Communication

UDP (User Datagram Protocol)
 connectionless – independent packets, no guarantees
 local and receiving socket each time
TCP (Transmission Control Protocol)
 connection-oriented - reliable order
 connection first established
 both directions

Overhead
 UDP - local and receiving every
 TCP - establish
Packet Size: UDP - 64 k
Reliability

TCP - indefinite data in order and reliably
UDP - data transfer should not be slowed down

Middleware

RMI != RPC
 doesn’t try to hide distribution
 passing by value only
 JVMs hide platform dependencies
 serialization heavier, pass the code. URL

No Call & Return
 no result needs to be returned
 a server may not be available
 make the client more responsive
 any component to initiate

[image:]
[image:]
Call & Return
 server is ready
 components and network are reliable
 fine to block the caller
 one component initiative others wait

[image:]
Persistent asynchronous	persistent synchronous
[image:]
Transient asynchronous	persistent synchronous
[image:]
Persistent synchronous server-persistent synchronous
[image:]
Transient synchronous (C&R)	transient synchronous

messaging style
 don’t follow a strict call-return pattern
 more responsive
 any component to initiate
 may not be available

data sharing style
 data plays a central role
 only data availability or values

data streaming style
 generated one place/consumed other
 timeliness of data delivery is crucial
 asynchronous, synchronous, isochronous
 complex data

publish/subscribe
 Space decoupling
 Time decoupling
 Synchronization decoupling

Services

Discovery
	
	direct
	client-init
	supplier-init
	directory

	Id
	addre
	query
	addre
	query

	U2D
	update
	update
	cach
	cach

	Select
	no
	yes
	yes
	yes

	PtoP
	P2P
	cast
	cast
	depends

	Scale
	No
	No
	no
	yes

computing definition of service
the act of performing helpful or useful labor, where the service supplier is developed separately from consumers and may serve many consumers

Web services
 services are first class
 soc between supplier and consumer
 focus on integration and neutrality (mofm)
 looser coupling
 avoid proprietary APIs
 Simple Object Access Protocol
 wider industrial support
 describing and discovering services

Software Architecture

A software system’s architecture is the set of principal design decisions about the system.
Design decisions encompass every aspect of the system: Structure, Behavior, Interaction, Non-functional
“Principal” implies a degree of importance that grants a design decision “architectural status”.

Connectors are good
 Separate computation from interaction
 Minimize component interdependencies
 Support software evolution
 component-, connector-, & system-level
 Potential for supporting dynamism
 Facilitate heterogeneity
 Become points of distribution
 Aid system analysis & testing

Roles: Communication, Coordination, Conversion, Facilitation

Communication
 Different communication mechanisms
 Constraints on communication
 Constraints on quality of service
 Separates communication from computation
 May influence non-functional
Coordination
 Determine computation control
 Control delivery of data
 Separates control from computation
Converters
 interaction of independently developed
 Mismatches based on interaction
 Adaptors, Wrappers
Facilitators
 interaction of components
 access to shared information
 Ensure proper performance profiles
 synchronization mechanisms

Styles
 Design reuse, Code reuse, Literature, Interoperable, Analyses, Visual

Pipe & Filter
 Filter add, replacement, and reuse, analyses, Concurrent execution
 Batch, Not for interactive, Not for transmission
Object-Oriented
 System decomposition, Information Hiding
 tight coupled, know the server
Layered
 Abstraction, evolution, limited change, interoperability, standard
 Not for everything, Performance
Blackboard, Client Server, Peer-to-Peer, Push based
Implicit Invocation
 reuse, evolution
 no order, no big picture, not intuitive, control is delegated
C2
 Interface Top, Bottom: Component 0-1, Connector 0+
 Independent messages: request go up, notification down -> Asynch
 Assumption about only above them
 Flexibility and Adaptability: Loose coupling, flexible connector
 Distribution: no shared space, routing by configuration
 Visibility: Connector sees everything
 Parallelizability: Multiple components in each layer

Mobility and Adaptation

Client-Server

Remote Evaluation

Code on Demand

Mobile Agent

No MA they gather data from one hop to the next
No RE & COD code size larger than results
No C/S size of the result large

Two important reasons
 Networks have become much more capacious and capable
 Lack of support for security concerns

Why Adapt
 Context: location, social activity
 Availability: fault, balancing, recovery
 Resource: CPU, Battery, Bandwidth
 Requirements: Services, QoS

[image:]
[image:]
Synchronization & Coordination

[image:]

COIN = (toss->HEADS|toss->TAILS),
HEADS= (heads->COIN),
TAILS= (tails->COIN).

ITCH = (scratch->END).
CONVERSE = (think->talk->END).
||CONVERSE_ITCH = (ITCH || CONVERSE).
COUNT[i:0..N] = (when (i<N) inc -> COUNT[i+1]).

Consistency, Replication & Fault

Predictability
 cannot tell which trace will occur
Consistency
 given one trace of events, different order for compontents

ARRIVALS = (arrive -> ARRIVALS).
DEPARTURES = (depart -> DEPARTURES).
CARPARKCTRL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive -> SPACES[i-1]
 |when(i<N) depart -> SPACES[i+1]).
||CARPARK = (ARRIVALS || DEPARTURES|| CARPARKCTRL(4)).

class Arrivals extends Thread {
Arrivals(CarParkControl CPC) {}

void run() {
 CPC.arrive();
}
}
class Departs extends Thread {
Departs(CarParkControl CPC) {}

void run() {
 CPC.depart();
}
}

class CarParkControl {
private int spaces;
private int capacity;

CarParkControl(int n) {spaces = n; capacity = n;}

synchronized void arrive() {
while !(spaces > 0) wait();
--spaces;
notify();
}

synchronized void depart() {
while !(spaces < capacity) wait();	
++spaces;
notify();
}
}

A = (dothis -> synch1 -> dothat -> synch2-> END).
B = (sing -> synch1 -> dance -> synch2 -> END).
||AB = (A || B).

class A extends Thread {
 A(Barrier s1, s2) {…}
 void run() {
 dothis();
 s1.ready();
 dothat();
 s2.ready();
}
}
class B extends Thread {
 B(Barrier s1, s2) {…}
 void run() {
 sing();
 s1.ready();
 dance();
 s2.ready();
}
}
class Barrier {
private int N;

Barrier(int n) {N = n}

synchronized void ready() {
N--;
If(N>0) wait();
else notifyAll();
}
}
Local read/Remote write
[image:]

Local read/Local write
[image:]

Value
 small data
 complex operation
Operation
 small/large data
 simple operation
Notification
 large data
 no need to read every

Pull
 some inconsistency is tolerated
 producers are oblivious of replica location
 point-to-point (value or operation)
Push
 quick consistency is required
 producer know location of replicas
 Multicast may be used
Epidemic
 eventual consistency is tolerated (communication reduce)
 replicas need to know about neighbor replicas
 deletions are a problem

transient
 occurs and disappears; unlikely to reoccur
intermittent
 recurrently appears and disappears
permanent
 persists until fixed

fail-stop
 component announces failure and stops working
fail-silent
 component stops responding
fail-safe
 easily recognized as faulty
Byzantine
 not easy to recognize failure

[image:]
1. sends its state to all others
2. assembles the state received from others
3. sends its view of the full state to others
4. majority voting to for true state of others
[image:]

to reach agreement given m faulty processes
needs at least 2m +1 non-faulty processes
total nodes must be at least 3m + 1

Security

[image:][image:]

Man in the middle & Reply Attack

not give information unless you know to whom you are giving it
always use different challenges

Needham-Schroeder
[image:]
each peer holds a secret key shared with the Key Distribution Center
1 is in the clear
each challenge is a nonce, keys are nonce too
2, RA1 being encrypted with KA,KDC authenticates the KDC to A
2 containing B prevents a man in the middle
3 containing RA2 and 4 containing RA2-1 authenticates B to A
5 authenticates A to B

Keberos
[image:]
3 containing KAS,TGS(A,KA,TGS) allows A to authenticate with TGS
3 containing a session key KA,TGS allows A to talk to the TGS
6 containing an encrypted timestamp limits replay attacks
7 corresponds to message 2 in the Needham-Schroeder protocol

Asymetric
[image:]

Symmetric Pros (Asymmetric Cons): It is more efficient in the sense of computation. The keys can be exchanged over a unsecure channel and there is no need for an external authority.
Asymmetric Pros (Symmetric Cons): It is much more secure than the symmetric one. The number of keys are O(N) while in symmetric ones it is O(N2).

Diffie-Hellman
[image:]

Signing
[image:]
FC=(takepic->checkdb->(fmatch->FC|nomatch->(clear->FC|resetf->FC))).
CM=(sens->analize->(detec->CM|not->(clear->CM|resetc->CM))).
||ALL=(FC||CM).

RUN THREADS.start in Java corresponding to FSP.
DO NOT FORGET || when joining FSPs
image7.png
«~ El
e Calrare
fromean pocsdure

Reqest

Sevet Callompocedue T > Sener Calloca prosecirs T >

@ ®

image8.png
Client's
name
resolver

1. <nlvu,cs,ftp>
"

2. #<nl>, <vu,cs,ftp>

Root
name server

3. <vu,cs,ftp>
= e
R S ——
4. #<vu>, <cs,ftp>

Name server
nl node

5. <cs,ftp>

6. #<cs>, <ftp>

Name server
vu node

7. <ftp>
>

8. #<ftp>

<nl,vu,cs,ftp> T L#<n|,vu,cs,f‘tp>

Name server
cs node

Nodes are

managed by
the same server

image9.png
1. <nlvu,cs,ftp>

8. #<nl,vu,cs,ftp>

7. #<vu,cs,ftp>
Client's
name
resolver 6. #<cs,ftp>

5. #<ftp>

<nl,vu,cs,ftp> T L#<n|,vu,cs,f‘tp>

M

X

Root
name server

Name server
nl node

DZ. <vu,cs,ftp>

X

Name server
vu node

DS. <cs,ftp>

Name server
cs node

>4. <ftp>

image10.png
Exvolutionary programming
(algorithm generation, genetc algorithms,
‘Albased learning)

Algorithm
selection

J-Generic or parameterized algorithms

Oniine algoithms

(deterministi, andommized. or
probabilsic)

}Cundmum expressions

image11.png
Plan changes

v
Deploy change . Adaptation

deseriptions management
Enact changes and
/anect observations

v

=

Architectural Evclution
ot B2 B3 management

X
\\ Maintin
consisecy

and system integrity

‘\

Evaluate and
monitor
observations

N

b

B::>D Implemenaton

4

/

image12.png

image13.png

image14.png

image15.png
Client Client

Primary server
for item x A

éﬁ -
\WC’/{ W3 Data store

W4

Backup server
R1| |R2

W1. Write request R1. Read request

W2. Forward request to primary R2. Response to read
W3. Tell backups to update

W4. Acknowledge update
W5. Acknowledge write completed

image16.png
Client Client

Old primary New primary
for item x for item x Backup server

R1 TRZ W1
)
W5 W5

B S

<

\V\M/ w4 Data store
W5 w2

W4

%)
W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read

W3. Acknowledge write completed
W4. Tell backups to update
W5. Acknowledge update

image17.png
G @ @

S N S
@R @K@K g
F

image18.png
1 Got(1,2,
2 Gol(1,2,y,
3 Got(1,2,3,4)
4 Got(1,2,2,4)

image19.png

image20.png
Chuck

ARg

< RBZ' KA,B(RB)

KA,B(RB)

Bob

} First session

} Second session

} First session

image21.png
Alice

Rap A B

>

KDC

€ Kaxoc (Rar B-Kag: Kgkpc(AKag))

3

Kno(Rao) Koxoo AK g F———

4
[

K

A,EK(RAZ_1 ’ RB)

5

Kag(Rg—1)

>

Bob

image22.jpeg
Alice

H
|
:

[d

3
< Kaas Karas Kastas (A Karas)) ——

AS

4
password?

> pwD

Alice's workstation

6

——1Kastas (A Karas) B, K a1as(t) ——>
7

<— Ky 765 (B Ky p). K 1as (A Ky g) |—

TGS

image23.png
Alice

image24.png
Alice Bob
picks x picks y

n, g,g¥mod n ————p

2
Alice computes [€— ¢'modn Bob computes

(¢¥ mod n)* (g* mod n)Y
=g¥ modn =g®¥ modn

Alice
Bob

image25.png
Alice's computer

Bob's computer

»m
Hash
»| function,
v " !
Hash Alice's Alice's
function, - private key, »{ public key, Compare —» OK
H T Ks K, T

H(m)

K (H(m))

H(m)

image2.png
Client Wait for result

T

Call remote
procedure

*

Return
from call

Request

Server Call local procedure 1ime —»
and return results

@

Client Wait for acceptance

A *
Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

(b)

image3.png
Intermupt client

witor
Gt e o218 X
£l A
Call remote | Return
procedure | fomeall Retun |
/ rosuts | | Acknowledge
|/ Accept
Request | | roquest /
Server - o
Gallocal pocedure: Time ——>
Cal dient vith

one-way RPC

image4.png
@

hsende e ye—

flerer iy
L
vessgensona | |
e p—
e sy L e
e
[e e
[y ooy g ey
g e e
@ ®
Asis messge Prop—
pepicives st
A essgecnte A
senany 5
prees e
oo, resened I
s s [l e
s rsaves Rurning it dong Prcess
foss rengese T e
@ @
P —— Send st
et vty
s S Y
S| e
\ e
PR S S 4
Ruming. bt dong Process Ruing bt dong Process.
g e [ey

o

image5.png
J— »

[T s
runnng. o
Lo
- .
J— =
P .
2 EE,
» "
RS s it
[S —
. [
=
Brecenes Running but 9omg Procses.
e T
o m
JT— -
o stz
h— &
=

Rureiog bt dora
Srehrgsen | reauen Sometng e

© o

image6.png
Asendsressage Asends massage A sopped

S connis Astopped andvais bl ccpies g
rumng N e
—H— A
N Nesssgo s soed
B, 3155 ccaon o Aecaped
TV e ey
p— —
Bt and Frem
Bt ecenes owing
g messsge
@ ®
J— Send requst st
fepietin ity
A Nessagocanbe a
sertony £5is
ming Requet
recones e
5 B — -
" Brecones Rumng bu dong Pracess
e Gomebirgese | raques
© @
‘Send reqestand waturl e ot
— sndvar ot epy.
3

» —!

Reqest

e e
o — >
Ruming bu dongPrcess
somegese e

© o

