALU Control #2

? What should the ALU do with this instruction
? lw $s1,100($s2)

? Must describe hardware to compute ALU control input
? given instruction type desired ALU action
? 00 = lw,sw (no funct field) add
? 01 = beq subtract
? 10 = arithmetic add,sub,and,or,slt
? function code for arithmetic

? ALU control input

35 18 17 100

op rs rt 16 bit offset

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

MicroLab, risc01 (59/96)

JMM v1.0

Flow Control #3

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

? Data-path operation(R-Type, add $s1,$s2,$s3)
? fetch instruction from instruction memory, increment PC
? read two registers from the register file ($s2,$s3)
? ALU operates on register data using function code
?result from ALU is written into destination reg $s1 of reg file

? Data-path operation(R-Type, lw $s1,off($s2))
? fetch instruction from instruction memory, increment PC
? read register $s2 from the register file
? ALU computes the sum $s2 and off
? the sum from the ALU is used as address for the data memory
?the data from memory unit is written into reg $s1 of register file

MicroLab, risc01 (60/96)

JMM v1.0

Single vs. Multiple Cycle
? Single cycle data-path

? all of the logic is combinational
? wait for everything to settle down and the right thing to be done
? we use write signals along with clock to determine when to write
? cycle time determined by length of longest path (compare R-

Type instruction with lw instruction)

? Mulicycle cycle data-path
? use smaler cycle time untis
? have different instruction take different number of cycles
? we will re-use functional units

? ALU used to compute address and to increment PC
? memory used for instruction and data

? control signal will not be determined solely by instruction
? we will use finit state machine for control

registers

PC

instruction
register

memory
data

register

A

B

ALUOut

address

instruction
memory or data

data

data

register #
registers

register #

register #

ALU

MicroLab, risc01 (61/96)

JMM v1.0

Multicycle Approach

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

? Break up the instructions into steps, each step takes a
cycle
? balance the amount of work to be done
? restrict each cycle to use onyl one major functiuonal unit

? At the end of cycle
? store values for use in later cycles
? introduce additional „internal“ registers

MicroLab, risc01 (62/96)

JMM v1.0

Five Execution Steps

? Instruction fetch
? Instruction decode and register fetch
? Execution, memory address computation, or branch

completion
? Memory access or R-type instruction completion
? Write back step

?Instructions take from 3 to 5 cycles

MicroLab, risc01 (63/96)

JMM v1.0

Step 1: Instruction Fetch

? Use PC to get instruction and put it in the
instruction register

? Increment the PC by 4 and put the result back in
the PC

? Can be described succinctly using RTL (register
transfer language)

? IR = Memory[PC];
? PC = PC + 4;

? can we figure out the values of the control signals
? what is the advantage of updating the PC now?

MicroLab, risc01 (64/96)

JMM v1.0

Step 2: Instruction Decode and
Register Fetch

? Read register rs and rt in case we need them
? Compute the branch address in case the instruction

is a branch
? RTL:

? A = Reg[IR[25-21]];
? B = Reg[IR[20-16]];
? ALUout = PC +
(signextend(IR[15-0]) << 2;

? we aren‘t setting any control lines based on the
instruction type (we are busy decoding it in our
control logic)

sign-extended and shifted offset field

MicroLab, risc01 (65/96)

JMM v1.0

Step 3: (Instruction Dependent)

? ALU is performing one of the four functions,based on
instruction type:

? Memory reference:
? ALUout = A + sigext(IR[15-0]);

? R-type:
? ALUout = A op B;

? Branch:
? if (A==B) then PC = ALUout;

? Jump:
? PC = PC[31-28]¦¦(IR[25-0]<<2);

MicroLab, risc01 (66/96)

JMM v1.0

Step 4: R-Type or Memory Access

? Load and store instruction access memory
? MDR = Memory[ALUout];
? or
? Memory[ALUout] = B;

? Arithmetic logical instruction (R-type):
? Reg[IR[15-11]] = ALUout;

? the write actually takes place at the end of the cycle
on the clock edge

MicroLab, risc01 (67/96)

JMM v1.0

Step 5: Write Back

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

? During this last step, loads complete by writing back
the value from memory

? Reg[IR[20-16]] = MDR;

? Summary

MicroLab, risc01 (68/96)

JMM v1.0

Implementing the Control

? Value of control signals depend on
? what instruction is beeing executed
? which step is beeing performed

? Implementation architectures
? finit state machine: used for up to some dozen of states
? microprogramming: used for hundreds or thousands of

states

finit state machine

PCWrite

PCWriteCond
IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

MicroLab, risc01 (69/96)

JMM v1.0

Control by Microprogramming
? Specification advantage

? easy to design and write
? design architecture and microcode in parallel

? Implementation advantages (off-chip ROM)
? easy to change since values are in ROM
? can emulate other architectures
? can make use of internal registers

? Implementation disadvantages, slower now that:
? control is implemented on same chip as processor
? ROM is no longer faster than RAM

AddrCtl

Outputs

PLA or ROM

State

Address select logic

O
p[

5 –
0]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

BWrite

MicroLab, risc01 (70/96)

JMM v1.0

Microinstructions

? Microprogramming is based on microinstructions
? each microinstruction defines the set of datapath control

signals that must be asserted in a given state
? a sequence of microinstructions defines one machine

instruction
? as microinstructions may execute sequentially, address

increment logic is used (adder), for conditional branches
and instruction dependent branches, dispatch ROMs are
used

? the key idea is to represent the asserted values on the
control lines symbolically, so that the microprogram is a
representation of the microinstructions, just as assembly
language is a representation of the machine instructions

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

MicroLab, risc01 (71/96)

JMM v1.0

Microinstruction Sequencing

? Three different methods are available to choose the
next microinstruction to be executed:
? increment the address of the current microinstruction to

obtain the address of the next microinstruction: Seq
label

? branch to microinstruction that begins execution of the
next MIPS instruction: Fetch label

? choose the next microinstruction based on the control
unit input is called dispatch. Dispatch operations are
implemented by creating a table containing the addresses
of the target microinstructions. this table is indexed by
the control unit input. We use 2 dispatch tables:
Dispatch 1 label and Dispatch 2 label

MicroLab, risc01 (72/96)

JMM v1.0

Microinstruction Format

Field name Value Signals active Comment
Add ALUOp = 00 Cause the ALU to add.

ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branches.

Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

MicroLab, risc01 (73/96)

JMM v1.0

Designing Microinstructions

IR = Memory[PC];
PC = PC + 4;

ALU Register PCwrite
Label control SRC1 SRC2 control Memory control Sequencing
fetch Add PC 4 Read PC ALU Seq

Add PC Extshft Read Dispatch 1

Fields Effect
ALU control, SRC1, SRC2 compute PC+4 (is also written into ALUout

though it will never be read from there)
Memory fetch instruction into IR
PCwrite control causes output of the ALU to be written into the PC
Sequencing Go to the next microinstruction

Fields Effect
ALU control, SRC1, SRC2 store PC+signextens IR[15-0]<<2 into ALUout
Register control use rs and rt fields to read reg placing data in A,B
Sequencing use dispatch table 1 to choose the next micro addr

MicroLab, risc01 (74/96)

JMM v1.0

Designing Microinstructions

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

ALU Register PCwrite
Label control SRC1 SRC2 control Memory control Sequencing
Rformat1 Func code A B Seq

Write ALU Fetch 1

Fields Effect
ALU control, SRC1, SRC2 ALU operates on the contents of the A and B reg

using function field to specify the ALU operation
Sequencing Go to the next microinstruction

Fields Effect
register control the value in ALUout is written into the register

file entry specified by the rd field
Sequencing go to the next micro instruction labeld fetch

Microprogramming for our MIPS

MicroLab, risc01 (75/96)

JMM v1.0

Exceptions & Interrupts

? one of the hardest part of control is implementing
exceptions and interrupts

? they change the normal flow of instruction
execution

? an interrupt is an event that causes unexpected
change of control flow but comes from outside of
the processor (I/O device request)

? an exception is an unexpected event from within the
processor (arithmetic overflow, undefined
instruction, invoke OS from user program)

? handling exceptions:
? address of offending instruction saved in exception

program counter (EPC)
? transfer control to OS at some specified address
? cause register holds status information with reason for

exception

MicroLab, risc01 (76/96)

JMM v1.0

Pipelining

Chapter 6 (Paterson & Hennessy)

Instruction
fetch

Reg ALU Data
access

Reg

8 ns
Instruction

fetch
Reg ALU Data

access
Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch Reg ALU
Data

access Reg

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

? pipelining is an implementation technique in which
multiple instructions are overlapped in execution

? under ideal conditions, the speedup from pipelining
equals the number of pipe stages

? pipelining increases instruction throughput
? pipelining increases latency

MicroLab, risc01 (77/96)

JMM v1.0

Pipelining: Hazards

? what makes it easy
? all instruction are the same length
? just a few instruction formats
? memory operands appear only in loads and stores

? definition of hazard: hardware cannot support
combination of instructions that we want to execute
in the same clock cycle

? what makes it hard
? structural hazards: suppose we have only one memory
? control hazards: need to worry about branch instructions
? data hazards: an instruction depends on previous

instructions

? we‘ll built a simple pipeline and look at these
issues

? we‘ll talk about modern processors and what really
makes it hard:
? exception handling
? trying to improve performance with out-of-order

execution, etc.

MicroLab, risc01 (78/96)

JMM v1.0

Basic Idea

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

What do we need to add to actually split the datapath into stages?

five stage pipeline

• IF: instruction fetch
• ID: instruction decode and register file read
• EX: execution or address calculation
• MEM: data memory access
• WB: write back

MicroLab, risc01 (79/96)

JMM v1.0

Pipelined Datapath

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

MicroLab, risc01 (80/96)

JMM v1.0

Instruction Fetch
(Working Pipeline: Step 1)

The instruction is beeing read from the memory using the address in the PC
and then placed in the IF/ID pipeline register. The PC address is incremented
by 4 and then written back into the PC to be ready for the next clock cycle.
This incremented address is also saved in the IF/ID pipeline register in case
it is needed later for an instruction, such as beg. The computer cannot know
which type of instruction is beeing fetched, so it must prepare for any
instruction, passing potentially needed information down to the pipeline.

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

lw
instruction

fetch

MicroLab, risc01 (81/96)

JMM v1.0

Instruction Decode and Reg File Read
(Working Pipeline: Step 2)

The instruction portion of the IF/ID pipeline register supplies the 16-bit
immediate field, which is sign-extended to 32 bits, and the register numbers
to read the two registers. All three values are stored in the ID/EX pipeline
register, along with the incremented PC address. We again transfer everything
that might be needed by any instruction during a later clock cycle.

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

lw
instruction

decode

MicroLab, risc01 (82/96)

JMM v1.0

Execute or Address Calculation
(Working Pipeline: Step 3)

The load instruction reads the contents of register 1 and the sign-extended
immediate from the ID/EX pipeline register and adds them using the ALU. The
sum is placed in the EX/MEM pipeline register.

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

lw
execution

MicroLab, risc01 (83/96)

JMM v1.0

Memory Access
(Working Pipeline: Step 4)

The load instruction is reading the data memory using the address from the
EX/MEM pipeline register and loading the data into the MEM/WB pipeline
register.

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

lw
memory

MicroLab, risc01 (84/96)

JMM v1.0

Write Back
(Working Pipeline: Step 5)

In the final step, the data is being read from the MEM/WB pipeline register
and written back into the register file.

PC

Sign
extend

read
register 1

read
register 2

Registers
write
register

write
data

1
M
U
X
0

MEM/WBEX/MEM

read
data 1

read
data 2

Address

Instruction
Memory

Add
resultAdd

address
read
data

Data
Memory

write
data

Shift
left 2

Add

ALU
zero
Alu

result

ID/EX

0
M
U
X
1

IF/ID

In
st

ru
ct

io
n

16 32

0
M
U
X
1

4

lw
write
back

MicroLab, risc01 (85/96)

JMM v1.0

Graphical Representation

? IM: instruction memory
? Reg: register file
? ALU
? DM: data memory

IM Reg ALU DM Reg

IM Reg ALU RegDM

time CC1 CC2 CC3 CC4 CC5 CC6program
execution
lw $10,20($2)

sub $11,$2,$3

2nd clock cycle

read at 2nd
halfcycle

write at 1st
halfcycle

MicroLab, risc01 (86/96)

JMM v1.0

Pipeline Control

? we have 5 stages, what needs to be controled in
each stage?
? instruction fetch, PC increment
? instruction decode, register fetch
? execution
? memory stage
? write back

? pass control signals along just like the data

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

MicroLab, risc01 (87/96)

JMM v1.0

Datapath with Control

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

MicroLab, risc01 (88/96)

JMM v1.0

Data Hazards #1

Problem with starting next instruction before first is finished
- dependencies that go backward in time are „data hazards“

IM ALU Reg

IM ALU RegDM

time in
clock cycles

CC1 CC2 CC3 CC4 CC5 CC6

sub $2,$1,$3

and $12,$2,$5

or $13,$6,$2

add $14,$2,$2

sw $15,100($2)

DM

IM ALU Reg

IM ALU RegDM

DM

IM ALU DM Reg

CC7 CC8 CC9

Reg

Reg

Reg

Reg

Reg

MicroLab, risc01 (89/96)

JMM v1.0

Data Hazards #2

? software solution
? have a compiler guarantee no hazards
? where do we insert the „nops“

sub $s2,$s1,$s3
and $s12,$s2,$s5
or $s13,$s6,$s2
add $s14,$s2,$s2
sw $s15,100($s2)

? problem: this really slows us down

MicroLab, risc01 (90/96)

JMM v1.0

Data Hazards: Forwarding

IM ALU Reg

IM ALU RegDM

time in
clock cycles

CC1 CC2 CC3 CC4 CC5 CC6

sub $2,$1,$3

and $12,$2,$5

or $13,$6,$2

add $14,$2,$2

sw $15,100($2)

DM

IM ALU Reg

IM ALU RegDM

DM

IM ALU DM Reg

CC7 CC8 CC9

Reg

Reg

Reg

Reg

Reg

? the dependencies between the pipeline registers
move forward in time

MicroLab, risc01 (91/96)

JMM v1.0

Data Hazards: Stalls

? since the dependence between the lw and the
following and instruction goes backward in time,
this hazard cannot be solved by forwarding

? this combination must result in a stall by the
hazard detection unit

IM ALU Reg

IM ALU DM

time in
clock cycles

CC1 CC2 CC3 CC4 CC5 CC6

lw $2,20($1)

and $4,$2,$5

or $8,$2,$6

add $9,$4,$2

IM ALU Reg

IM ALU RegDM

DM

CC7 CC8 CC9

Reg

Reg

Reg

Reg

Reg

DM

MicroLab, risc01 (92/96)

JMM v1.0

Data Hazards: Stall Insertion

? we can stall the pipeline by keeping an instruction
in the same stage

IM ALU Reg

IM ALU DM

time in
clock cycles

CC1 CC2 CC3 CC4 CC5 CC6

lw $2,20($1)

and $4,$2,$5

or $8,$2,$6

add $9,$4,$2

IM ALU Reg

IM ALU RegDM

DM

CC7 CC8 CC9

Reg

Reg

Reg

Reg

Reg

DM

IM

Reg

stall

MicroLab, risc01 (93/96)

JMM v1.0

Branch Hazards

? the branch instruction takes its decision in the DM
stage

? when we decide to branch, other instructions would
already be in the pipeline

? we are predicting „branch not taken“ (need to add
hardware for flushing instructions if we are wrong)

IM ALU

IM ALU RegDM

time in
clock cycles

CC1 CC2 CC3 CC4 CC5 CC6

40 beq $1,$3,7

44 and $12,$2,$5

48 or $13,$6,$2

52 add $14,$2,$2

72 lw $4,50($7)

DM

IM ALU Reg

IM RegDM

DM

IM ALU Reg

CC7 CC8 CC9

Reg

Reg

Reg

ALUReg

Reg DM

Reg

MicroLab, risc01 (94/96)

JMM v1.0

Improving Performance

? Try to avoid stalls
? eg: reorder these instruction

? Add a branch delay slot
? the next instruction after a branch is alwyas executed
? rely on compiler to fill the slot with something useful

? dynamic scheduling
? the hardware performs the scheduling

? hardware tries to find instructions to execute
? out of order execution is possible
? speculative execution and dynamic branch prediction

(branch prediction buffer or branch history table)

? superscaler: start more than one instruction in the
same cycle

lw t$0,0($t1)
lw t$2,4($t1)
sw $t2,0($t1)
sw $t0,4($t1)

MicroLab, risc01 (95/96)

JMM v1.0

The Big Picture ...

In
st

ru
ct

io
n

m
em

o
ry

P
C

R
eg

is
te

rs

D
at

a

m
em

o
ry

S
ig

n

ex
te

n
d

S
h

if
t

L
ef

t
2

=

C
o

n
tr

o
l

H
az

ar
d

D
et

ec
ti

o
n

u
n

it

F
o

rw
ar

d
in

g

u
n

it

M U X

E
XM

ID
/E

X

W
B

M U X

M U X M U X M U X

E
P

C

C
au

se

W
B

M U X

M U X

W
B

M U X

A
LU

ID
. F

lu
sh

E
X

/M
E

M

+

4

E
x.

 F
lu

sh

0

0
M

M
E

M
/W

B

40
00

,0
04

0

IF
. F

lu
sh

+
IF

/
D

0

MicroLab, risc01 (96/96)

JMM v1.0

To Probe Further ...

?The book from Hennessy&Patterson addresses much
more important topis:

?caches
?virtual memory
?memory hierarchy
?design of I/O systems
?buses
?multiprocessors
?clusters
?network topologies
?...

?There is a second book from the same authors
adressing the same subject: ISBN 1-55860-596-7
(May 2002)

