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RISC Processor Design

RISC Theory
(Course No 580, by Dr. Marcel Jacomet)

My first processor
could it be something
more challenging
than Intel‘s 4004 !

1971: first microprocessor

Goal: You are able to understand the role of

performance, the machine language as well as basic
arithmetic for computers. You know the principles

of the data-path and control path of a RISC

processor and are able to enhance the performance

with pipelining — and last but not least, you
managed to design your first RISC processor.
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Outline
Part I: RISC Theory

= Computer Organization & Design: The hardware /

software interface, David A. Patterson & John L.
Hennessy, Morgan Kaufmann Publishers Inc. (ISBN
1-55860-491-X)

= Computer Abstraction and Terminology (chap 1)

= The Role of Performance (chap 2)

« Instructions: Language of the Machine (chap 3)

= Arithmetic for Computers (chap 4)

= The Processor: Datapath and Control (chap 5)

= Enhancing Performance with Pipelining (chap 6)

Part [I: MyRISC Project

= ASIP Meister IP-Core Tool (several universities
from Japan) www.ed-meister.org
« Design of MyRISC Instruction Set
= Design of MyRISC Architecture
& Simulation with Assembler Code Program
« Realization of MyRISC Processor into FPGA

= Optional: Discussion for MyRISC C/Java Compiler & OP
System

& This course 1S based on the above textbook and also
uses most of the provided slides from the authors
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Chapter 1 (Paterson & Hennessy)

Computer Abstraction and
Terminology #l

#C program compiled into assembly language and then assembled into
binary machine language

= Abstraction:
= Delving into depths reveals more details
= An abstraction omits unneeded detail, helps us cope with complexity

Swap (int v[], int Kk
{int tenp;

tenp = v[K];

v[k] = v[k+1];

v[ k+1] = tenp;
}

Swap:

muli $2, $5,4
add $2, %4, $2
lw  $15, 0($2)
lw  $16, 4($2)
sw $16, 0(%$2)
sw  $15, 4(%$2)
jr $31

Assembler

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

MicroLab, riscO1 (3/96)

JMM VL0



Computer Abstraction and
Terminology H2

= Instruction set architecture
= Interface between low-level software and hardware
& Standardizes instructions, machine language it patterns
= Advantage: different implementation of the same architecture
& Disadvantage: sometimes prevents us from new innovations

Applications Software

Hardware

Software

Applications Syf?tems
software software
|aTEX S /y\
Compliers Operating Assemblers

systems

Virtual File I/O device
memory system driver

N NN

MicroLab, riscOL (4/96)

JMM VL0



Chapter 2 (Paterson & Hennessy)

Performance

= Measure, report and summarize

= Make intelligent choices

= See through the marketing hype

= Key to understand the organizational motivation

= Why 1s some hardware better than others for
different programs?

= What factors of system performance are hardware
related? (do we need a new machine or new
operating system?)

= How does the machine's instruction set affect
performance?
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Airplane performance

Airplane Passengers

Range (mi) Speed (mph)

Boeing 737-100 101
Boeing 747 470
BAC/Sud Concorde 132
Douglas DC-8-50 146

JMMvL.O

630
4150
4000
8720

598
610
1350
544

= Which of these airplanes has the best performance
= How much faster is the concorde compared to the 747

= How much bigger is the 747 compared to the DC-8

MicroLab, riscOL (6/96)



Computer performance

= Response time (latency)
= How long does it take for my job to run ?
= How long does it take to execute a job ?
= How long must | wait for the database query ?

& Throughput
= How many jobs can the machine run at once ?
= \What Is the average execution rate ?
= How much work is getting done ?

= |f we upgrade a machine with a new processor what
do we increase ?

= |f we add a new machine to the lab what do we
Increase ?

MicroLab, riscOL (7/96)
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Execution time

= Elapsed time
= Counts everything (disk and memory access, 170, etc)
= A useful number but often not good for comparison purposes

& CPU time
= Doesn‘t count /0 or time spend running other programs
= Can be broken up into system time and user time

= Our focus: user CPU time
= Time spend executing the lines that are ,,in" our program
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Book's definition of performance

= FOr some program running on machine ,,X*
= performance, = 1 / execution time,

& X 18 n times faster than ,,Y*
= performance, / performance, = n

= Problem:
= Machine A runs a program in 20 sec
= Machine B runs same program in 25 sec

MicroLab, riscOL (9/96)
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Clock cycles

= Instead of reporting execution time in seconds, we often use
cycles

seconds 5 cycles ,?seconds
program program cycle

=How to improve the performance ?

& Different instructions take different amount of time on different
machines

= Multiplication takes more than one addition
«Floating point operations take longer than integer ones
= Accessing memory takes longer than accesing registers

= Important: changing the cycle time often changes the number of
cycles required for various instructions (see later)

MicroLab, riscO1 (10/96)



Cycles per instruction (CPI)

= \ocabulary
=Cycle time (second per cycle)
«Clock rate (cycles per second)
=CPI (cycles per instruction, an average value)
= A floating point intensive application might have a higher CPI
=MIPS (millions of instructions per second)
= This would be higher for a program using simple instructions

«Performance is determined by execution time

«Do any of the other variables equal performance
= 0of cycles to execute a program
=2 of instructions in a program
=2 of cycles per second
= Average # of cycles per instruction
= Average # of instructions per second

= Common pitfall: thinking one of the variables is
Indicative of the performance when it really isn't

, Instructions clock cycles,, seconds

Time 2 —
program instruction clock cycle

MicroLab, riscO1 (11/96)
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CPI example

Example (difficulty: easy): Suppose we have two
Implementations of the same instruction set
architecture (ISA). For some program

- Machine A has a clock cycle time of 10 ns and a CPI of 2.0
- Machine B has a clock cycle time of 20 ns and a CPI of 1.2

What machine is faster for this program and by what
factor?

If two machines have the same ISA, which of our
quantities (clock rate, CPI, execution time, # of
Instructions, MIPS) will always be identical?
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# of Instructions example

Example (difficulty: easy): A compiler designer is trying
to decide between two code sequences for a particular
machine. Based on the hardware implementation, there
are three different classes of instructions: Class A,
Class B, and Class C, and they require one, two, and
three cycles respectively.

- The first code sequence has 5 instructions: 2 of A, 1 of B,
and 2 of C

- The second sequence has 6 instructions: 4 of A, 1 of B, and
Lof C

Which sequence will be faster? How much?
What is the CPI for each sequence?

MicroLab, riscO1 (13/96)
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MIPS example

Example (difficulty: easy): Two different compilers are
being tested for a 100 MHz machine with
three different classes of instructions: Class A, Class
B, and Class C, which require one, two, and three
cycles respectively. Both compilers are used to
produce code for a large piece of software.
- The first compiler's code uses 5 million Class A

Instructions, 1 million Class B instructions, and 1 million
Class C instructions.

- The second compiler's code uses 10 million Class A
Instructions, 1 million Class B instructions, and 1 million
Class C instructions.

Which sequence will be faster according to MIPS?
Which sequence will be faster according to execution
time?
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Admahl‘s law example

Example (difficulty: easy): Suppose we enhance a
machine making all floating-point instructions run five
times faster. If the execution time of some benchmark
before the floating-point enhancement is 10 seconds,
what will the speedup be if half of the 10 seconds Is
spent executing floating-point instructions?

Example (difficulty: easy): We are looking for a
benchmark to show off the new floating-point unit
described above, and want the overall benchmark to
show a speedup of 3. One benchmark we are
considering runs for 100 seconds with the old
floating-point hardware. How much of the execution
time would floating-point instructions have to account
for in this program in order to yield our desired
speedup on this benchmark?
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Benchmarks

= Performance best determined by running a real
application
= Use programs typical of expected workload

& Or, typical of expected class of applications
e.g., compilers/editors, scientific applications, graphics,
etc.

= Small benchmarks
« nice for architects and designers
= €asy to standardize
& Can be abused

= SPEC (System Performance Evaluation Cooperative)
& companies have agreed on a set of real program and inputs
« can still be abused (Intel’s “other” bug)
= valuable indicator of performance (and compiler technology)
& 5pec89, spec9s,
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Remember

= Performance is specific to a particular program/s

= Total execution time is a consistent summary of
performance

= For a given architecture performance increases
come from:

= Increases in clock rate (without adverse CPI affects)
& Improvements in processor organization that lower CPI

= compiler enhancements that lower CPI and/or instruction
count

= Pitfall: expecting improvement in one aspect of a
machine’s performance to affect the total
performance

= You should not always believe everything you read!
Read carefully!

MicroLab, riscO1 (17/96)
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Chapter 3 (Paterson & Hennessy)

Instructions

= Instructions: language of the machine

= More primitive than higher level languages
e.0., no sophisticated control flow

= \lery restrictive
e.g., MIPS Arithmetic Instructions

= We'll be working with the MIPS instruction set
architecture

= Design goals: maximize performance
and minimize cost, reduce design time

MicroLab, riscO1 (18/96)
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MIPS Arithmetic

= All instructions have 3 operands
= Operand order is fixed (destination first)

= Example:
= C Code A=B+C
= MIPSCode add $s0, $sl, $s2
(associated with variables by compiler)

= Design Principle: simplicity favors regularity
= Of course this complicates some things...

= C Code A=B+C+D
E=F-A
= MIPS Code add $t0, $s1, $s2
p add $s0, $t0, $s3

sub $s4, $s5, $s0

= Operands must be registers, only 32 registers provided
= Design Principle: smaller is faster

MicroLab, riscO1 (19/96)
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Registers vs. Memory

= Arithmetic instructions operands must be registers
= Compiler associates variables with registers
= What about programs with lots of variables

Control

Datapath

Processor

Memory
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Memory organization

= Vliewed as a large, single-dimension array, with an
address

= A memory address Is an index into the array

= "Byte addressing" means that the index points to a byte
of memory

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

o 00~ WON B O

8 bits of data

= Bytes are nice, but most data items use larger “words"
= For MIPS, a word is 32 bits or 4 bytes

0)
4
8
12

32 bits of data

32 bitsof data

32 bitsof data

32 bits of data

Registers hold 32 hits of data
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Load & Store Instructions

& Load and store Instructions

= Example:
= C Code A8 =h + A 8];
«MIPSCode |w $t0, 32($s3)

P add $t0, $s2, $tO
& sw $t 0, 32(%$s3)

(store word has destination last)

= MIPS

« loading words but addressing bytes
« arithmetic on registers only

Instruction meaning

add $s1, $s2, $s3  $sl1 = $s2 + $s3

sub $s1, $s2,$s3  $s1 = $s2 - $s3

|w $s1, 100($s2) $s1 = Menory[ $s2+100]

sw $s1, 100( $s2) Menory[ $s2+100] = $s1

MicroLab, riscOl (22/96)
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Machine Language (R-Type format)

« Instructions, like registers and words of data, are also

32 hits long
Example: add $t0, $sl1, $s2
registers have numbers, $t 0=8, $s1=17, $s2=18

= Instruction Format (R-Type)

2

000000| 10001| 10010 | 01000 | OO0O0O | 100000

op rs rt rd shamt | funct

= 6 bits 5 bits 5 bits 5 bits 5 bits 6 bhits

- op: hasic operation of the instruction, traditionally called
opcode

- r s: the first register source operand
- rt: the second register source operand

- r d: the register destination operand, it gets the result of the
operation

- shant ; shift amount

- funct : This field selects the specific variant of the
operation in the op field, and sometimes called function code
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Machine Language (I-Type format)

« Consider the load-word and store-word Instructions
= \What would the regularity principle have us do?

= New principle: Good design demands a compromise
Example: 1w $t0, 32($s2)

& Instruction Format (I-Type)

< 35 18 8 32
op rs rt 16 bit address
= 6 bits 5bits 5bits 16 bits

JMM VL0
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Machine Language (J-Type format)

& Decision making instructions
« alter the control flow
« 1.e., change the "next" instruction to be executed
« conditional branch instructions (bne, beq, etc)
= Unconditional branch instructions (j)

Example:
C code MIPS code
if (i'=)) beq $s4, $s5, labl
h=i+1; add $s3, $s4, $s5
else j lab2
h=i-j; | abl: sub $s3, $s4, $s5

| ab2:

& Instruction Format (J-Type)

= 2

op 26 bit address

= 6 bits 26 bits

MicroLab, riscOl (25/96)



Policy of Use Convention

=Decision making instructions
=\We have: beq, bne, what about branch-if-less-than?

= New Instruction
Example:

C code
MIPScode slt $tO, $s1, $s2

I f ($s1<$s2) $t1=1;el se $t1=0;

= Can use this instruction to buila
=blt $sl1, $s2, Label
=can now build general control structures

=Note that the assembler needs a register to do this
«there are policy of use conventions for registers

l

Name Reg Num  |Usage _

$zero 0 the constant value O _
$v0 - $vi|2 — 3 |values for results & expression eve
$a0 - $a3|4 — 7 |arguments

$t0 - $t7|8 — 15 |temporaries

$s0 - $s7|16 — 23 |saved _

$t8 - $t 9|24 — 25|more temporaries

$qp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return pointer

JMM VL0
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Constants

= Small constants are used quite frequently (50% of
operands)

=eg: A=A +5;
& Solutions? Why not?

= put 'typical constants' in memory and load them

« Create hard-wired registers (like $zero) for constants like
one

= MIPS Instructions
~addi $29, $29, 4
«slti $8, $18, 10

= We'd like to be able to load a 32 bit constant into a
register

= Must use two instructions, new "load upper immediate"
Instruction

«lui $t0, 1010101010101010

= Then must get the lower order bits right, I.e.,
<o0ri $t0, $t0, 1010101010101010
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Assembly vs.Machine Language

= Assembly provides convenient symbolic representation
= much easier than writing down numbers
5 €.0., destination first

= Machine language Is the underlying reality
# .0., destination is no longer first

= Assembly can provide 'pseudoinstructions
= e.0.,move $t0, $t 1 existsonly in assembly
= Would be implemented using add $t 0, $t 1, $zero

= When considering performance you should count real
Instructions

MicroLab, riscOl (28/96)
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Overview of MIPS Instruction
Formats

= simple instructions all 32 bits wide
= Very structured, no unnecessary baggage
= only three instruction formats

R | op rs rt rd shamt | funct
| op rs It 16 bit address
J op 26 bit address

« rely on compiler to achieve performance
= help compiler where we can

MicroLab, riscO1 (29/96)
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To Summarize: Instructions

MIPS operands

Name

Example

Comments

32 registers

$s0-$s7, $t0-$t9, $zero,
$a0- $a3, $vO-$vi, $gp,

Fast locations for data. In MIPS, data must be in registers to perform
arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, S$at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
230 memory [Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.
MIPS assembly language
Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $sl = $s2 + $s3 Three operands; data in registers
Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers
add immediate addi $s1, $s2, 100 |[$s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100]|Word from memory to register
store word sw $s1, 100($s2) Memory[$S2 + 100] = $s1 |Word from register to memory
Data transfer |load byte Ib $si1, 100($s2) $s1 = Memory[$s2 + 100]|Byte from memory to register
store byte Sb_ $s1, 100($s2) Memory[$s2 + 100] = $s1 |Byte from register to memory
load upper immediate [l Ui $s1, 100 $s1 = 100 * 21° Loads constant in upper 16 bits
branch on equal beq $s1, $s2, 25 if $s1 == $s2)goto Equal test; PC-relative branch
PC + 4 + 100
branch on not equal [bne $s1, $s2, 25 if sl !'= $s2)goto Not equal test; PC-relative
" PC+4+1
Conditional c 00
branch set on less than slt $s1, $s2, $s3 [if($s2 < $s3) $sl=1; Compare less than; for beg, bne
else $s1 =0
set less than slti $s1, $s2, 100 [if($s2 < 100) $sl=1; Compare less than constant
immediate else $s1 =0
jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra goto $ra For switch, procedure return
tional jump  |jump and link jal 2500 $ra = PC + 4; go to 10000 |For procedure call

JMM VL0
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To Summarize: Addressing Modes

1. Immediate addressing

| op I rs I rt | Immediate

2. Register addressing

| op | rs | rt | rd | | functl Registers
|

Register

3. Base addressing
| op | rs | rt | Address | Memory

| Register | é—)—» | Halfword | Word

[ i

4. PC-relative addressing

| op | rs | rt | Address | Memory
|

| PC | q’% Word
|

5. Pseudodirect addressing
| op | Address | Memory

| PC | ¢— Word
[

MicroLab, riscO1 (31/96)
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Summary

= Instruction complexity is only one variable

= lower instruction count vs. higher CPI / lower clock rate
= Design Principles:

= simplicity favors regularity

= Smaller is faster

= 00d design demands compromise
= Make the common case fast

= Instruction set architecture:
& @ Very important abstraction indeed!
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Compiling #l

= Compiling a C assignment using registers

C-code
F=(g+h)—(i+]))

MIPS-code
add $t0, $s1, $s2 # register $t0 contains g+h

add $t1, $s3, $s4 # register $tl contains i+
sub $s0, $t0, St 1 # register $s0 contains (g+h)-(i+j)
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Compiling H?2

= Compiling using load and store

C-code
A[12] = h + A[8];

MIPS-code

| w $t 0, 32($s3) # temp register $tO gets A[8]
add $t0, $s2, $t 0 # temp register $t0 gets h+A[8]
sw $t 0, 48($s3) # stores h+A[8] into A[12]

= Compiling using a variable index

C-code

MIPS-code

add $t1, $s4, $s4 # tempregister St =2* i

add $t1, $t1, $t1 # tempregister $tl =4 * |

add $t1, $t1, $s3 # $tl = address of A[i] (4*i+$s3)
lw $t0, 0O($t1) # temp register $t0=A[i]

add $s1, $s2, $t0 # g=h+ A[i]

MicroLab, riscOL (34/96)

JMMvL.O



JMMvL.O

Compiling H3

= Compiling an If statement into a conditional branch

C-code
If (i==j) go to L1,
f=9g+h;

L1: f=f-—1i;

MIPS-code

beq $s3, $s4, L1 # goto L1 if i equals j

add $t 0, $s1, $s2 # f =g+ h (skipped if i equals j)
L1: sub $s0, $s0, $s3 # f=f —i (always executed)

= Compiling if-then-else into conditional branch

C-code
If i==))f=g+h;elsef=g-h;

MIPS-code
bne $s3, $s4, el se # goto else if i not equal |

add $s0, $s1, $s2 #f =g+ h (skipped if i 1=))
j exit # qoto exit
el se: sub $s0, $s1, $s2 #f=g—h (skipped ifi =)
exit:
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Compiling H4

= Compiling a loop with a variable index

C-code
Loop: g=g+AJ

| =1+

if (i I= h) goto loop;
MIPS-code

| oop: add $t1, $s3, $s3 #Htempreg$tl =2 * i
add $t1,$t1, $t1 #Htempreg$tl =4 *|
add $t1, $t 1, $s5 # $t1 = address of A[i]
|l w $t 0, O($t 1) # temp reg $t0 = A[i]
add $s1, $s1, $t 0 #g=g+A[i]
add $s3,$s3,$s4 #i=i+]|
bne $s3, $s2, | oop # go to loop if i '=h
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Compiling H5

= Compiling a while loop

C-code
while (save[i] == k)
i=i+j;

MIPS-code

| oop: add $t1, $s3, $s3 #Htempreg$tl =2 * i
add $t1,$t1,$t1 #Htempreg$tl =4 *|
add $t1, $t 1, $s6 # $t1 = address of save[i]
|l w $t 0, O($t 1) # temp reg $t0 = save[i]
bne $t 0, $s5, exi t # goto exit if save[i] =k
add $s3, $s3,$s4 #Hi=i+]
j |l oop # (o to loop

exit:

(MIPS code can be optimized)

MicroLab, riscO1 (37/96)
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Compiling

H6

= Compiling a case/switch statement

C-code
switch (k) {
case O:f=1+j; break;
case 1: f=g + h; break;
case 2: f=g-h; break;
case 3:f=1i-j; break;
}
MIPS-code
slt $t3, $s5, $zero #Htestifk<O
bne $t 3, $zero, exit # if k<0, goto exit
slt $t3, $s5, $t 2 # test if k<4
beq $t 3, $zero, exit #if k==4, goto exit
add $t 1, $s5, $s5 # temp reg $t1=2*k
add $t1,$t1,$t1 # temp reg $t1=4*k
add $t1,$t1,$t4 # $t1 = address of JumpTable[K]
| w $t 0, O($t 1) # temp reg $t0 = JumpTable[k]
jr $to0 # jump based on reg $t0
LO: add $s0, $s3, $s4 # k=0 so f gets i+
j exit # end of this case so goto exit
L1: add $s0, $s1, $s2 # k=10 f gets g=+h
j exit # end of this case so goto exit
L2: sub $s0, $s1, $s2 # k=2 so f gets g-h
j exit # end of this case so goto exit
L3: sub $s0, $s3, $s4 # k=3 s0 f gets i-j

exit:

JMMvL.O

# end of switch statement
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Chapter 4 (Paterson & Hennessy)

Arithmetic for Computers

= Where we have been
« performance (seconds, cycles, instructions)

& abstractions
= Instruction set architecture
= assembly language and machine language

= What's up ahead
= Implementing the architecture

operation

I

32 ALU

> . / result

32

MicroLab, riscOL (39/96)
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Numbers

Integers:
= Unsiged numbers

5 Signed numbers
= two's complement numbers
= 32 bit numbers: -2'147°483'648 ... 2147'483'647
& converting to negativ numbers: invert all bits and add 1

& converting n bit numbers in numbers with more than n bits:
copy the most significant bit (sign bit) into the other bits

= 0010 -= 0000 0010
#1010 -> 11111010
& Sign extension ,lbu“ vs. ,,Ib*

Floats:
= What

MicroLab, riscO1 (40/96)



Addition & Subtraction

« Just like In primary school (carry/borrow 1s)
0111 0111 0110
+ 0001 - 0110 - 0101

= two'‘s complement operations (easy)
0111
+ 1010
0001

= overflow (results too large for finit word length)
0111
+ 0001
1000

MicroLab, riscO1 (41/96)
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Overflow

« (etecting overflow
= overflow occurs when the value affects the sign:
= overflow when adding two positives yields a negative
5 0r, adding two negatives gives a positive
= 0r, adding two positives gives a negative
5 Or, subtracting a negative from a positive gives a negative
= 0r, subtracting a positive from a negative gives a positive

& consider the operation A-B, can overflow occur if A=0

« effects of overflow:

= an exception (interrupt) occurs
< control jumps to predefined address for exception

= Interrupted address is saved for possible resumption
= add (add), add immediate (addi ), subtract (sub)

= (lon‘t always want to detect overflow
= C ignores overflows

= unsigned integers are commonly used for memory addresses
where overflows are ignored <till sian extends!

= add unsigned (addu), add immediate unsigned (addi u),
subtract unsigned (subu)

= Set less than unsigned (s1 t u), set less than immediate
unsigned (sl ti u)

MicroLab, riscOl (42/96)
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Arithmetic Logic Unit  #1

= ALU operations: and, or , add, sub
(signed and unsigned)

Carryln

» Result

g ]
9
N e

Nine
o1

v
CarryOut
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Arithmetic Logic Unit

= tailoring the ALU to the MIPS

= need to support set-on-less-than sl t
= produces a 1 if rs << rt and O otherwise
s USe substraction (a-b)<<O implies a<<b

= Nneed to support test on equality beq
s USe substraction (a-b)=0 implies a=b

7 = T70
;:r 1 T Result
—p

v

CarryOut

Carryln

*> | | 1 —T> Result

Less —3—1» Set
\ A 4 ' v

overflow
detection

A 4

CarryOut
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Binvert

H2

Carryln  Operation

|

ao —>
bo =

Carryln
ALUO |—— Result0

Less
CarryOut

\ 4

al—»
bl —»
0—>

Carryln

ALU1l p—> Resultl
Less

CarryOut

\ 4

a2 —>»
b2 —>
O—P

Carryln

ALU2 | Result2
Less

CarryOut

:mem

1

a3l—»
b31 —>
o—>

Carryln f——» Result31
ALU31 Set
Less » Overflow
CarryOut

v
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Adders

= ripple-carry adders are too slow for 32 it

= Use carry lookahead or even hierarchical carry
lookahead technique (see VLSI course)

Carryln

v
a0 —| Carryln
b0 —> » Result0--3
al —»
bl —>»
a2 —»|

ALUO

PO +—>| pi
b2 —» [ & Gi
a3 GO [¢]

b3 —»

Cl | .
i

a4 —»| Carryln
b4 —> » Result4--7
ab —»|
bS — ALuL
a6 —»| P1]
b6 —» Gl—> gi+
a7 —»|
b7 —>

c2 i

a8 —»| Carryln
b8 —» » Result8--11

a9 —»|
b9 —>| ALU2 _
al0 —» P2 —|pi +
b10 —» G2|—|gi+
all —»
bll —»

NN

C3 | .
|+

al2 —»| Carryln
b12 —» » Result12--15

al3 —»
bl3 —>| AlU3
al4 —» P3 i
b14 —» G3f—> g1+
al5 —» C4 |
b15 —» ci+4

— pi+

ww

CarryOut
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Multiplication

=multiplication is more complicated than addition:
=Implementation by shift and addition (time vs area)
= Implementation by booth recoding algorithm (see VLSI)
= Negative numbers: convert and then multiply

Multiplicand

Shift left

\ 4

64 bits

64-bit ALU

!

Product

Write

64 bits

optimized version
(serial implementation)

Multiplicand

32 bits

\ 4 \ 4

32-bit ALU

\ 4

Write

64 bits

JMMvL.O

Multiplier
Shift right

32 bits

Start

A

la. Add multiplicand to the left half

of the product and place the result

in the left half of the Product register
[

Y
Multiplier0= 1 1. Test Multiplier0 = 0
MultiplierO
A

v v
/ | 2. Shift the Product register right 1 bit |

32 repetition?

< 32 repetitions

= 32 repetitions

= MIPS provides a separata pair or 32 bit registers containing
the 64 bit product called ,Hi* and ,,Lo*

& signed (mul t ), unsigned multiplicstion (mul t u)
= MIPS pseudosinstruction are used to fetch the 32 bit integer

product move from lo (nf | o) and move from hi

MicroLab, riscOl (4&/96)
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Floating Point

= We need a way to represent
= numbers with a fraction: e.g. 5. 1916
« very small numbers: e.g. 0. 000000012
= Very large numbers: e.9: 3. 1577 x 1012
= Representation
« Sign, exponent, significant:
«(-1)s'9n x significant x 10exponent
= more bits for significant increases accuracy
= More bits for exponent increases range
= |EEE 754 floating point standard
« single precision: 8 hit exponent, 23 it significant
« double precision: 11 bit exponent, 52 bit significant

MicroLab, riscOl (47/96)



IEEE 754 Floating Point Standard

« leading ,,1“ bit of significant is implicit
= exponent Is ,,biased” to make sorting easier
= all O 1s smallest exponent, all 1 is largest

« bias 127 for single precision, 1023 for double precision
(-1)sten x (l+significant) x 1Qexponent-bias

= examples:
« (ecimal; -0.75 =-3/22
« binary: -0.11 = -1.1 x2"
« floating point exponent: exponent=126=01111110
# |EEE 754 single precision:

+10111111010000000000000000000000
S| exponent significant

= 1n addition to overflow we can have underflow

& accuracy can be a big problem
= |EEE 754 keeps to extra bits: guard and round
« four rounding modes
< positive divided by zero gives ,,infinity*
= zero divided by zero yields ,,not a number*
= Other complexities

MicroLab, riscO1 (48/96)
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Chapter 5 (Paterson & Hennessy)

JMMvL.O

Datapath and Control

= We are ready to look at an implementation of the
RISC processor (MIPS compliant)
= Simplified version to contain only:
= memory reference instructions: | w, sw

= arithmetic-logic instructions:
add, sub, and, or, sl t

= control flow instructions: beq, j

= (Generic implementation:

« Use the program counter (PC) to supply instruction
address

« (et the instruction from memory
« read registers
s Use the instruction to decide exactly what to do
= All instructions use the ALU after reading the
register
= Why? Memory reference? Arithmetic? Control flow?

= Make the common sense fast
= Simplicity favors reqularity

MicroLab, riscO1 (53/96)



The Processor: Abstract View

= Two types of functionl units:

= elements that operate on data (combinatorial)
= elements that contain state (sequential)

» data
register #
> i i Register
PC address jnstruction egisters ALU address
n . .
struction register # - Data
Memory . AT
register # T Memory
p| data

MicroLab, riscOL (54/96)
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Functional Units

—lInstruction —>
address
—p{ PCl—p
Instruction|—,, Add Sum
Instruction
memory
—>
Instruction Memory Program Counter Adder
5 Read
— Register 1 Read
) 5 Read data 1
numbers | | "egser2 pat
e | v Registers aa
rite
— register dF;?;i —
Data { —| Write
data
ALU
Register File
—>» Address Read
data 16 32
Dat
. ata
Write
—» gata Memory

Sign-Extension Unit
Data Memory Unit
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Building the

Data-Path

JMM VL0

\ 4

4 =

-

read
address

instruction

Instruction
Memory

Registers

read
register 1 (ead
read data 1
register 2

. read
write data2
register
write
data

Add ALY
result

xc=Z

\ 4

result

Y

x c Z |

\ 4

Read
address data

Data
Memory

Write
data

c
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Control

Hl

= Selecting the operations to perform (ALU, read,
write, etc)

= Controling the flow of data (multiplexor inputs)
& Information comes from the 32 bits of instruction

= Example:
instruction format
add $8, $17, $18
000000(| 10001 {10010|01000| 00000 [100000
op s rt rd shamt funct

= ALU's operation based on instruction type and

function

MicroLab, riscO1 (57/96)
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ALU Control H?2

« What should the ALU do with this instruction
=|lw $sl1, 100( $s2)

35

18 17 100

op

IS rt 16 bit offset

= Must describe hardware to compute ALU control input

« (Jiven Instruction type desired ALU action
= 00 = lw,sw (no funct field)  add

= 01 = beg subtract

& 10 = arithmetic add,sub,and,or,slt

& function code for arithmetic

= ALU control input

000
001
010
110
111

AND

OR

add

subtract
set-on-less-than
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Flow Control #3

= Data-path operation(R-Type, add $s1, $s2, $s3)

« fetch instruction from instruction memory, increment PC

= read two registers from the register file ($s2,$s3)

= ALU operates on register data using function code

sresult from ALU is written into destination reg $sl of reg file

= Data-path operation(R-Type, | w $s1, of f ($s2))

JMM VL0

« fetch instruction from instruction memory, increment PC

« read register $s2 from the register file

= ALU computes the sum $s2 and off

« the sum from the ALU is used as address for the data memory
sthe data from memory unit is written into reg $sl of register file

MicroLab, riscOL (59/96)



Single vs. Multiple Cycle

= Single cycle data-path

« all of the logic is combinational
= Wait for everything to settle down and the right thing to be done
= We use write signals along with clock to determine when to write

& cycle time determined by length of longest path (compare R-
Type instruction with lw instruction)

= Mulicycle cycle data-path

= Use smaler cycle time untis
= have different instruction take different number of cycles

= We will re-use functional units
& ALU used to compute address and to increment PC
= memory used for instruction and data

« control signal will not be determined solely by instruction
= We will use finit state machine for control

JMM VL0

reglsters
JEEEAN
/ N\
/
&
instruction
register
PC|l—X address data A
. . @—>register # - g
instruction .
memory or data memory registers >ALU-.—>ALUOut—.
data register #
> data it , > B
register register #
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Multicycle Approach

= Break up the instructions into steps, each step takes a
cycle

« balance the amount of work to be done
« restrict each cycle to use onyl one major functiuonal unit

= At the end of cycle
« Store values for use in later cycles
« Introduce additional ,,internal® registers

PC [¢]
M Instruction
u Address [25-21]
X

Instruction
[20-16]

(™
=<
)
3
°

<2

ALUO U

Instruction,
[15- 0]}

MicroLab, riscO1 (61/96)
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Five Execution Steps

= Instruction fetch
= Instruction decode and register fetch

= Execution, memory address computation, or branch
completion

= Memory access or R-type instruction completion
= Write back step

&< Instructions take from 3 to 5 cycles

MicroLab, riscOl (62/96)



Step 1 Instruction Fetch

= Use PC to get instruction and put it in the
Instruction register

= Increment the PC by 4 and put the result back in
the PC

= Can be described succinctly using RTL (register
transfer language)

=R
= PC

Menory[ PC ;
PC + 4;

= can we figure out the values of the control signals
= What Is the advantage of updating the PC now?

MicroLab, riscOL (63/96)



Step 2: Instruction Decode and
Register Fetch

= Read register rs and rt in case we need them

= Compute the branch address in case the instruction
IS a branch

& RIL:

=A = Reg[| R[ 25-21]];
=B = Reg[| R[ 20-16]];

=« ALUout = PC +
(signextend(l R 15-0]) << 2;

e

sign-extended and shifted offset field

= We aren‘t setting any control lines based on the
Instruction type (we are busy decoding It in our
control logic)

MicroLab, riscOl (64/96)



Step 3: (Instruction Dependent)

= ALU Is performing one of the four functions,based on
Instruction type:

= Memory reference:
«ALUout = A + sigext(IR 15-0]);

& R-type:
= ALUout = A op B;

& Branch:
«1f (A==B) then PC = ALUout;

& Jump:
= PC = P( 31-28] || (I R 25-0] <<2);

MicroLab, riscOL (65/96)



Step 4: R-Type or Memory Access

= Load and store Instruction access memory
= NMDR = Menory[ ALUout | ;

& 0r
= Menory[ ALUout] = B;

= Arithmetic logical instruction (R-type):
= Reg[l R 15-11]] = ALUout;

= the write actually takes place at the end of the cycle
on the clock edge
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Step 5: Write Back

= During this last step, loads complete by writing back
the value from memory

< Reg[I R[ 20-16]] = MDR

& Summary

Action for R-type [ Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOuUt = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=Aop B ALUOuUt = A + sign-extend if (A ==B) then | PC =PC [31-28] 1l
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOuUt or

Store: Memory [ALUOut] = B
Memory read completion Load: Reg[IR[20-16]] = MDR

MicroLab, riscOl (67/96)
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Implementing the Control

= Value of control signals depend on
= What instruction is beeing executed
& Which step is beeing performed

= Implementation architectures

« finit state machine: used for up to some dozen of states
= microprogramming: used for hundreds or thousands of

— PCWrite
PCWriteCond
lorD
MemRead
Mem Write
IRWrite
Control logic MemtoReg
finit state machine PCSource
< ALUOp
Outputs | I"A| UsrcB
ALUSrcA
RegWrite
RegDst
NS3
NS2
| " NS1
nputs
A L[ [Nso
-
2l 2| 8 g 2] 8 ol « ol o
O] Ol o] o o] © nl | |
Instruction register State register
opcode field Y 7 X
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Control by Microprogramming

= Specification advantage
= €asy to design and write
« (esign architecture and microcode in parallel

= Implementation aavantages (off-chip ROM)
= €asy to change since values are in ROM
= can emulate other architectures
= can make use of internal registers

= Implementation disadvantages, slower now that:
« control is implemented on same chip as processor
= ROM is no longer faster than RAM

~ PCWrite
PCWriteCond:
lorD
MemRead
PLA or ROM MemWrite

IRWrite

Control unit

BWrite
Outputs < | MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA

RegWrite
_ [ _RegDst
AddrCtl

Input
4

1
l \ - State

Address select logic [«

1

Op[5-0],

Instruction register
opcode field
MicroLab, riscO1 (69/96)
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Microinstructions

= Microprogramming Is based on microinstructions

= each microinstruction defines the set of datapath control
signals that must he asserted in a given state

« @ Sequence of microinstructions defines one machine
Instruction

= @S microinstructions may execute sequentially, address
Increment logic is used (adder), for conditional branches
and instruction dependent branches, dispatch ROMs are
used

« the key idea Is to represent the asserted values on the
control lines symbolically, so that the microprogram is a
representation of the microinstructions, just as assembly
language is a representation of the machine instructions

PLA or ROM
F 3

1
1 % Y State
M"dﬂ/
Mx ) Addrct
3 2 10/
1 A A 1
0

Dispatch ROM 2 Dispatch ROM 1

i

® 1 Address select logic

X
e}

Instruction register
opcode field
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Microinstruction Sequencing

& Three different methods are available to choose the
next microinstruction to be executed:

& Increment the address of the current microinstruction to
obtain the address of the next microinstruction: Seq
label

« pranch to microinstruction that begins execution of the
next MIPS instruction: Fetch label

= Choose the next microinstruction based on the control
unit input is called dispatch. Dispatch operations are
Implemented by creating a table containing the addresses
of the target microinstructions. this table is indexed by
the control unit input. We use 2 dispatch tables:
Dispatch 1 label and Dispatch 2 label

MicroLab, riscO1 (71/96)
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Microinstruction Format

Feld name Value Signals active Comment
Add ALUOp=00 Causethe ALU to add.
ALU contrd Subt ALUOp=01 Cause the ALU to subtract; this implements the compeare for
branches.
Func code ALUOP=10 Use the instruction's function code to determine ALU control.
SRCL PC ALUScA=0 Use the PC asthe first ALU input.
A ALUSCA=1 Regster A is the first ALU input.
B ALUScB=00 Register B is the second ALU input.
SRC22 4 ALUScB=01 Use 4 as the second ALU input.
Extend ALUScB=10 Use output of the sign extension unit as the second ALU input.
Extshit ALUScB=11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and 1t fields of the IR as the register
numbers and putting the data into registers A and B.
Wite ALU Reg\Wtite, Wite a register using the rd field of the IR as the register number and
Regster RegDst=1, the contents of the ALUOU as the data.
control MemioReg =0
Write MDR Reg\Wtite, Wite a register using the rt field of the IR as the register number and
RegDst=0, the contents of the MDR as the data.
MemioReg =1
Read PC MemReed, Read memary using the PC as address; write result into IR (and
loD=0 the VDR).
Memary Read ALU MemReed, Read memary using the ALUOLL as address; write result into MDR.
loD=1
Wtite ALU Memtite, Wite memary using the ALUOUL as address, contents of B as the
loD=1 data.
ALU PCSource =00 Wite the output of the ALU into the PC.
PCWite
PC wite control ALUOuU-cond PCSource =01, If the Zero output of the ALU is active, wite the PC with the contents
PCWiteCond of the register ALUOUL
jump address PCSource =10, Wtite the PC with the jump address fromthe instruction.
PCWite
Seq AddCli=11 Choase the next microinstruction sequentially.
Sequenang Fetch AddrCi=00 Goto the first microinstruction to begin a new instruction.
Dispaich 1 AddCi =01 Dispaich using the ROM 1.
Dispatch 2 AddrCi=10 Dispatch using the ROM 2.

JMM VL0
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Designing Microinstructions

JMM VL0

| R = Menory[ PC];
PC = PC + 4,
ALU Register PCwrite
Label [control] SRCL | SRC2 | control |Memory [control | Sequencing
fetch |Add |PC 4 Read PC JALU | Seq
Add |PC Extshft | Read Dispatch 1
Fields Effect

ALU control, SRCL, SRC2

compute PC+4 (is also written into ALUout
though it will never be read from there)

Memory fetch Instruction into IR

PCwrite control causes output of the ALU to be written into the PC
Sequencing Go to the next microinstruction

Fields Effect

ALU control, SRCL, SRC2

store PC+signextens IR[15-0]<<<<2 into ALUout

Register control

use rs and rt fields to read reg placing data in A,B

Sequencing

use dispatch table 1 to choose the next micro addr

MicroLab, riscO1 (73/96)




Designing Microinstructions

ALU Register PCwrite
Label  |control |SRCL| SRCZ control  [Memory |control | Sequencing
Rformat! Func code|A B Seq
Write ALU Fetch 1
N Fields Effect

ALU control, SRC1, SRC2

ALU operates on the contents of the A and B reg
using function field to specify the ALU operation

Sequencing

Go to the next microinstruction

Fields

Effect

register control

the value in ALUout is written into the register
file entry specified by the rd field

Sequencing

go to the next micro Instruction labeld fetch

Microprogramming for our MIPS

ALU Register PCWrite
Label control |SRC1| SRC2 control Memory control Seqguencing
Fetch Add PC 4 Read PC _|ALU Sed
Add PC Extshft |Read Dispatch 1
Meml Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformatl [Func code |A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond _|Fetch
JUMP1 Jump address [Fetch

JMM VL0
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Exceptions & Interrupts

= one of the hardest part of control is implementing
exceptions and interrupts

= they change the normal flow of instruction
execution

& an interrupt Is an event that causes unexpected
change of control flow but comes from outside of
the processor (170 device request)

= an exception Is an unexpected event from within the
processor (arithmetic overflow, undefined
Instruction, invoke OS from user program)

= handling exceptions:

« address of offending instruction saved in exception
program counter (EPC)

« transfer control to OS at some specified address

s cause register holds status information with reason for
exception

MicroLab, riscO1 (75/96)



Chapter 6 (Paterson & Hennessy)

Pipelining

« pipelining s an implementation technique in which
multiple instructions are overlapped in execution

« Under ideal conditions, the speedup from pipelining
equals the number of pipe stages

= pipelining increases instruction throughput
« pipelining increases latency

Program

execution ) 2 4 6 8 10 12 14 10 19
order Time T
(in instructions)
w$1,10080) |G| Reo| ALU | DO | Reg
«— —>|Instruction Data
Iw $2, 200($0) 8ns feten | R ALY | access Reo
<« —>Instruction
Iw $3, 300($0) 8 ns fetch
.
8 ns
Program
execution . 2 4 6 8 10 12 14
Time >
order ' ' I I I ' I
(in instructions)
Instruction Data
w $1,100($0) | ren Reg| AU | o icess Reg
<+—¥|nstruction Dat
Iw $2, 200($0) 2ns fetch Reg| ALU acce! Reg
<+—¥|Instruction Dat,
w $3, 300($0) 2ns | pech Reg[ AW [ iess Reg
Pt PP+ ———>
2ns 2ns 2ns 2ns 2ns

MicroLab, riscOl (76/96)

JMM VL0



JMMvL.O

Pipelining: Hazards

= What makes It easy

« all instruction are the same length

« Just a few instruction formats

= Memory operands appear only in loads and stores
= (efinition of hazard: hardware cannot support

combination of Instructions that we want to execute
In the same clock cycle

& What makes it hard
« structural hazards: suppose we have only one memory

« control hazards: need to worry about branch instructions

= (ata hazards: an instruction depends on previous
Instructions

= We‘ll built a simple pipeline and look at these
ISSUEs

= We'll talk about modern processors and what really
makes It hard:

= exception handling

« trying to improve performance with out-of-order
execution, etc.
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Basic ldea

five stage pipeline

IF: instruction fetch o

ID: instruction decode and register file read
EX: execution or address calculation

MEM: data memory access

WB: write back

IF: Instruction fetch ID: Instruction decode/ EX: Execute/ MEM: Memory access| WB: Write back

register file read address calculation
0
M
u
X
1

rrrrrrrrr

What do we need to add to actually split the datapath into stages?

MicroLab, riscO1 (78/96)
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Pipelined Datapath

N 0
M
U
X
[l
IF/ID IDIEX EX/MEM MEM/WB
Add
» —
Add | —pp
4 Shift Addresul
left 2
s o] read
8 "| register 1
>
PC Address E > read drteaii N
; £ register 2 ¢ata >
Instruction L —d Reqist
Memory L egisters read — (1
) write read pi address data[ ™| M
™ register  gata 2 Data )LZ'-
. Memor
,—D \évgtt;: p| Write Y 0
data
—>
16 (sign)32 >
“exten -
Can you find a problem even if there are no dependencies?
0 . . .
—|v| |What instructions can we execute to manifest the problem?
U
X
u
IF/ID ID/EX EX/MEM MEM/WB
Add
» ——
Add | !
4 Shift Addresul
left 2
s o read
8 "| register 1
>
PC Address E > read . a:tea;acll .y
; £ register 2 >
Instruction IS el | Reqi
egisters
Memory write read 3| address (rjea"’t‘g—y —> ,\1/|
register  data 2 Data. U =
write Wri';gemory 6(
data > data
—>
16 32 >
. d -

MicroLab, riscO1 (79/96)
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| w

:instructioﬁ
fetch

The instruction is beeing read from the memory using the address in the PC

Instruction Fetch

(Working Pipeline: Step 1)

Add

IF/ID

Address

Instruction
Memory

Y

l Instruction

v

read

register 1

read read

register 2 data 1
~ Registers

write read

register  gata 2

write

data

16 [ Sign 32
“exten

EX/MEM

A 4

address E%?g

Data
Memory
write

data

MEM/WB

v

»
L

v

v
(oxc=]
]

L]

and then placed in the IF/ID pipeline register. The PC address is incremented

by 4 and then written back into the PC to be ready for the next clock cycle.

This incremented address is also saved in the IF/1D pipeline register in case
it is needed later for an instruction, such as beg. The computer cannot know
which type of instruction is beeing fetched, so it must prepare for any

instruction, passing potentially needed information down to the pipeline.

JMM VL0

MicroLab, riscO1 (80/96)



Instruction Decode and Reg File Read

(Working Pipeline: Step 2)

| w

= 4

“instruction
decode

IF/ID

Add

4=

A4 \ 4

Address
Instruction L »

Memory

l Instruction

read
register 1
read

read
register 2 deis

Registers

write read

register data 2

write

data

o
1
(oxc=]
[]

MEM/WB

16 [ Sign | 32
“exten

v

The instruction portion of the IF/1D pipeline register supplies the 16-bit
immediate field, which is sign-extended to 32 bits, and the register numbers
to read the two registers. All three values are stored in the ID/EX pipeline
register, along with the incremented PC address. We again transfer everything

that might be needed by any instruction during a later clock cycle.

JMMvL.O
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Execute or Address Calculation
(Working Pipeline: Step 3)

| w
>0 executi on
M
U
X
!
IF/ID ID/EX MEMWE
Add R
4
5, read
B "l register 1
Address 2 read
" Z4—>| read data1[
Instruction I e § register 2
Memor . Registers oad -
y p Write read J adaress Sl (=T
register  gata 2 dress M
X
write _I;/Iemory 0
’_’ data p| Write
data
16 [sjgn)32 N
“exten -

The load instruction reads the contents of register 1 and the sign-extended
immediate from the ID/EX pipeline register and adds them using the ALU. The
sum is placed in the EX/MEM pipeline register.

MicroLab, riscOl (82/96)
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The load instruction is reading the data memory using the address from the
EX/MEM pipeline register and loading the data into the MEM/WB pipeline

Memory Access

(Working Pipeline: Step 4)

| w

A

menory

Add

IF/ID

Address

Instruction
Memory

register.

JMMvL.O

A 4

l Instruction

v

read
register 1

read
read

register 2 data 1
_ Registers
write read

register  gata 2

write
data

16 [ Sign ) 32
“exten

EX/MEM

Data
Memory
» Write

I
>

"| data

d
»| address Eeaa%a id

v

v

MEM/WB

v
(oxc=]
[]

L]
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Write Back
(Working Pipeline: Step 5)

| w
“—>
wite
0 back
M
U
l" X
IF/ID ID/EX EX/MEM MEM/WB
Add o ] o

4
5 a read
o § 7| register 1 g
ress = rea
PC Z¢—p| read data1[ %
. = register 2 g
Instruction [ 1 | L ;
Memor g isters read 1
y o Write read » address data| ™| [ |M
register gata 2 Data U9
. X
write Wri,;gemory 0
V_' data > data

A 4

16 [ Sign ) 32
“exten —

> »
g N » |

v

In the final step, the data is being read from the MEM/WB pipeline register
and written back into the register file.

MicroLab, riscOl (84/96)
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program fime , 1, CC2 3 Co4 oc5  Ccs
execution
| w $10, 20( $2) —

sub $11, $2, $3 —IM [ [EReg TOM T J:Reg—|:|

Graphical Representation

= IM: Instruction memory
= Reg: register file

= ALU

= DM: data memory

2nd clock cycle

\

M ‘|:|":§Reg — AL ‘EDM A [ TRes =

\

read at 2nd
halfcycle

write at Ist
halfcycle
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Pipeline Control

= We have 5 stages, what needs to be controled in
each stage?

« Instruction fetch, PC increment
« Instruction decode, register fetch
& EXecution

= Memory stage

& Write back

= Pass control signals along just like the data

WB L
Instruction :

—>| Control [ M »| WB L
EXE:jj » M f— ‘VVB>:':
| — |

IF/ID ID/EX EX/MEM MEM/WB

MicroLab, riscOl (86/96)
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Datapath with Control

LIE:(/MEM

LT

ALUSIc

Branch

PCSrc
0 ID/EX
M
u WB]
x —
1
L Control M
IF/ID X
i)
S
&
4
s Read
Address = register 1 Read
3 —|
E ead data 1
Instruction L = reglswkzegisters Read
R eal
memory Write data2
register
Write
| data
Instruction
16
[15-0] N Sign
N Tlextend
Instruction
[20- 16]
Instruction
[15-11]

JMM VL0

Read
Address data
Data
memory
Write
data

ME M/wWB

|

Oxczr

MemRead

RegDst
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Data Hazards #1

Problem with starting next instruction before first is finished
- (ependencies that go backward in time are ,,data hazards*

tnein | CCL  CC2

|
clock cycles

CC7 | CC8 | CC9

—iIM Reg [
sub $2,$1,$3
i -

and $12, $2, $5

'I

or $13, $6, $2

add $14, $2, $2

sw $15, 100( $2) AL MiReg

MicroLab, riscOl (88/96)
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Data Hazards H?2

= Software solution
= have a compiler guarantee no hazards
= Where do we insert the ,,nops*

sub $s2, $s1, $s3

and $s12, $s2, $s5
or $s13, $s6, $s2
add $s14, $s2, $s2
SwW $s15, 100( $s2)

« problem: this really slows us down

MicroLab, riscO1 (89/96)
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Data Hazards: Forwarding

= the dependencies between the pipeline registers

move forward In time

time in | CCL | CC2 | CC3 | CC4 | CC5 | CC6 | CC7 | CC8 | CC9
clock cycles ] ' ' ! ' ! %
—M ‘|:|":Reg || oM
sub $2, $1,$3 ]
—IM [ Reo L Reg.
and $12, $2, $5 : ]
—iM | [SReg [ AL DM R
or $13,$6,$2 - U == )_ (=] &0
add $14, $2, $2 —iM __'EER(:Q :__‘[DM —I_ J:Regé

MicroLab, riscO1 (90/96)
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Data Hazards; Stalls

= since the dependence between the | wand the
following and instruction goes hackward in time,
this hazard cannot be solved by forwarding

= this combination must result in a stall by the
hazard detection unit

time in | cCl CC2 CC3 CC4 CC5 CC6  CCY ICC8 ICC%

|
clock cyclles | _ _ _l
—IM ‘|:|'[Reg | TOM [ HReg
L L 4

lw$2, 20(31) 7 © o<
—IM [ [SReg _59* oM I lReg
and $4,$2,$5 - - -

—?IM—— J:"F;e—l ALU DM 1 FHRe
OI’ $8, $2, $6 Fva— | Q__Abi_ l__,—_ g

add $9, $4, $2 —IM [ J:Reﬂ— @’ WH‘EReg

MicroLab, riscO1 (91/96)
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Data Hazards: Stall Insertion

= We can stall the pipeline by keeping an instruction
In the same stage

time in | CCl | CC2 | CC3 | CC4  CC5 | CCo6 | CC7 | CC8 | CC9
clock cycles i i ' ' ! T
—IM_ EReg ] oA I@DM T ey
| w $2, 20($1) - ]
—M_H geg [ EReg |- ;D— TV I FReg
and $4,$2,$5 ) l ]
M Y= [FRey [ [ZPAD from H FReg

or $8, $2, $6 I

&t B [N
add $9, $4, $2 —IM_[{Reg |- _WH‘EReg

JMM VL0
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Branch Hazards

« the branch instruction takes its decision in the DM

stage

= When we decide to branch, other instructions would
already be in the pipeline

= We are predicting ,,oranch not taken* (need to add
hardware for flushing instructions if we are wrong)

time in | CCl | CC2 | CC3  CC4 | CCh ICC6 | CC7 | CC8 ICC9
clock cycles ] 3 ' ' ' ' T
—iIM H EReg [ ]

‘Reg [ '[DM . Reg
40 beq $1,$3,7_ ] ] ]

—IM [ FiReg [ ZPALH oM = FReg
44 and $12,$2,35 :Lr: ]

—IM [ FReg [ [LPAL DM = ER

48 or $13, $6, $2 e [T
52 add $14, $2, $2 "M:_ “:FEEEZ_?AL [TOM T [ TReg

72 |w $4, 50( $7)

JMM VL0

+IM_H oReg [ oA
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Improving Performance

& Try to avoid stalls

= eg: reorder these instruction | t $0, 0( $t 1)

lw t$2, 4($t1)
sw $t 2, O($t 1)
sw $t0, 4($t 1)

= Add a branch delay slot
« the next instruction after a branch is alwyas executed
« rely on compiler to fill the slot with something useful

= (ynamic scheduling

« the hardware performs the scheduling
& hardware tries to find instructions to execute
& 0ut of order execution is possible

& speculative execution and dynamic branch prediction
(branch prediction buffer or branch history table)

= Superscaler: start more than one instruction in the
same cycle

MicroLab, riscO1 (94/96)
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To Probe Further ...

=The book from Hennessy&Patterson addresses much
more important topis:

Caches =
Virtual memory O fainin ey

=Mmemory hierarchy RIHIH
(esign of 1/0 systems "
#uses

= Multiprocessors

= Clusters

= network topologies

= There is a second hook from the same authors
adressing the same subject: ISBN 1- 55860 596 !
(May 2002) N

MicroLab, riscO1 (96/96)
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