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Abstract. In this paper, we extend our evaluation of the hardware performance of 14 Round 2
SHA-3 candidates, accepted for the presentation at CHES 2010, to the case of high security
variants, with 512 bit outputs. A straightforward method for predicting the performance of 512-bit
variants, based on the results for 256-bit versions of investigated hash functions is presented, and
confirmed experimentally. The VHDL codes for 512-bit variants of all 14 SHA-3 Round 2
candidates and the old standard SHA-2 have been developed and thoroughly verified. These codes
have been then used to evaluate the relative performance of all aforementioned algorithms using
seven modern families of Field Programmable Gate Arrays (FPGAs) from two major vendors,
Xilinx and Altera. The results point to very significant differences among all evaluated algorithms
in terms of both throughput and area. Only two candidates, Keccak and CubeHash, outperform
SHA-512 in terms of the primary optimization target used in this study, throughput to area ratio.

1. Introduction

Both the current NIST cryptographic hash function standard, FIPS 180-3 [1] (commonly referred as SHA-
2) as well as the call for a new standard, SHA-3 [2], assume that each hash function family includes
variants with at least the following four output sizes: 224, 256, 384, and 512-bits. These variants should
have a security equivalent to Triple DES, AES-128, AES-192, and AES-256, respectively.

Although 256-bit versions of cryptographic hash functions seem to provide adequate security for majority
of current applications and common use scenarios, there exist already several recommendations
suggesting the use of more secure hash function variants, with the outputs of 384 and 512 bits. For
example, if a hash function is used as a part of a digital signature used to authenticate a life will, which is
required to remain valid for tens of years from now, a 512-bit variant of a hash function seems to be a
prudent choice.

Several recent recommendations clearly specify the need for such high-security variants [3]. Examples
include

* Federal documents requiring protection well beyond the year 2030, according to the 2007 NIST
recommendation [4],

* Top Secret Documents according to the NSA Suite B Cryptography Fact Sheet [5],

* Level 8 of protection according to the recent ECRYPT II Recommendations [6].

Clearly, candidates for the new SHA-3 standard, which is likely to remain in effect well beyond the year
2030, should be evaluated from the point of view of performance of their most secure variant.

Since replacing a 256-variant of a hash function with a 512-bit variant increases the resistance against the
best known (birthday-paradox) attack from 2'** to 2% (i.e., by a factor of 2'** = 3.4 10°"), one might
expect that a significant performance penalty will be incurred for such a tremendous increase in security.

1 This work was partially supported through the NIST/ARRA grant no. 60NANB10D004.



Contrary to that, it has been observed that the 512-bit variant of the current standard, SHA-2 (known as
SHA-512), is actually about 33% faster then even the 160-bit variant (SHA-1), when implemented in
hardware using Xilinx Virtex FPGAs [7]. The only penalty incurred concerns the area (by a factor of
about two), and not the speed of the implementation [7].

The explanation of this phenomena is quite simple - in hardware all bits of a message block are processed
in parallel, so increasing the size of a message block from 512 bits to 1024 bits has a positive influence on
speed, which is counteracted only by more complex operations in the critical path of the circuit (namely
six 64-bit additions vs. four 32-bit additions), and thus a smaller clock frequency.

The same property clearly does not apply to traditional software implementations, where doubling
message block size typically at least doubles the amount of clock cycles required for processing of this
block.

In this paper, we will investigate whether the increase in the speed of a more secure hash function variant,
first observed in the case of SHA-1 and SHA-2 functions, applies also to new SHA-3 candidates. We will
also explore the imposed area penalty (if any), and the change in the throughput to area ratio when
switching from a 256-bit variant to a 512-bit variant of a hash function.

Finally, we will also explore the relative performance of the 512-bit variants of all SHA-3 candidates in
terms of the throughput, area, and throughput to area ratio.

2. Previous work

At the time of writing, relatively few hardware implementations of the 512-bit variants of SHA-3
candidates have been reported in the literature. Major results concerning FPGA implementations targeting
high speed are summarized in [8, 9]. These results have been obtained using different FPGA families and
different and not always clear optimization targets. The designers differ with experience and skills.
Additionally, no common interface has been applied, and some of the designs are not fully autonomous
but rather implement core functionality only [9].

The comparison of 256-bit variants of all candidates is somewhat more explored, with two groups
reporting a full set of FPGA results [10, 11], two groups reporting ASIC results [12, 13], and several
other groups reporting results for a subset of all candidates [14-20].

3. Design Methodology

Our design and evaluation methodologies follow exactly the approach outlined in our earlier CHES 2010
paper [11] on comparison of SHA-3 candidate variants with 256-bit outputs.

Our study is comprehensive as it covers all 14 SHA-3 candidates, and presents results for seven major
families of FPGAs from two major vendors: Xilinx and Altera. The results for 512-bit variants of all
candidates are compared with the results for 256-bit variants, implemented using the same language,
tools, design methodology, and coding style, and reported earlier by our team in [11].

The fairness of our comparison is assured by using

* firm optimization target, the throughput to area ratio, that clearly guides the entire development
process from the choice of a high-level architecture, through the implementation of basic
operations, to the choice of low-level tool options;

* the same library of basic operations that are used in more than one SHA-3 candidate (such as
AES SubBytes, Binary Galois Field multiplications by small constants (x02..x07), two-operand
and multi-operand addition, etc. (see Table 2 in [11])



* identical input/output interface, proposed earlier by our group [11, 21], and applied consistently
to all 256-bit and 512-bit variants of all compared algorithms;

* the same assumptions and simplifications, such as no padding in hardware, and no support for
special modes of operation, such as tree hashing or MAC.

* the same tools, options of tools, and identical optimization effort in case of each of the evaluated
hash functions;

* asmall team of designers with similar skills, who closely collaborate with each other, and review
each other’s codes.

The results are then normalized by dividing them by equivalent results for the current SHA-2 standard
(variant with equivalent security). Normalized results are then averaged for all investigated FPGA
families.

All VHDL codes have been thoroughly verified using a universal testbench [22], capable of testing an
arbitrary hash function core that follows interface described in [11, 21]. A special padding script was
developed in Perl in order to pad messages included in the Known Answer Test (KAT) files distributed as
a part of each candidate’s submission package.

For synthesis and implementation, we have used tools developed by FPGA vendors themselves:
e for Xilinx: Xilinx ISE Design Suite v. 11.1, including Xilinx XST,
e for Altera: Quartus II v. 9.1 Subscription Edition Software.
The generation of a large number of results was facilitated by an open source benchmarking
environment, called ATHENa (Automated Tool for Hardware EvaluatioN), developed at George Mason
University [22].

4. Performance Measures

The three most important performance measures we use to characterize our hardware implementations of
hash functions are: Throughput, Area, and Throughput to Area Ratio. Below we characterize each of
these measures one by one.

4.1. Throughput

The Throughput is understood as the throughput for long messages, and does not take into account the
time taken for reading the very first block of the message, initialization, finalization, and writing the hash
value to the output memory. To be exact, we define Throughput using the following formula:

" Block _ size
r=
T * (Htime(N +1) — HTime(N))

(M

where Block size is a message block size, characteristic for each hash function (as defined in the function
specification, and shown in Table 2), HTime(N) is a total number of clock cycles necessary to hash an N-
block message, T is a clock period, different and characteristic for each hardware implementation of a
specific hash function.

All our designs follow the same interface, described in detail in [11, 21]. This interface has the following
two variable parameters:

* w = the width of the input data bus, din, and the output data bus, dout. These buses are
independent of each other, and both have the width w.

* 1o = Freqo cix/Freqcik, 1.¢., the ratio of the clock frequency for the fast I/O clock (used only
for the fast communication with the surrounding circuits, typically Input and Output FIFOs), and



the clock frequency for the main clock used for data processing. If only one clock is used for
both functions, r;0=1.

The general formula for the time necessary to hash N blocks of the message can be written in the
following form:

In this formula:

HTime(N) = cpvir + eiv/rio + cgrock’N + cpivar + courTio

)

* ¢ is the number of clock cycles necessary to establish communication with the source of data
(typically, Input FIFO) and read the length of the message (in our formulas we assume that the
length of the message is smaller than 2%).

* ¢ is the number of clock cycles required to read the very first block of the message. ¢y =
Block_size/w.

*  c¢prock 1s the number of clock cycles required to process one block of the message.

*  crpa 1S the number of clock cycles required for the finalization. We assume that only one
finalization is required per entire message (if the finalization needs to be repeated for every block

of the message, its number of clock cycles is included in cpock)-

* coyris the number of clock cycles required to write hash value to the destination circuit (typically
Output FIFO). coyr=output size/w.

Table 1. The I/O Data Bus Width (in bits), Hash Function Execution Time (in clock cycles), and Throughput
(in Mbits/s) for the 256-bit and 512-bit variants of all SHA-3 candidates and the current standard, SHA-2. T
denotes the clock period in ps. Values different between 256-bit and 512-bit variants are shown in bold.

256-bit variants

512-bit variants

I/O Bus Hash Time Throughput | I/O Bus Hash Time Throughput

Width [cycles] [Mbit/s] Width [cycles] [Mbit/s]
BLAKE 64 1+8+10-N+4 512/(10-T) 64 1+16/2+14-N+8/2 | 1024/(14-T)
BMW 64 1+8/8+N+1 512/T 64 1+16/16+N+8/16 1024/T
CubeHash 64 1+4+16-N+160+4 | 256/(16-T) 64 1+4+16-N+160+8 | 256/(16-T)
ECHO 64 2+24+25-N+4 1536/(25-T) 64 2+16+31-N+8 1024/(31-7)
Fugue 32 1+2-N+18+8 32/(2-T) 32 1+4-N+21+16 32/(4-T)
Groestl 64 1+8+21-N+4 512/(21-T) 64 1+16/2+29-N+8/2 | 1024/(29-T)
Hamsi 32 2+143-(N-1)+6+8 32/(3-T) 64 2+14+6-(N-1)+6+8 64/(6-T)
JH 64 2+8+36-N+4 512/(36-T) 64 2+8+36-N+8 512/(36-T)
Keccak 64 1+16+24-N+4 1088/(24-T) 64 1+16+24-N+8 576/(24-T)
Luffa 64 2+4+8-N+8+4 256/(8-T) 64 2+4+8-N+8+8 256/(8-T)
Shabal 64 2+8+1+49-N+ 512/(49-T) 64 2+8+1+49-N+ 512/(49-T)

3.49+4 3:49+8

SHAvite-3 64 2+8+37-N+4 512/(37-T) 64 2+16+57-N+8 1024/(57-7T)
SIMD 64 2+8+8+9-N+4 512/(9-T) 64 2+16+9+9-N+8 1024/(9-T)
Skein 64 1+4+9-N+4 256/(9-T) 64 1+8+9-N+8 512/(9-7T)
SHA-2 32 1+1+65-N+8 512/(65-T) 64 1+1+81-N+8 1024/(81-T)




The ratio of the I/O clock frequency to the main clock frequency is selected in such a way that the
following condition, given by Eq. (3) holds:

CINT'10 < CpLOCK- 3)

This condition assures that any next message block (i.e. any block other than the very first block) can be
read in parallel with processing of the previous block.

In Table 2, we summarize the formulas for the Hash Function Execution Time and the Throughput for all
investigated algorithms. All formulas for the Hash Time, HTime(N), are written in agreement with Eq.
(2). If cpn=0 for the given algorithm, this term is omitted in the equation.

The I/O bus width, w, was selected to be equal to 64 for majority of algorithms in order to limit the pin
requirements of the hash modules. The only exceptions are Fugue-256, Hamsi-256, and Fugue-512, for
which we choose w=32, because they all have block size equal to 32 bits, and thus cannot be sped up by
using a wider I/O data bus. Similarly, SHA-256 can start processing data after receiving just one 32-bit
word, and cannot be easily sped-up by using a wider input data bus. The fast I/O clock is required only in
BMW-256 (r;,0=8), BLAKE-512 and Groestl-512 (r;0=2), and BMW-512 (r,p=16).

4.2. Area

In general the resource utilization in FPGAs, is a vector, with coordinates specific to the given FPGA
family. For example,

Resource Utilizationsyarans = (#HCLB slices, #BRAMs, #MULs) 4)

Resource Utilizationcycione m = (#LE, #memory_bits, #MULs). ®))

Taking into account that vectors cannot be easily compared to each other, we have decided to opt out
of using any dedicated resources in the hash function implementations used for our comparison. Thus, all
coordinates of our vectors, other than the first one have been forced (by choosing appropriate options of
the synthesis and implementation tools) to be zero. This way, our resource utilization (further referred to
as Area) is characterized using a single number, specific to the given family of FPGAs, namely the
number of CLB slices (#CLB_slices) for Xilinx FPGAs, the number of Logic Elements (#LE) for Cyclone
II and Cyclone III, and the number of Adaptive Look-Up Tables (#ALUTSs) in Stratix II and Stratix III.

We believe that majority of SHA-3 candidates will be most naturally implemented without the use of
dedicated logic resources. The capability of using such resources should be treated as a measure of the
algorithm flexibility, and may be investigated in our future publications.

5. Relative Performance of the 512 and 256-bit Variants of the SHA-3 Candidates

In Table 2, we summarize major parameters of the 512 and 256-bit variants of the SHA-3 candidates and
SHA-2.

The ratio of the area of the 512-bit variant to the 256-bit variant depends primarily on the datapath width.
In all our hardware architectures, due to the optimization for the maximum throughput to area ratio, the
datapath width is equal to the state size. As a result, the area ratio can be approximated very roughly as
the state size ratio, as shown in Eq. (6) below:

Area(512)  Datapath _width(512)  State _ size(512)
Area(256)  Datapath _width(256) ~ State _ size(256) (6)




Table 2. Major parameters of the 256-bit and 512-bit variants of all SHA-3 candidates and the current
standard, SHA-2. Values different between 256-bit and 512-bit variants are shown in bold. The first
approximations of the predicted area ratio (512 vs. 256-bit variant) and the predicted throughput ratio (512
vs. 256-bit variant) are given in the last two columns.

256-bit variant 512-bit variant Predicted | Predicted
State | Block | Round | Word | State | Block | Round | Word | Area Thr
size size no size size size no size Ratio Ratio
(based on | (based on
Eq. (6)) Eq. (8)
BLAKE 512 512 10 32 1024 1024 14 64 2 1.43
BMW 512 512 16 32 1024 1024 16 64 2 2
CubeHash 1024 256 16 32 1024 256 16 32 1 1
ECHO 2048 1536 8 32 2048 1024 10 32 1 0.53
Fugue 960 32 2 32 1152 32 4 32 1.2 0.5
Groestl 512 512 10 64 1024 1024 14 64 2 1.43
Hamsi 512 32 3 32 1024 64 6 32 2 1
JH 1024 512 36 64 1024 512 36 64 1 1
Keccak 1600 1088 24 64 1600 576 24 64 1 0.53
Luffa 768 256 8 32 1280 256 8 32 1.67 1
Shabal 1408 512 48 32 1408 512 48 32 1 1
SHAVvite-3 512 512 36 32 1024 1024 56 32 2 1.29
SIMD 512 512 36 32 1024 1024 36 32 2 2
Skein 256 256 72 64 512 512 72 64 2 2
SHA-2 256 512 64 32 512 1024 80 64 2 1.60

The additional factors that affect this ratio include:

* message block size, which determines the size of the input shift register

* output size, which determines the size of the output shift register

* logic of the main round, which may be more complex in the case of a 512-bit variant of a function

* logic required for initialization and finalization, which may not follow the datapath width

* size of the control unit, which is likely to remain constant between two variants, but typically
contributes only small percentage to the total circuit area.

All these factors cause that the Eq. (6) is only the first approximation, and the actual results may vary and

may be dependent on a particular FPGA family.

The throughput of each variant is given by

where

* k denotes output size, 256 or 512 bits;

Thr(k) =

Block _ size(k)

¢ ®* Round _no(k) * T (k,Word _size(k))

(7

¢ ¢ is anumber of main rounds executed in a single clock cycle (possibly a fraction). In our
implementations, this number is constant and independent of the function variant.
* T(k, Word_size(k)) is a minimum clock period, which is a function of the logic included in the

main round, and in particular of the word size.

In majority of considered algorithms, with the exception of BLAKE, BMW, and SHA-2, the word size
remains the same between the two variants. Additionally, the logic of the main round remains either the




same, or at least have the similar critical path. As a result, the following first order approximation, given
in Eq. (8), can be used to estimate the throughput ratio:

Bloc _size(512)

Thr(512)  Block _size(256)  Block _size _ratio

Thr(256) ~ Round _no(512) "~ Round _no_ratio )
Round _no(256)

For BLAKE, BMW, and SHA-2, the ratio is expected to be smaller because of the increase in the word
size from 32 bits to 64-bits, and the influence of this change on the delay of the multi-operand additions,
which appear in the critical paths of these algorithms. At the same time, this effect is expected to be
significantly smaller than 2, because of

the properties of the fast carry chain adders embedded in Xilinx and Altera FPGAs (the delay of
these adders as a function of the number of bits, #n, is given by d(n) = a-n+b, with the relatively
large b and small a); and

the fact that the multi-operand adder constitutes only a fraction of the critical path.

The first rough approximations of the area ratio (based on Eq. (6)) and the throughput ratio (based on Eq.
(8)) are given in the last two columns of Table 2. Based on these approximations, we can divide 15
investigated algorithms into the following 6 major groups:

Group 1: area and throughput are not affected by the change of the output size: CubeHash, JH,
Shabal.

Group 2: area and throughput both double: BMW, SIMD, Skein.

Group 3: area and throughput both increase, but area increases more: BLAKE, Groestl, SHAvite-
3, and SHA-2.

Group 4: area stays the same and throughput decreases: ECHO, Keccak.

Group 5: throughput stays the same and area increases: Hamsi, Luffa.

Group 6: area increases and throughput decreases: Fugue.

Table 3. Major performance measures of SHA-3 candidates (512-bit and 256-bit variants) when implemented

in Xilinx Virtex 5 FPGAs

Max Clk Freq [MHz] Throughput [Mbit/s] Area [CLB slices] Throughput/Area

512 256 ratio 512 256 ratio 512 256 ratio 512 256 ratio
BLAKE 27.14 31.80 0.85 1985.02 1628.16 122 5429 2078 2.61 0.37 0.78 047
BMW N/A 1331 N/A N/A 6814.72 | N/A N/A 5647 N/A N/A 1.21 N/A
CubeHash 141.70 137.00 1.03 | 2267.25 2192.00 1.03 775 699 1.11 293 3.14 0.93
ECHO 130.58 156.60 0.83 | 431342 9621.50 | 045 6987 5986 1.17 0.62 1.61 0.38
Fugue 106.62 109.19 0.98 852.97 1747.10 | 049 1097 912 1.20 0.78 1.92 041
Groestl 161.34 189.72 0.85 | 5697.04 4625.48 123 4294 2390 1.80 133 1.94 0.69
Hamsi 128.40 152.70 0.84 1369.63 1628.80 | 0.84 2508 1011 248 0.55 1.61 0.34
JH 213.77 282.20 0.76 | 3040.24 4013.51 0.76 1569 1275 1.23 1.94 3.15 0.62
Keccak 157.18 165.07 095 | 3772.39 7483.22 | 0.50 1417 1414 1.00 2.66 5.29 0.50
Luffa 11143 124.30 090 | 3565.86 3977.60 | 0.90 3122 1641 1.90 1.14 242 047
Shabal 156.30 151.33 1.03 1633.17 1581.24 1.03 1355 1261 1.07 1.21 1.25 0.96
SHAvite-3 163.08 139.00 1.17 | 2929.70 1923.46 1.52 2632 1199 2.20 1.11 1.60 0.69
SIMD 27.99 29.59 095 | 3184.07 1683.34 1.89 16996 7671 222 0.19 0.22 0.85
Skein 27.20 31.70 0.86 1547.32 901.69 1.72 2120 1476 1.44 0.73 0.61 1.19
SHA-2 150.20 153.60 0.98 1898.76 1209.90 1.57 813 429 1.90 2.34 2.82 0.83




Table 4. Major performance measures of SHA-3 candidates (512-bit and 256-bit variants) when implemented
in Altera Stratix II1 FPGAs

Max Clk Freq [MHz] Throughput [Mbit/s] Area [ALUTs] Throughput/Area

512 256 ratio 512 256 ratio 512 256 ratio 512 256 ratio
BLAKE 39.07 51.63 0.76 2857.69 2643.46 1.08 10927 5780 1.89 0.26 0.46 0.57
BMW 8.26 16.45 0.50 8458.24 8422.40 1.00 47575 12632 3.77 0.18 0.67 0.27
CubeHash | 203.17 228.00 0.89 3250.72 3648.00 | 0.89 1931 1934 1.00 1.68 1.89 0.89
ECHO 163.26 164.20 0.99 5392.85 | 1008845 | 0.53 22069 21689 1.02 0.24 047 0.53
Fugue 204.33 204.67 1.00 1634.64 327472 | 0.50 2760 2541 1.09 0.59 1.29 0.46
Groestl 302.30 298.24 1.01 10674.32 | 7271.38 147 9777 4929 1.98 1.09 1.48 0.74
Hamsi 164.61 244.14 0.67 1755.84 2604.16 | 0.67 6589 2265 291 0.27 1.15 0.23
JH 339.44 346.40 0.98 4827.59 4926.58 | 0.98 3608 3117 1.16 1.34 1.58 0.85
Keccak 295.68 296.30 1.00 7096.32 | 1343227 | 0.53 3930 4458 0.88 1.81 3.01 0.60
Luffa 214.32 265.04 0.81 6858.24 8481.28 | 0.81 7758 3395 229 0.88 2.50 0.35
Shabal 219.73 210.75 1.04 2295.95 2202.12 1.04 3413 3382 1.01 0.67 0.65 1.03
SHAvite-3 192.53 255.00 0.76 3458.78 3528.65 | 098 5732 2497 2.30 0.60 141 043
SIMD 40.89 45.74 0.89 4652.37 2602.10 1.79 50093 23310 2.15 0.09 0.11 0.83
Skein 5091 49.30 1.03 2896.21 140231 207 6396 3622 1.77 0.45 0.39 1.17
SHA-2 234.80 199.80 1.18 2968.34 1573.81 1.89 1620 978 1.66 1.83 1.61 1.14

Table 5. Ratio of the respective performance measures (Throughput (Thr), Area, Throughput to Area Ratio
(Thr/Area)) for a 512-bit variant vs. 256-bit variant, averaged (using geometric mean) over all 7 FPGA
families (Overall), 3 Xilinx families, and 4 Altera Families.

Overall Xilinx Families Altera Families
512 vs. 256 variant 512 vs. 256 variant 512 vs. 256 variant
Thr | Area | Thr/Area | Thr | Area | Thr/Area | Thr | Area | Thr/Area

BLAKE 1.11 | 2.00 0.56 123 ] 223 0.55 1.06 | 1.89 0.56
BMW 1.00 | 3.77 0.27 N/A | N/A N/A 1.00 | 3.77 0.27
CubeHash | 1.01 | 1.07 0.95 1.05 ] 1.10 0.95 098 | 1.04 0.94
ECHO 048 | 1.09 045 048 | 1.14 043 049 | 1.04 047
Fugue 050 | 1.17 042 049 | 1.18 042 050 | 1.17 043
Groestl 129 | 195 0.66 1.18 | 191 0.62 138 | 198 0.69
Hamsi 0.61 | 2.63 0.23 075 | 241 0.31 052 | 2.82 0.18
JH 098 | 1.08 0.90 094 | 1.06 0.88 101 | 1.09 0.92
Keccak 0.52 | 091 0.57 0.53 | 095 0.56 0.52 | 0.88 0.59
Luffa 0.88 | 225 0.39 1.06 | 2.11 0.50 077 | 236 0.33
Shabal 1.07 | 1.01 1.06 1.12 | 1.07 1.05 1.03 | 096 1.07
SHAvite-3 | 1.18 | 2.35 0.50 138 | 249 0.55 1.05 ] 225 047
SIMD 1.78 | 2.23 0.80 1.80 | 2.30 0.78 1.77 | 2.15 0.82
Skein 193 | 1.62 1.19 1.85 | 1.54 1.20 207 | 176 1.18
SHA-2 165 ] 1.72 0.96 1.58 | 145 1.12 1.67 | 175 0.95

From the point of view of the throughput to area ratio, Groups 1 and 2 are the best, followed by Groups 3,
4, and 5, and ending with the Group 6, with the worst trend. Among the Groups 1 and 2, belonging to the
Group 2 is less desirable, especially for the algorithms that already take significant area for a 256-bit
variant, such as BMW and SIMD.



In Tables 3 and 4, we report the actual performance measures of the 512-bit and the 256-bit variants of all
investigated algorithms, for the case of Xilinx Virtex 5 and Altera Stratix III, respectively.

In Table 5, we report ratios of all three major performance measures (Throughput, Area, and Throughput
to Area Ratio) for a 512-bit variant vs. a 256-bit variant, averaged (using geometric mean) over

¢ all seven FPGA families,
¢ three Xilinx families (Spartan 3, Virtex 4 and Virtex 5), and
* four Altera families (Cyclone II and III, Stratix II and III).

Based on this table, there seems to be a pretty good agreement between the values of respected ratios for
Xilinx and Altera families, with the largest discrepancies (over 25%) seen in case of the Throughput and
Area of Luffa, and the Area of SHA-2.

The comparison of the rough approximations for the ratios of Throughputs and Areas based on Equations
(6) and (8) (see the last two columns of Table 2) with the actual values of these ratios averaged over seven
families of FPGAs (see Table 5, Overall, Thr and Area columns) reveals a very good agreement between
our predictions and experimental results. The only algorithms, for which the ratios are substantially
different are listed below together with the short explanation:

BMW: the area ratio seems to be substantially larger than expected (3.77 vs. 2). This effect is most likely
caused be the routing congestion, which also prevented this circuit from being fully placed and routed for
six out of seven investigated FPGAs families, other than Stratix III. The additional reason for a very large
area might have been the replacement of a tree of carry propagate adders (used in BMW-256) by a tree of
carry save adders, which appeared to be necessary to facilitate routing.

Hamsi: the area ratio is larger than expected (2.63 vs. 2) and the throughput ratio smaller than expected
(0.61 vs. 1). Both effects seem to be caused by our implementation of the message expansion unit, which
is based on look-up tables. The total size of the look-up tables for the 512-bit variant is four times bigger
than for the 256-bit variant (1 Mbit vs. 256 kbit). Additionally, all table look-ups in the 256-bit version
can be performed in parallel, while in the 512-bit variant, two groups of the table look-ups need to be
performed sequentially, one by one, because of the data dependency.

Keccak: the area ratio is smaller than predicted (0.91 vs. 1). This effect is caused by the smaller value of
the block size for the 512-bit variant of the algorithm (576 bits vs. 1088 bits). This value affects only the
size of the input shift register, and has no influence on the size of the datapath. It should be noted that the
size of the output shift register increases in the 512-bit variant (512-bits vs. 256-bits) but this increase is
smaller than the decrease in the size of the input register.

Luffa: the area ratio is larger than predicted (2.25 vs. 1.67), and the throughput ratio smaller than
predicted (0.88 vs. 1). This effect can be explained by the more complex computations performed in the
512-bit variant of Luffa during the Message Injection phase. In particular, the GF(2®) constants used as
inputs in Galois Field multiplications, change from small values of {1, 2, 3, 4} to the larger values
including {01, 02, 04, 08, 10, 0A, OF}.

6. Results

In Table 6, the maximum clock frequencies are listed for each pair: hash algorithm — FPGA family.
These frequencies can be used together with the formulas provided in Table 1, in order to compute the
exact execution times of each algorithm (depending on the number of message blocks, N) and the values
of the throughputs for long messages. The clock period (in microseconds), 7, is a direct inverse of the
clock frequency, £, in MHz. Thus, in the formulas from Table 1, we can replace directly //T by f, and we
will obtain the Throughput in Mbits/s.



Table 6. Clock frequencies of all SHA-3 candidates (512-bit variants) and SHA-512 expressed in MHz (post
placing and routing)

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
BLAKE N/A 25.024 27.139 17.22 21.14 31.01 39.07
BMW N/A N/A N/A N/A N/A N/A 8.26
CubeHash 81.967 138.217 141.703 116.27 128.63 150.6 203.17
ECHO 52.787 114.233 130.582 N/A 79.67 107.54 163.26
Fugue 56.664 84.488 106.621 83.54 98 142.61 204.33
Groestl 66.181 120.671 161.342 153.78 179.02 208.38 302.3
Hamsi 57.61 128.833 128.403 61.96 77.65 99.54 164.61
JH 105.787 194.175 213.767 173.55 196.31 264.46 339.44
Keccak 80.386 135.63 157.183 149.61 171.88 196.66 295.68
Luffa 57.359 110.132 111433 80.05 117.26 155.93 214.32
Shabal 53.882 131.01 156.299 117.45 125.85 165.45 219.73
SHAvite-3 67.6 118.666 163.079 79.51 9391 142.17 192.53
SIMD N/A 2401 27.985 N/A N/A 29.63 40.89
Skein 16.531 32.227 27.199 N/A N/A 38.19 5091
SHA-512 85.616 153.965 150.195 9341 119.39 167.25 2348

Table 7. Results for the reference implementation of SHA-512 (architecture with rescheduling [])

Spartan 3 Virtex 4 Virtex 5 Cyclone IT Cyclone IIT Stratix II Stratix I1T
Max. Clk Freq. [MHz] 85.62 153.97 150.20 9341 119.39 167.25 234.80
Throughput [Mbit/s] 1082.36 1946.42 1898.76 1180.89 1509.33 211437 2968.34
Area 1531 1488 813 3633 4137 1623 1620
Throughput to Area Ratio 0.71 1.31 2.34 0.33 0.36 1.30 1.83

For several algorithms, implementing (placing & routing) the 512-bit variant was not possible for low
cost FPGA families, such as Spartan 3 from Xilinx and Cyclone II and Cyclone III from Altera. These
cases are denoted by “N/A” in Table 6 and in subsequent Tables 8-10. BMW-512 is a special case in the
sense that we have been able to properly route the circuit for only one out of seven investigated FPGA
families, namely for Stratix III. For all remaining families, routing was not possible, despite the fact that
the tested FPGA devices contained more than sufficient number of logic resources. This is certainly one
of the major drawbacks of BMW, which is also relatively inflexible in terms of trading speed for area.

In Table 7, we summarize the absolute results obtained for our implementation of the current standard
SHA-512. The results are repeated for all seven FPGA families used in our study. As hardware
architecture, we have selected the architecture by Chaves et al., presented at CHES 2006 [23]. This
architecture has been specifically optimized for the maximum throughput to area ratio [23, 24] and is
considered one of the best known SHA-2 architectures of this type.

In the following analysis, the absolute values of the three major performance measures: throughput,
area, and the throughput to area ratio, for the 512-bit variants of all SHA-3 candidates, have been
normalized by dividing them by the corresponding values for the reference implementation of SHA-512.
The corresponding ratios, referred to as normalized throughput, normalized area, and normalized
throughput to area ratios are summarized in Tables 8, 9, and 10. In all these tables, the Overall column
represents the geometric mean of all normalized results, averaged over all seven investigated FPGA



families. The candidate algorithms are ranked based on the value of this Overall metric, representing the
performance for a wide range of different FPGA families.

In Table 8, the normalized throughputs are reported. Only four candidates, Groestl, BMW, Keccak,
and Luffa outperform SHA-512 by a factor larger then two. The additional 6 candidates have a
normalized throughput in the range from 1 to 2. Four candidates, Skein, Shabal, Hamsi, and Fugue, are
slower than SHA-512, with Fugue, slower by more than a factor of two.

In Table 9, the normalized areas are reported. Based on this table, all SHA-3 candidates, in their 512-
bit variants, are larger than SHA-512. The spread of results is much larger than in the case of the
throughput, with the smallest SHA-3 candidate, CubeHash, almost the same size as SHA-512, and the
largest two, BMW and SIMD, lagging behind by a factor of almost 30. The leading group, including
Cubehash, Fugue, Shabal, Keccak, and JH covers the range from 1.1 to 2.2, and includes only one
candidate, Keccak, who excells also in terms of speed.

Table 8. Throughput of all SHA-3 candidates (512-bit variants) normalized to the throughput of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5§ Cyclone II | Cyclone III Stratix II Stratix IIT Overall
Groestl 2.16 2.19 3.00 4.60 4.19 348 3.60 3.20
BMW N/A N/A N/A N/A N/A N/A 2.85 2.85
Keccak 1.78 1.67 1.99 3.04 2.73 223 2.39 222
Luffa 1.70 1.81 1.88 2.17 2.49 2.36 231 2.08
ECHO 1.61 1.94 227 0.00 1.74 1.68 1.82 1.83
JH 1.39 142 1.60 2.09 1.85 1.78 1.63 1.66
SIMD N/A 1.40 1.68 N/A N/A 1.59 1.57 1.56
CubeHash 1.21 1.14 1.19 1.58 1.36 1.14 1.10 1.24
SHAvite-3 1.12 1.10 1.54 1.21 1.12 1.21 1.17 1.20
BLAKE N/A 0.94 1.05 1.07 1.02 1.07 0.96 1.02
Skein 0.87 0.94 0.81 N/A N/A 1.03 0.98 0.92
Shabal 0.52 0.70 0.86 1.04 0.87 0.82 0.77 0.78
Hamsi 0.57 0.71 0.72 0.56 0.55 0.50 0.59 0.59
Fugue 0.42 0.35 045 0.57 0.52 0.54 0.55 048

Table 9. Area (utilization of programmable logic blocks) of all SHA-3 candidates (512-bit variants)

normalized to the area of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II | Cyclone II1 Stratix II Stratix III Overall
CubeHash 1.30 132 0.95 0.99 0.88 1.19 1.19 1.11
Fugue 2.03 2.15 1.35 2.00 1.75 1.82 1.70 1.81
Shabal 2.04 237 1.67 1.66 147 2.10 2.11 1.89
Keccak 2.03 227 1.74 1.46 1.30 245 243 1.90
JH 2.65 2.77 1.93 2.12 1.87 223 223 223
Hamsi 297 3.06 3.08 245 2.08 4.14 407 3.04
Skein 3.39 3.64 2.61 N/A N/A 395 395 347
Luffa 432 438 3.84 325 2.83 4.83 4.79 397
SHAvite-3 6.49 6.58 324 5.74 5.05 3.46 3.54 4.68
BLAKE N/A 7.77 6.68 4.81 422 6.82 6.75 6.04
Groestl 12.82 13.03 528 9.55 835 6.04 6.04 823
ECHO 18.25 18.76 8.59 0.00 17.40 13.48 13.62 14.53
SIMD N/A 28.65 2091 N/A N/A 31.57 30.92 27.65
BMW N/A N/A N/A N/A N/A N/A 29.37 29.37




Table 10. Throughput to Area Ratio of all SHA-3 candidates normalized to the throughput to area ratio of

SHA-512
Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II | Cyclone III Stratix II Stratix III Overall
Keccak 0.88 0.74 1.14 2.09 2.11 091 0.99 1.16
CubeHash 0.94 0.86 1.25 1.59 1.55 0.96 0.92 1.12
JH 0.52 0.51 0.83 0.98 0.99 0.80 0.73 0.74
Luffa 0.39 041 0.49 0.67 0.88 0.49 048 0.52
Shabal 0.25 0.30 0.52 0.62 0.59 0.39 0.37 041
Groestl 0.17 0.17 0.57 048 0.50 0.58 0.60 0.39
Skein 0.26 0.26 0.31 N/A N/A 0.26 0.25 0.27
Fugue 0.21 0.16 0.33 0.28 0.30 0.30 0.32 0.26
SHAvite-3 0.17 0.17 0.48 0.21 0.22 0.35 0.33 0.26
Hamsi 0.19 0.23 0.23 0.23 0.26 0.12 0.15 0.20
BLAKE N/A 0.12 0.16 0.22 0.24 0.16 0.14 0.17
ECHO 0.09 0.10 0.26 0.00 0.10 0.12 0.13 0.13
BMW N/A N/A N/A N/A N/A N/A 0.10 0.10
SIMD N/A 0.05 0.08 N/A N/A 0.05 0.05 0.06
35—
O Groestl

- 3 BMW

> +

Q.

<

g’ 25

° Keccak

= *

— % Luffa

o 2

o) ECHO

g + SIMD

< O

E 15 ”

(=]

Z JrCubeHash *SHAvite-s

s L FBLAKE

[ Shabal  XSkein

>

e *

'\ ) Hamsi
051~ “Fugue
o \ \ \ \ | |
0 5 10 15 20 25 30

Overall Normalized Area

Fig. 1. Relative performance of all Round 2 SHA-3 Candidates (512-bit variants) in terms of the overall
normalized throughput and the overall normalized area (with SHA-512 used as a reference point).



In Table 10, the throughput to area ratio is reported. This table is the best considered together with Fig. 1,
which presents a two dimensional diagram, with Normalized Area on the X-axis and Normalized
Throughput on the Y-axis. Only two algorithms, Keccak and CubeHash, outperform SHA-512 in terms
of the throughput to area ratio. Out of them Keccak is almost twice as fast, but CubeHash is about 70%
smaller. ECHO, SIMD, and BMW are more than 8 times worse than Keccak in terms of the throughput to
area ratio, and more than 7 times bigger. The implementations of these algorithms are not likely to scale
to the same performance region as implementations of majority of other candidates, even if significantly
trading speed for reduced area. BLAKE and Hamsi also lag behind in terms of the throughput to area ratio
by a factor of 5 and 6, respectively, compared to Keccak.

7. Conclusions

Our evaluation methodology, applied to 512-bit variants of all 14 Round 2 SHA-3 candidates, has
demonstrated large differences among competing candidates. The ratio of the best result to the worst
result was equal to about 7 in terms of the throughput (Groestl vs. Fugue), about 27 in terms of area
(CubeHash vs. BMW), and about 19 in terms of our primary optimization target, the throughput to area
ratio (Keccak vs. SIMD). Only two candidates, Keccak and CubeHash, have demonstrated the throughput
to area ratio better than the current standard SHA-512. Out of these three algorithms, Keccak have also
demonstrated very high throughputs, while CubeHash outperformed other candidates in terms of
minimum area. Almost all candidates, except Fugue, Hamsi, Shabal, and Skein, outperform SHA-512 in
terms of the throughput, but at the same time none of them, except CubeHash, matches SHA-512 in terms
of the area.

Future work will include the development of different architectures of SHA-3 candidates, representing
various trade-offs between speed and area. The uniform padding units will be added to each SHA core,
and their cost estimated. In terms of FPGA families, our study will be extended to the most recent
families of FPGAs from two major vendors, namely Spartan 6 and Virtex 6 from Xilinx, and Cyclone 1V,
Stratix 1V, and Arria II from Altera. We will also investigate the influence of synthesis tools from
different vendors (e.g., Synplify Pro from Synopsys). The evaluation may be also extended to the cases of
hardware architectures optimized for the minimum area (cost) and minimum power consumption. Each
algorithm will be also evaluated in terms of its suitability for implementation using dedicated FPGA
resources, such embedded memories, dedicated multipliers, and DSP units. Finally, an extension of our
methodology to the standard-cell ASIC technology will be investigated.
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