Ranking Different Software Architectures
Based on QoS

CS700 - Final Project Report
Naeem Esfahani

May 2009

Table of Contents

T INETOAUCHION cneeeeereeeeiieececeeneeeeeeecesessssssseesesessssssssssssesesssssssssssssssesssssssssssssssasesssssssssanses 1
11 CaS@ StUAY ..ot 1
1.2 SOftWATE ATCIIEECTULC ... oot e et e e e et e e e e et eeseseeesasneeesaseeeesannneens 1
T3 FALUTE IMOMEL....o e et e e et e e s e e e e s e e e esaseeeesasnneeesasneeeesanneeens 2

2 Problem definition...cccceeeeeeeeeeecesessssssneeereecessssssssseseesssssssssssssssesesssssssssssssssasssssssssssasses 4

3 Methodology Used........iiinininiirininniinininniinissiniesiniisisniseisisessssssssses 4
BT SIINULATION ettt e e et e e e e e e e e e e e e e e aeee e e e e eseaneeeesanneeeeeennaeeeeennees 5
I A N A\ [© 1V NP 8

4 Analysis Of ReSUILS ...cuucvieiinrisiiintiiiintitiinininiinenienisncnsissesssessesssssssesssssssssssens 9

5 Concluding Remarks.......iiininnvnininnininiininniininiiiinieiiesecss 10

ACKNOWIedGEmENtcuouiiiriiiiriiiriritiniintiinisiisiisseinssiesiissssssssisssesssssssassssasssessasens 10

RO I CIICES ..o ieeeeeeeeeeeecerieneeeteeeeesesssssssssesesssssssssssssssssssssssssssssssssesssssssssssssssesssssssssssssssasens 10

Ranking Different Software Architectures Based on QoS

1 Introduction

Considering non-functional requirements (i.e,, Quality of Service) is missing from many
software construction paradigms. Many of these paradigms focus on functional requirements
and neglect the QoS at design time. In this report we provide an approach to address this
problem at design time. In the introduction, first we describe a case study in context of which
the problem is described, and then we provide the architecture model for the case study.

1.1 Case Study

Instead of going directly to airlines many people use travel agents to arrange their flights.
This led to the introduction of Online Ticketing Systems (OTS) [1,2]. These systems integrate
different agents and companies and provide a single interface for the user. User can provide the
request to OTS and it will find the matching offers. Figure 1, Shows a high level view of such
systems.

)

S -

Evidence
Generator

Agent

¢

oTs
Figure 1. High level view of Online Ticketing Systems

OTS systems usually have a list of known agents. When they cannot answer the request with
the known agents, they try to discover new agents. Moreover, to keep track of Service Level
Agreements (SLAs) between the system and agents there may be a third party involved in the
transaction between the system and agent to record the evidences.

1.2 Software Architecture

Software architecture is usually modeled using an Architecture Description Language (ADL)
[3]. Figure 2a shows an implementing architecture for the high level view presented in Figure 1.
In this diagram there are four constructs: Component, Connector, Group, and Interface.
Components are independent units of activities, while Connectors (not shown in Figure 2) are
domain independent facilities for their communication. Groups show the allocation of
Components and Connectors into different nodes in the system and Interfaces model how they

can interact to each other.

Ranking Different Software Architectures Based on QoS

Legend
Iﬁs;?‘fr " - |

Component Client AgentDiscovery Server AgentDiscovery Server

discoverA

event S clientint query requestFl sontacitg
Interface

- WebBrowser PresentationLayer BusinessTier PresentationLayer BusinessTier

Connector

- event priceQuot

_ Group User Supplier TravelAgent (a) (b)

Figure 2. a) Core architectural model for OTS, and b) Server group is selected.

The architectural model depicted in Figure 2, is generated with XTeam [4] which is a
simulation framework in the level of software architecture. Figure 2b shows how groups relate
different components together.

1.3 Feature Model

One way for decomposing a large system is through features. A feature may correspond to a
business use case, resources allocation algorithm, authentication protocol, or any other
capability of the system. Also, features keep us independent of the implementation paradigm or
how features are realized. Figure 3a shows the feature model for OTS. Figure 3b shows a feature
modeling language implemented as a Domain Specific Modeling Language in Generic
Modeling Environment (GME) [5].

e ——
. <<common-feature>> ';
, reQuIreS — Online Ticketing System | & oSSt —
<<optinal feature>> e a watestals 12
Evidence Generation) & Caching OuerCapacityVailinglist
requires RSA = A
q < AddmissionControl OverCapacityRejection
, <<exactly-one-of- . o)
<<optional feature>> feature—group>> % MediumFrequencyAuth
Travel Agent Caching 5 (1 Iy 7 i
Travel Agent Auth. = 1
| 9 X OTSCore TravelAgentAuthGroup LowFrequencyAuth
X i
=

A
PerRequestAuth

Group

InputValidation| Syntactic

<<default feature>>
Per-Request Authentication

HighUserDataEncryption Semantic

<<alternative feature>> [
Mid-Frequency Authentication (a) _@ (b)

EvidenceGeneration

Figure 3. Feature Models. a) abstract feature model, and b) feature model implemented as DSML in GME

Each feature is related to an architectural configuration. All the features are dependent on the
Core feature model (annotated with C and expanded in Figure 2). The Arrow from one feature
to another one means that the former is dependent on the later. The dependent feature adds
functionality to the depended one. FFigure 4 shows how Caching feature’s architecture is
weaved into the Core architecture. When a dependent feature is selected it requires that the
depended feature to be selected as well. Using aspect oriented programming [6] it weaves into
the depended features architecture and builds new software architecture.

Ranking Different Software Architectures Based on QoS

R Rt — S
q,
| @
?i SeatsStatus — (p]
@ OverCapacityWaitinglist
& Caching ™~ . yriaiing
- | e A
- AddmissionControl™ - OverCapacityRejection
ﬁ -.ILIL -__“ .-'E')'-.
& i SR —t
- (n 1 MediumF requencyAuth
T ——— {6 F—— A
*+| 0OTSCore “[~-__ TravelAgentAuthGroup | LowFrequencyAuth
*ir b s ; My
'J,,':'@-,
ik
3
I
: N
J Clignt AgeniDySCoye
} lw U"'t.c-}. I T Eusiness Tier
; WebBrowser PresentationLayer BusinossTiar
= N
b Lbsar SUDEA o TravedAgant

Figure 4. Caching feature’s architecture is weaved into the Core architecture.

This approach allows us to automatically build different architectural combinations in design
time by selecting different feature combinations. For example, when we select Core, Caching,
Evidence Generation, and Per Request Authentications the architecture in Figure 5 will be
generated. The generated architecture can be used for simulation in XTeam framework.

Server

Client AgentDiscovery

event

WebBrowser

event

; Evidence
User Supplier TravelAgent ThirdParty

Figure 5. Architectural combination as a result of selecting Core, Caching, Evidence Generation and Per Requeset
Authentication features

Ranking Different Software Architectures Based on QoS

2 Problem definition

There is a motto that some software engineers were following: “Make It Work, Make It Right,
and Then Make It Fast”. This motto is not applicable for all kinds of software and if it is
followed everywhere the generated system will be with a very low quality and completely
wrong. They are some major decisions that made in earlier phases and cannot be undone easily.
These decisions affect the non-functional requirements of the system.

In many cases the designers know how different parts of the system work independently.
The question is how good they will work when they are integrated. It would be very effective if
the designer can build different configurations for the architecture at design time and based on
the simulation get an overview about the system. This knowledge can help the administrator of
the system to revive it when it fails to provide a QoS by knowing the problematic features
priori. For example, if at the pick usage the system failed to provide the result in 6 seconds,
which means that the user is going to discard any result, the administrator can lower the
security level to revive the system temporarily. This kind of knowledge is not documented in
any place and is very human dependent.

This project is a part of a larger project that tries to address mentioned problem. However, in
this project we tried to focus on one QoS requirement in OTS: Response Time. We tried to
compare different architectural configurations based on the calculated response time during
simulation in design time. Different architectural configurations are built by combining
different features (recall Section 1.3). The response time is measured on the WebBrowser’s
output interface (request in Figure 5).

3 Methodology Used

We captured different feature combinations as different level for a factor. The best approach
is to have a factor corresponding to a feature getting two values (on/off). This would give us a
2k Factorial experiment which can easily get out of hand and cause space explosion. Moreover,
the tool support for more than two factors is very limited. Therefore, we encoded the problem
as one factor experiment.

The experiment is broken down into two phase: significance test, interaction test. In
significance test, the features are selected exclusively. Based on early inspections; the prominent
features which have the larger effect on the response time are discovered. In interaction test the
interactions of prominent features are included in the experiment as well and the main
simulation is done for both exclusive feature selections and interaction of new features.

Figure 6 shows this design for OTS. In the case of OTS, the prominent features are Evidence
generation, Caching and Per Request Authentication. This case study did not have many
features, however when the number of features are very much this can help in pruning the
problem space very much.

Ranking Different Software Architectures Based on QoS

Factor Mean Response
Level Time

Core

Evidence
Significance - Cache
PRAuth
MFAuth
Ev+PRA
Interaction Ev+C
Ev+C+PRA

Figure 6. Two phase experiment design

I

We did a simulation for each level of the factor (i.e., feature selection). The simulation was
conducted with XTeam and based on the generated architectural models. The response time
was measured from the output interface of WebBrowser. For transient elimination the Batch
method was used. For computing the mean and confidence intervals we used the Batch method
and its stopping criteria. This result helped us to rank different architectures.

To test this result we conducted a one factor ANOVA. By taking ten samples of response
time after the transient phase, we build a one factor ANOVA. The result of our experiment is
presented in following sub-sections.

3.1 Simulation

XTeam is a simulation framework for architectural models. Based on different feature
selections we build XTeam models and simulated them. XTeam is based on discrete event
simulation and has a logical clock. The response time is measured by number of logical clocks
elapsed.

The inter-arrival time of input event which is generated by the user is according to
exponential distribution. The lambda parameter for the exponential distribution is set to put the
system under stress. However, this stress is not that much to put the system in the thrashing
state. As mentioned before we did a preliminary analysis to find the most prominent features.
We selected a lambda to put the feature selection with the highest response time near to
thrashing. So, we are sure that the other feature selections do not go into thrashing state and the
simulation result is as expected.

Figure 7 shows variance by batch size for each feature combination. From the results it is
obvious that after 200 samples the system gets into the steady state for all of them. Therefore we
removed the first batch (i.e., the first 200 sample of response time). Note that our simulation has

n Ranking Different Software Architectures Based on QoS

generated many numbers and therefore most of preconditions for doing ANOVA and
computing confidence intervals are met.

40 70 0 v
Core Evidence Generation
35 % 60 +—®
30 . 50 -
25 r *
40 £ 3
20
30
15 * *
10 ¢ ¢ P * 20 ¢ * ¥ A * *
v r Y & +
5 hah s, 10 ¢ o
¢ . * .
0 T T T T 1 0 T T T hd T 1
0 50 100 150 200 250 0 50 100 150 200 250
18 - 180 0 A
" Caching 160 Per Request Authentication
@
14 140 r 3
F)
12 120 ry
10 100 *
.
8 r 80 *
6 - 60 e
4 * 40 oo 5o
2 AN A R E PSS 20 LAY [3
0 . . ¢ * 7% i * . 0 . . ’ LA .
0 50 100 150 200 250 0 50 100 150 200 250
35 n n n 180 N
Medium Frequency Authentication 160 L® Evidence + Per Request
30
¢ 140 — &
= * 120 o ®
20 * Iy 100
15 80
A 60 ¢ +20e
10 A 2 s .
; . ® e o o *e e
* A AL PN 20 *@ re
0 T T T T 1 0 T T T T 1
0 50 100 150 200 250 0 50 100 150 200 250
60 0 0 160 0 n
Evidence + Caching L0 +Evidence + Caching + Per Request
*
50
120 hd
Y *
40 100 ®
30 * & 80
*
20 * o P 60 ¥, *
+%e%ee Lo 40 A
1 2*%¢0, Y e o
20 ¥ i 4
D T T T T 1 D T T ’ T . . l. 1
0 50 100 150 200 250 0 50 100 150 200 250

Figure 7. Transient Elimination using Batch method

The mean and confidence intervals computed (using Batch method, according to the
stopping criteria) are shown in Figure 8. To have a simple intuition we included two more
columns besides the calculated result; under Actual Effect we subtracted the response time for

Ranking Different Software Architectures Based on QoS

feature combinations from the response time of core feature. Using this numbers we have made

a simple guess when we have a combination of the features just by adding the effects together.
In the main project (which this project is part of that) the goal is to come up with more
advanced ways to this kind of analysis using data mining.

Here, we can see for the combination of Evidence Generation and Per Request

Authentication we have a good guess. However, for the other cases where caching is included

the guess is not that perfect. This is due to the fact that the Caching takes resources from the

system and when the system is under more load (having more concurrent requests because of

authentication and evidence generation). The load of caching affects the system and avoids it

from having the pure impact.

Response (Metric)

Factor (Features Combinatign]

. Per- | Medium Response Time
Evidence . i T
p— Caching Request | Frequency R i ConfLow | ConfUp
Auth. | Auth. [95% 95%
__________ 0 0 0 0 24.3819 | 23.924 | 24.8397
G 1 0 0 0 3449 | 33,8828 35.0972
Slgnlﬁcance
el 0 1 0 0 17.5291 | 17.1652 | 17.893
0 0 i 0 34.1866 | 33.3295 | 35.0437
0 0 0 1 25.4765 | 25.0455 | 25.9075
, 1 0 1 0 43.7517 | 42.7886 | 44.7147
interactlons
Test 1 1 0 0 32.7967 | 32.2171 33.3764
1 d 1 0 40.8916 | 39.9285 | 41.8546

Figure 8. Mean and confidence intervals computed using batch method

Actual

Effect
10.10813
-6.85282
9.804689

1.09461
19.36976
8.414843
16.50966

Simple
Guess
19.913
3.2553

13.06

Figure 9 shows the confidence interval for the response time according to feature selection. It

shows that the effect of the Evidence Generation on response time is almost the same as Per
Request Authentication. Moreover, the effect of Medium Frequency Authentication on response
time is barely different from the Core’s effect.

45

15

i

T T
Core Evidence

T T
Cache PRAuth

T
MFAuth

T
Ev+PRA

T
Ev+C

T
Ev+C+PRA

Figure 9. Confidence intervals for mean of response time in different configurations

n Ranking Different Software Architectures Based on QoS

3.2 ANOVA

As another test, we did a one factor ANOVA to see if the mean of response time for different

feature combination is the same. After removing the transient part of simulation we took ten

random samples of response time for each feature combination. Figure 10 shows the data used

for ANOVA.

Core

Evidence

Cache

PRAuth

MFAuth

Ev+PRA

Ev+Cache

Ev+C+PRA

21.51113
20.5829
21.77108
25.86763
29.1959
30.53711
24.44325
24.59928
23.43006
21.88065

30.94172
35.32981
33.3296
30.19304
49.60813
35.88266
33.14643
28.2936
35.58542
32.58989

20.9517
16.07803
17.03116
17.87598
18.64181
16.64817
17.69031

17.3138
17.60207
15.45781

30.33639
37.01343
31.21694
40.02986
26.25097
29.46692
40.52027
46.02936
30.59231
30.40943

28.70901
26.83819
24.60643
22.35055
32.08715
23.63155
27.17258
22.26455
23.88995
23.21512

39.89597
39.39868
59.55698
49.5676
36.86989
49.35754
32.20139
49.54168
42.03592
39.090°1

30.18391
31.92519
32.34826
35.06328
36.38723
31.4821
37.60165
34.70651
30.9783
27.29099

33.70322
45.4843
30.15467
46.64558
46.56037
34.40236
39.68256
48.46248
47.33173
36.48828

Figure 10. Raw data for doing ANOVA

By a glimpse one can say the mean of response time for different feature combinations is not
the same and therefore the Null-hypothesis will be strongly rejected. We can see the same fact
from the previous test (Figure 9) as well.

Groups Count Sum Average Variance
0000 10 243.819 24.3819 11.108
1000 10 3449003 34.49003 34.29047
0100 10 175.2908 17.52908 2.285568
0010 10 341.8659 34.18659 39.84219
0001 10 254.7651 25.47651 10.08453
1010 10 4375165 43.75165 65.3147
1100 10 327.9674 32.79674 0.766567
1110 10 408.9155 40.89155 46.11613
ANOVA
Source of Variation) df MS F P-value F crit Reject HO
Between Groups 5379.975 7 7685678 28.10015 3.18E-18 2.139656 TRUE
Within Groups 1969.273 72 27.35102
Total 7349.248 79

Figure 11. The result of ANOVA in Microsoft Excel

n Ranking Different Software Architectures Based on QoS

As depicted in Figure 11, and according to our expectation the Null-hypothesis is strongly
rejected. After getting this result, using Turkey-Kramer method we tested to see which feature
combinations are significantly different. The result for this test is shown in Figure 12. As we can
see we got the same result that we had already obtained from the Batch mean and confidence
interval computation.

Core Evidence | Cache PRAuth | MFAuth | Ev+PRA Ev+C E+C+PRA
Core FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
Evidence | TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
Cache TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
PRAuth TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
MFAuth FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
Ev+PRA TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
Ev+C TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
E+C+PRA | TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

Figure 12. Computing the feature combinations which are significantly different using Turkey-Kramer method.

In the intersection of each row and column in Figure 12, the Turkey-Kramer method has been
applied to test if the two features are significantly different. TRUE means that they are
distinguishable and FALSE means that they are not that different from each other.

4 Analysis of Results

We used two statistical methods to compare generated software architectures for different
feature combinations. The analysis showed us that these feature combinations are not acting
similar to each other regarding response time.

In the first method, we did this comparison using confidence intervals and we realized that
Evidence Generation and Per Request Authentication have the same result on the response time
because their confidence intervals have intersections containing each other’s mean. Moreover,
we realized that the Medium Frequency Authentication does not have much impact on the
response time since its confidence interval is barely different from Core’s confidence interval.

In the second method, we used ANOVA to see if the mean of response time for different
feature combinations is different from the other ones. The Null-hypothesis was rejected and
using Turkey-Kramer method we got the same result as the first method. It seems that both the
two methods declaring the same fact in different ways.

Moreover, based on what we learned for features independently we assembled a simple
guess to predict the effect of selecting the features together. The guess turned out to be good for
the cases that the response time increases by features. For the features which decrease the
response time the load should be considered as well. This load will have interaction with other
features and avoid the feature to have an independent and direct impact.

I8 Ranking Different Software Architectures Based on QoS

5 Concluding Remarks

In our method, we decreased the amount of input that user needs to enter into the system.
The designer can model the features in design time and provide the simulation with expected
effect of the features independently and get the results for all the combinations. The models can
be kept during the runtime. The information should be updated to enable the user of the system
to have an estimate about the role of each feature on the non-functional requirements. This
knowledge can be used in emergency situations when someone is willing to reduce the features
of the system to keep it in working condition.

We got the result that we were seeking in the context of this project. If we could manage to
conduct a full factorial experiment design using available tools we could get more interesting
results by doing more than ranking that we have in Figure 9. We could extract feature
interactions and do some kind of learning. However, since the feature space tends to get very
enormous, we may not be able to rely on pure statistical methods. For this kind of analysis we
may be able to use data mining techniques which are having roots in statistics.

Acknowledgement
Special thanks to Ahmed Elkhodary for providing the feature modeling language in GME.

References

[1] “expedia,” http;//www.expedia.com/.

[2] “priceline,” http://www.priceline.comy.

[3] N.Medvidovic and R.N. Taylor, “A Classification and Comparison Framework for Software
Architecture Description Languages,” IEEE Trans. Softw. Eng., vol. 26, 2000, pp. 70-93.

[4] G. Edwards, S. Malek, and N. Medvidovic, “Scenario-Driven Dynamic Analysis of
Distributed Architectures,” LECTURE NOTES IN COMPUTER SCIENCE, vol. 4422, 2007, p.
125.

[5] ISIS, Vanderbilt University, “Generic Modeling Environment,”
http.//www.isis.vanderbilt.edu/Projects/gme/.

[6] G.J.Kiczales,].O. Lamping, C.V. Lopes,].J. Hugunin, E.A. Hilsdale, and C. Boyapati, Aspect-
oriented programming, Google Patents, 2002.

