Communication

UDP (User Datagram Protocol)
 connectionless – independent packets, no guarantees
 local and receiving socket each time
TCP (Transmission Control Protocol)
 connection-oriented - reliable order
 connection first established
 both directions

Overhead
 UDP - local and receiving every
 TCP - establish
Packet Size: UDP - 64 k
Reliability

TCP - indefinite data in order and reliably
UDP - data transfer should not be slowed down

Middleware

RMI != RPC
 doesn’t try to hide distribution
 passing by value only
 JVMs hide platform dependencies
 serialization heavier, pass the code. URL

No Call & Return
 no result needs to be returned
 a server may not be available
 make the client more responsive
 any component to initiate

[image:]
[image:]
Call & Return
 server is ready
 components and network are reliable
 fine to block the caller
 one component initiative others wait

[image:]
Persistent asynchronous	persistent synchronous
[image:]
Transient asynchronous	persistent synchronous
[image:]
Persistent synchronous server-persistent synchronous
[image:]
Transient synchronous (C&R)	transient synchronous

messaging style
 don’t follow a strict call-return pattern
 more responsive
 any component to initiate
 may not be available

data sharing style
 data plays a central role
 only data availability or values

data streaming style
 generated one place/consumed other
 timeliness of data delivery is crucial
 asynchronous, synchronous, isochronous
 complex data

publish/subscribe
 Space decoupling
 Time decoupling
 Synchronization decoupling

Services

Discovery
	
	direct
	client-init
	supplier-init
	directory

	Id
	addre
	query
	addre
	query

	U2D
	update
	update
	cach
	cach

	Select
	no
	yes
	yes
	yes

	PtoP
	P2P
	cast
	cast
	depends

	Scale
	No
	No
	no
	yes

computing definition of service
the act of performing helpful or useful labor, where the service supplier is developed separately from consumers and may serve many consumers

Web services
 services are first class
 soc between supplier and consumer
 focus on integration and neutrality (mofm)
 looser coupling
 avoid proprietary APIs
 Simple Object Access Protocol
 wider industrial support
 describing and discovering services

Software Architecture

A software system’s architecture is the set of principal design decisions about the system.
Design decisions encompass every aspect of the system: Structure, Behavior, Interaction, Non-functional
“Principal” implies a degree of importance that grants a design decision “architectural status”.

Connectors are good
 Separate computation from interaction
 Minimize component interdependencies
 Support software evolution
 component-, connector-, & system-level
 Potential for supporting dynamism
 Facilitate heterogeneity
 Become points of distribution
 Aid system analysis & testing

Roles: Communication, Coordination, Conversion, Facilitation

Communication
 Different communication mechanisms
 Constraints on communication
 Constraints on quality of service
 Separates communication from computation
 May influence non-functional
Coordination
 Determine computation control
 Control delivery of data
 Separates control from computation
Converters
 interaction of independently developed
 Mismatches based on interaction
 Adaptors, Wrappers
Facilitators
 interaction of components
 access to shared information
 Ensure proper performance profiles
 synchronization mechanisms

Styles
 Design reuse, Code reuse, Literature, Interoperable, Analyses, Visual

Pipe & Filter
 Filter add, replacement, and reuse, analyses, Concurrent execution
 Batch, Not for interactive, Not for transmission
Object-Oriented
 System decomposition, Information Hiding
 tight coupled, know the server
Layered
 Abstraction, evolution, limited change, interoperability, standard
 Not for everything, Performance
Blackboard, Client Server, Peer-to-Peer, Push based
Implicit Invocation
 reuse, evolution
 no order, no big picture, not intuitive, control is delegated
C2
 Interface Top, Bottom: Component 0-1, Connector 0+
 Independent messages: request go up, notification down -> Asynch
 Assumption about only above them
 Flexibility and Adaptability: Loose coupling, flexible connector
 Distribution: no shared space, routing by configuration
 Visibility: Connector sees everything
 Parallelizability: Multiple components in each layer

Mobility and Adaptation

Client-Server

Remote Evaluation

Code on Demand

Mobile Agent

No MA they gather data from one hop to the next
No RE & COD code size larger than results
No C/S size of the result large

Two important reasons
 Networks have become much more capacious and capable
 Lack of support for security concerns

Why Adapt
 Context: location, social activity
 Availability: fault, balancing, recovery
 Resource: CPU, Battery, Bandwidth
 Requirements: Services, QoS

[image:]
[image:]
Synchronization & Coordination

[image:]

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

ITCH = (scratch->END).
CONVERSE = (think->talk->END).
||CONVERSE_ITCH = (ITCH || CONVERSE).
COUNT[i:0..N] = (when (i<N) inc -> COUNT[i+1]).

Consistency, Replication & Fault

Predictability
 cannot tell which trace will occur
Consistency
 given one trace of events, different order for compontents

ARRIVALS = (arrive -> ARRIVALS).
DEPARTURES = (depart -> DEPARTURES).
CARPARKCTRL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive -> SPACES[i-1]
 |when(i<N) depart -> SPACES[i+1]).
||CARPARK = (ARRIVALS || DEPARTURES|| CARPARKCTRL(4)).

class Arrivals extends Thread {
Arrivals(CarParkControl CPC) {}

void run() {
 CPC.arrive();
}
}
class Departs extends Thread {
Departs(CarParkControl CPC) {}

void run() {
 CPC.depart();
}
}

class CarParkControl {
private int spaces;
private int capacity;

CarParkControl(int n) {spaces = n; capacity = n;}

synchronized void arrive() {
while !(spaces > 0) wait();
--spaces;
notify();
}

synchronized void depart() {
while !(spaces < capacity) wait();	
++spaces;
notify();
}
}

A = (dothis -> synch1 -> dothat -> synch2-> END).
B = (sing -> synch1 -> dance -> synch2 -> END).
||AB = (A || B).

class A extends Thread {
 A(Barrier s1, s2) {…}
 void run() {
 dothis();
 s1.ready();
 dothat();
 s2.ready();
}
}
class B extends Thread {
 B(Barrier s1, s2) {…}
 void run() {
 sing();
 s1.ready();
 dance();
 s2.ready();
}
}
class Barrier {
private int N;

Barrier(int n) {N = n}

synchronized void ready() {
N--;
If(N>0) wait();
else notifyAll();
}
}
Local read/Remote write
[image:]

Local read/Local write
[image:]

Value
 small data
 complex operation
Operation
 small/large data
 simple operation
Notification
 large data
 no need to read every

Pull
 some inconsistency is tolerated
 producers are oblivious of replica location
 point-to-point (value or operation)
Push
 quick consistency is required
 producer know location of replicas
 Multicast may be used
Epidemic
 eventual consistency is tolerated (communication reduce)
 replicas need to know about neighbor replicas
 deletions are a problem

transient
 occurs and disappears; unlikely to reoccur
intermittent
 recurrently appears and disappears
permanent
 persists until fixed

fail-stop
 component announces failure and stops working
fail-silent
 component stops responding
fail-safe
 easily recognized as faulty
Byzantine
 not easy to recognize failure

[image:]
1. sends its state to all others
2. assembles the state received from others
3. sends its view of the full state to others
4. majority voting to for true state of others
[image:]

to reach agreement given m faulty processes
needs at least 2m +1 non-faulty processes
total nodes must be at least 3m + 1

Security

[image:][image:]

Man in the middle & Reply Attack

not give information unless you know to whom you are giving it
always use different challenges

Needham-Schroeder
[image:]
each peer holds a secret key shared with the Key Distribution Center
1 is in the clear
each challenge is a nonce, keys are nonce too
2, RA1 being encrypted with KA,KDC authenticates the KDC to A
2 containing B prevents a man in the middle
3 containing RA2 and 4 containing RA2-1 authenticates B to A
5 authenticates A to B

Keberos
[image:]
3 containing KAS,TGS(A,KA,TGS) allows A to authenticate with TGS
3 containing a session key KA,TGS allows A to talk to the TGS
6 containing an encrypted timestamp limits replay attacks
7 corresponds to message 2 in the Needham-Schroeder protocol

Asymetric
[image:]

Symmetric Pros (Asymmetric Cons): It is more efficient in the sense of computation. The keys can be exchanged over a unsecure channel and there is no need for an external authority.
Asymmetric Pros (Symmetric Cons): It is much more secure than the symmetric one. The number of keys are O(N) while in symmetric ones it is O(N2).

Diffie-Hellman
[image:]

Signing
[image:]
FC=(takepic->checkdb->(fmatch->FC|nomatch->(clear->FC|resetf->FC))).
CM=(sens->analize->(detec->CM|not->(clear->CM|resetc->CM))).
||ALL=(FC||CM).

RUN THREADS.start in Java corresponding to FSP.
DO NOT FORGET || when joining FSPs
image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.jpeg

image23.png

image24.png

image25.png

image2.png

image3.png

image4.png

image5.png

image6.png

