
In the name of God

Ranking Different Software Architectures

Based on QoS
CS700 - Final Project Report

Naeem Esfahani

May 2009

Table of Contents

1 Introduction .. 1

1.1 Case Study ... 1

1.2 Software Architecture .. 1

1.3 Feature Model ... 2

2 Problem definition... 4

3 Methodology Used... 4

3.1 Simulation ... 5

3.2 ANOVA ... 8

4 Analysis of Results .. 9

5 Concluding Remarks ... 10

Acknowledgement ... 10

References .. 10

1 Ranking Different Software Architectures Based on QoS

1 Introduction

Considering non-functional requirements (i.e., Quality of Service) is missing from many

software construction paradigms. Many of these paradigms focus on functional requirements

and neglect the QoS at design time. In this report we provide an approach to address this

problem at design time. In the introduction, first we describe a case study in context of which

the problem is described, and then we provide the architecture model for the case study.

1.1 Case Study

Instead of going directly to airlines many people use travel agents to arrange their flights.

This led to the introduction of Online Ticketing Systems (OTS) [1,2]. These systems integrate

different agents and companies and provide a single interface for the user. User can provide the

request to OTS and it will find the matching offers. Figure 1, Shows a high level view of such

systems.

Figure 1. High level view of Online Ticketing Systems

OTS systems usually have a list of known agents. When they cannot answer the request with

the known agents, they try to discover new agents. Moreover, to keep track of Service Level

Agreements (SLAs) between the system and agents there may be a third party involved in the

transaction between the system and agent to record the evidences.

1.2 Software Architecture

Software architecture is usually modeled using an Architecture Description Language (ADL)

[3]. Figure 2a shows an implementing architecture for the high level view presented in Figure 1.

In this diagram there are four constructs: Component, Connector, Group, and Interface.

Components are independent units of activities, while Connectors (not shown in Figure 2) are

domain independent facilities for their communication. Groups show the allocation of

Components and Connectors into different nodes in the system and Interfaces model how they

can interact to each other.

2 Ranking Different Software Architectures Based on QoS

Figure 2. a) Core architectural model for OTS, and b) Server group is selected.

The architectural model depicted in Figure 2, is generated with XTeam [4] which is a

simulation framework in the level of software architecture. Figure 2b shows how groups relate

different components together.

1.3 Feature Model

One way for decomposing a large system is through features. A feature may correspond to a

business use case, resources allocation algorithm, authentication protocol, or any other

capability of the system. Also, features keep us independent of the implementation paradigm or

how features are realized. Figure 3a shows the feature model for OTS. Figure 3b shows a feature

modeling language implemented as a Domain Specific Modeling Language in Generic

Modeling Environment (GME) [5].

Figure 3. Feature Models. a) abstract feature model, and b) feature model implemented as DSML in GME

Each feature is related to an architectural configuration. All the features are dependent on the

Core feature model (annotated with C and expanded in Figure 2). The Arrow from one feature

to another one means that the former is dependent on the later. The dependent feature adds

functionality to the depended one. FFigure 4 shows how Caching feature’s architecture is

weaved into the Core architecture. When a dependent feature is selected it requires that the

depended feature to be selected as well. Using aspect oriented programming [6] it weaves into

the depended features architecture and builds new software architecture.

3 Ranking Different Software Architectures Based on QoS

Figure 4. Caching feature’s architecture is weaved into the Core architecture.

This approach allows us to automatically build different architectural combinations in design

time by selecting different feature combinations. For example, when we select Core, Caching,

Evidence Generation, and Per Request Authentications the architecture in Figure 5 will be

generated. The generated architecture can be used for simulation in XTeam framework.

Figure 5. Architectural combination as a result of selecting Core, Caching, Evidence Generation and Per Requeset

Authentication features

4 Ranking Different Software Architectures Based on QoS

2 Problem definition

There is a motto that some software engineers were following: “Make It Work, Make It Right,

and Then Make It Fast”. This motto is not applicable for all kinds of software and if it is

followed everywhere the generated system will be with a very low quality and completely

wrong. They are some major decisions that made in earlier phases and cannot be undone easily.

These decisions affect the non-functional requirements of the system.

In many cases the designers know how different parts of the system work independently.

The question is how good they will work when they are integrated. It would be very effective if

the designer can build different configurations for the architecture at design time and based on

the simulation get an overview about the system. This knowledge can help the administrator of

the system to revive it when it fails to provide a QoS by knowing the problematic features

priori. For example, if at the pick usage the system failed to provide the result in 6 seconds,

which means that the user is going to discard any result, the administrator can lower the

security level to revive the system temporarily. This kind of knowledge is not documented in

any place and is very human dependent.

This project is a part of a larger project that tries to address mentioned problem. However, in

this project we tried to focus on one QoS requirement in OTS: Response Time. We tried to

compare different architectural configurations based on the calculated response time during

simulation in design time. Different architectural configurations are built by combining

different features (recall Section 1.3). The response time is measured on the WebBrowser’s

output interface (request in Figure 5).

3 Methodology Used

We captured different feature combinations as different level for a factor. The best approach

is to have a factor corresponding to a feature getting two values (on/off). This would give us a

2k Factorial experiment which can easily get out of hand and cause space explosion. Moreover,

the tool support for more than two factors is very limited. Therefore, we encoded the problem

as one factor experiment.

The experiment is broken down into two phase: significance test, interaction test. In

significance test, the features are selected exclusively. Based on early inspections; the prominent

features which have the larger effect on the response time are discovered. In interaction test the

interactions of prominent features are included in the experiment as well and the main

simulation is done for both exclusive feature selections and interaction of new features.

Figure 6 shows this design for OTS. In the case of OTS, the prominent features are Evidence

generation, Caching and Per Request Authentication. This case study did not have many

features, however when the number of features are very much this can help in pruning the

problem space very much.

5 Ranking Different Software Architectures Based on QoS

Figure 6. Two phase experiment design

We did a simulation for each level of the factor (i.e., feature selection). The simulation was

conducted with XTeam and based on the generated architectural models. The response time

was measured from the output interface of WebBrowser. For transient elimination the Batch

method was used. For computing the mean and confidence intervals we used the Batch method

and its stopping criteria. This result helped us to rank different architectures.

To test this result we conducted a one factor ANOVA. By taking ten samples of response

time after the transient phase, we build a one factor ANOVA. The result of our experiment is

presented in following sub-sections.

3.1 Simulation

XTeam is a simulation framework for architectural models. Based on different feature

selections we build XTeam models and simulated them. XTeam is based on discrete event

simulation and has a logical clock. The response time is measured by number of logical clocks

elapsed.

The inter-arrival time of input event which is generated by the user is according to

exponential distribution. The lambda parameter for the exponential distribution is set to put the

system under stress. However, this stress is not that much to put the system in the thrashing

state. As mentioned before we did a preliminary analysis to find the most prominent features.

We selected a lambda to put the feature selection with the highest response time near to

thrashing. So, we are sure that the other feature selections do not go into thrashing state and the

simulation result is as expected.

Figure 7 shows variance by batch size for each feature combination. From the results it is

obvious that after 200 samples the system gets into the steady state for all of them. Therefore we

removed the first batch (i.e., the first 200 sample of response time). Note that our simulation has

6 Ranking Different Software Architectures Based on QoS

generated many numbers and therefore most of preconditions for doing ANOVA and

computing confidence intervals are met.

Figure 7. Transient Elimination using Batch method

The mean and confidence intervals computed (using Batch method, according to the

stopping criteria) are shown in Figure 8. To have a simple intuition we included two more

columns besides the calculated result; under Actual Effect we subtracted the response time for

7 Ranking Different Software Architectures Based on QoS

feature combinations from the response time of core feature. Using this numbers we have made

a simple guess when we have a combination of the features just by adding the effects together.

In the main project (which this project is part of that) the goal is to come up with more

advanced ways to this kind of analysis using data mining.

Here, we can see for the combination of Evidence Generation and Per Request

Authentication we have a good guess. However, for the other cases where caching is included

the guess is not that perfect. This is due to the fact that the Caching takes resources from the

system and when the system is under more load (having more concurrent requests because of

authentication and evidence generation). The load of caching affects the system and avoids it

from having the pure impact.

Figure 8. Mean and confidence intervals computed using batch method

Figure 9 shows the confidence interval for the response time according to feature selection. It

shows that the effect of the Evidence Generation on response time is almost the same as Per

Request Authentication. Moreover, the effect of Medium Frequency Authentication on response

time is barely different from the Core’s effect.

Figure 9. Confidence intervals for mean of response time in different configurations

8 Ranking Different Software Architectures Based on QoS

3.2 ANOVA

As another test, we did a one factor ANOVA to see if the mean of response time for different

feature combination is the same. After removing the transient part of simulation we took ten

random samples of response time for each feature combination. Figure 10 shows the data used

for ANOVA.

Figure 10. Raw data for doing ANOVA

By a glimpse one can say the mean of response time for different feature combinations is not

the same and therefore the Null-hypothesis will be strongly rejected. We can see the same fact

from the previous test (Figure 9) as well.

Figure 11. The result of ANOVA in Microsoft Excel

9 Ranking Different Software Architectures Based on QoS

As depicted in Figure 11, and according to our expectation the Null-hypothesis is strongly

rejected. After getting this result, using Turkey-Kramer method we tested to see which feature

combinations are significantly different. The result for this test is shown in Figure 12. As we can

see we got the same result that we had already obtained from the Batch mean and confidence

interval computation.

Figure 12. Computing the feature combinations which are significantly different using Turkey-Kramer method.

In the intersection of each row and column in Figure 12, the Turkey-Kramer method has been

applied to test if the two features are significantly different. TRUE means that they are

distinguishable and FALSE means that they are not that different from each other.

4 Analysis of Results

We used two statistical methods to compare generated software architectures for different

feature combinations. The analysis showed us that these feature combinations are not acting

similar to each other regarding response time.

In the first method, we did this comparison using confidence intervals and we realized that

Evidence Generation and Per Request Authentication have the same result on the response time

because their confidence intervals have intersections containing each other’s mean. Moreover,

we realized that the Medium Frequency Authentication does not have much impact on the

response time since its confidence interval is barely different from Core’s confidence interval.

In the second method, we used ANOVA to see if the mean of response time for different

feature combinations is different from the other ones. The Null-hypothesis was rejected and

using Turkey-Kramer method we got the same result as the first method. It seems that both the

two methods declaring the same fact in different ways.

Moreover, based on what we learned for features independently we assembled a simple

guess to predict the effect of selecting the features together. The guess turned out to be good for

the cases that the response time increases by features. For the features which decrease the

response time the load should be considered as well. This load will have interaction with other

features and avoid the feature to have an independent and direct impact.

10 Ranking Different Software Architectures Based on QoS

5 Concluding Remarks

In our method, we decreased the amount of input that user needs to enter into the system.

The designer can model the features in design time and provide the simulation with expected

effect of the features independently and get the results for all the combinations. The models can

be kept during the runtime. The information should be updated to enable the user of the system

to have an estimate about the role of each feature on the non-functional requirements. This

knowledge can be used in emergency situations when someone is willing to reduce the features

of the system to keep it in working condition.

We got the result that we were seeking in the context of this project. If we could manage to

conduct a full factorial experiment design using available tools we could get more interesting

results by doing more than ranking that we have in Figure 9. We could extract feature

interactions and do some kind of learning. However, since the feature space tends to get very

enormous, we may not be able to rely on pure statistical methods. For this kind of analysis we

may be able to use data mining techniques which are having roots in statistics.

Acknowledgement

Special thanks to Ahmed Elkhodary for providing the feature modeling language in GME.

References

[1] “expedia,” http://www.expedia.com/.
[2] “priceline,” http://www.priceline.com/.
[3] N. Medvidovic and R.N. Taylor, “A Classification and Comparison Framework for Software

Architecture Description Languages,” IEEE Trans. Softw. Eng., vol. 26, 2000, pp. 70-93.
[4] G. Edwards, S. Malek, and N. Medvidovic, “Scenario-Driven Dynamic Analysis of

Distributed Architectures,” LECTURE NOTES IN COMPUTER SCIENCE, vol. 4422, 2007, p.
125.

[5] ISIS, Vanderbilt University, “Generic Modeling Environment,”
http://www.isis.vanderbilt.edu/Projects/gme/.

[6] G.J. Kiczales, J.O. Lamping, C.V. Lopes, J.J. Hugunin, E.A. Hilsdale, and C. Boyapati, Aspect-
oriented programming, Google Patents, 2002.

