
Use of Embedded FPGA Resources in
Implementations of 14 Round 2 SHA-3 Candidates

Rabia Shahid, Malik Umar Sharif, Marcin Rogawski, and Kris Gaj

ECE Department, George Mason University Fairfax, VA 22030, USA
{rshahid, msharif2, mrogawsk, kgaj}@gmu.edu

Abstract—In this paper, we present results of a comprehensive
study devoted to the optimization of FPGA implementations of
modern cryptographic hash functions using embedded FPGA
resources, such as Digital Signal Processing (DSP) units and
Block Memories. Fifteen hash functions, including the current
American hash standard SHA-2 and 14 candidates for the new
hash standard SHA-3, have been included in our investigation.
Our methodology involves implementing, characterizing, and
comparing all algorithms with a focus on minimizing the amount
of reconfigurable logic resources, and achieving a better balance
between the use of reconfigurable logic resources and embedded
resources in four FPGA families, representing major low-cost
and high-performance families of Xilinx and Altera.

I. INTRODUCTION

Apart from basic reconfigurable logic resources, practically
all FPGA vendors incorporate embedded resources, such as
large memory blocks, DSP units, microprocessors, etc. in mod-
ern generation of FPGAs. Improved hardware performance
and good balance in terms of the overall FPGA utilization
can be achieved with the use of these embedded elements for
multiple applications, such as communications, digital signal
processing, and scientific computing.

In this paper we focus on the use of embedded resources
in efficient implementations of a class of cryptographic al-
gorithms, called hash functions. Hash functions are one-way
functions that transform an arbitrary-length stream of input
data into a fixed-size output referred to as a hash value or
message digest. Some of the most important applications of
these functions include their use in digital signature schemes,
message authentication codes, pseudorandom number genera-
tors, etc.

These algorithms have recently come to focus because of
the contest for a new American federal hash function standard
called Secure Hash Algorithm 3 (SHA-3), organized by NIST
in the period 2007-2012. In January 2011, this contest entered
its Round 3, with only five algorithms remaining in the
competition [5, 6].

All candidates submitted to the SHA-3 contest have been
evaluated in terms of their security, performance in hardware
and software, and flexibility [5, 6, 7]. Hardware performance
evaluation plays a major role in the evaluation cycle of
these hash functions because it provides a clear and objective

measure that can be used to rank all candidates, especially in
the absence of security weaknesses, which are much harder to
identify in a relatively short period devoted to analysis.

In this study we take into account a set of 14 Round
2 candidates, as this set gives us a good opportunity to
demonstrate advantages of using embedded resources for a
large class of modern hash functions, representing multiple
security paradigms.

In Section II, we describe the previous work presented in
literature for a better understanding of our conducted study.
Section III explains the design methodology followed by
an overview of embedded resources in Section IV. We then
categorize these hash functions in Section V. We present and
discuss results, as well as highlight some implementation
details in Section VI. The conclusions from our study are
drawn in Section VII.

II. PREVIOUS WORK

Major results generated by multiple groups for FPGA
implementations of 14 Round 2 candidates are summarized
in [7, 8, 9]. The detailed review of these implementations
reveals that very few of them take advantage of DSP units or
Block Memories of modern FPGAs. One of the reasons for this
approach is the difficulty in optimizing such implementations
in terms of the Throughput to Area Ratio, as area is not easy
to define (or measure) when multiple resources are used.

There are some cases where cryptographic algorithms have
been demonstrated in the past to take advantage of these re-
sources. For example, the fastest to date FPGA implementation
of the Montgomery multiplication, a major building block of
public key cryptographic algorithms, such as RSA, has been
demonstrated using DSP units in Virtex 4 FPGAs [1].

Advanced Encryption Standard (AES), a major secret key
cryptosystem used for bulk data encryption, has been sped up
first by using Block Memories of Xilinx and Altera FPGAs
[2], and then by using a combination of DSP units and Block
RAMs in Virtex 5 FPGAs [3, 4].

Tim Güneysu in [15] presented his study on AES and
Elliptic Curve Cryptosystem (ECC). He implemented 128-bit
datapath of AES using dual-port block memory and DSP units
in Virtex 5 FPGA with a throughput of 55 Gbits/sec. Most of

978-1-4577-1740-6/11/$26.00 c© 2011 IEEE

the field operations of ECC were also shifted to a DSP unit
of Virtex 4 FPGA with a yield in throughput.

We believe that our study is the first one in the literature
that looks comprehensively at utilizing embedded resources
in a large class of hash functions, including all 14 Round 2
SHA-3 candidates.

Out of 14 SHA-3 candidates, the round functions of four of
them are based on AES (ECHO, Fugue, Groestl, SHAvite-3).
For each of these algorithms, we implemented two versions for
the round function, i.e., S-box based and T-box based. S-box
based and T-box based architectures of AES are described in
detail in [2]. In the S-box based architecture, the SubBytes
operation of AES is implemented using a series of 256x8
bit look-up tables. The remaining operations of AES, such
as ShiftRows and MixColumns are implemented using logic.
In the T-box based architectures, the three basic operations of
AES (SubBytes, ShiftRows, and MixColumns) are combined
together and represented using a larger look-up table, called
the T-table. The concept of the T-table has been used in the
practical implementations of AES described for example in [3,
4, 15, 16]. A similar idea, with appropriate modifications, can
be applied also to the implementations of AES-based Round 2
SHA-3 candidates. To the best of our knowledge, all reported
to date implementations of these four SHA-3 candidates used
the S-box based architectures. We implemented both S-box
and T-box based architectures and presented results of the best
architecture in terms of throughput to area ratio.

III. DESIGN ENVIRONMENT AND METHODOLOGY

All investigated hash functions have been modeled in
VHDL-93. Xilinx ISE Design Suite v.12.3 and Altera Quartus
II v.10.0 were used for synthesis and implementation of all
designs. A benchmarking tool, called ATHENa, was used to
collect results for each hash function [10, 11]. All results
presented in this paper are results obtained after placing and
routing.

Similarly to earlier papers [8, 9], we use Throughput (in
Mbits/sec) as our major speed metrics. We use the resource
utilization vector to indicate the resource utilization of each
SHA-3 candidate, as shown in Table I.

TABLE I: Resource Utilization Vectors

Vendor Family Resource Utilization Vector

Xilinx
Spartan 3 (#CLB slices, #BRAMs,

#multipliers)

Virtex 5 (#CLB slices, #BRAMs,
#DSP48s)

Altera
Cyclone II (#LEs, #Block Memory Bits,

#multipliers)

Stratix III (#ALUTs, #Block Memory Bits,
#DSP 18s)

Our primary optimization target is the improvement of the
ratio: throughput over the amount of reconfigurable logic

resources. We define the amount of reconfigurable logic re-
sources as the number of Configurable Logic Block slices
(#CLB slices) for Xilinx FPGAs, as the number of Logic
Elements (#LEs) for low-cost Altera families, and as the
number of Adaptive Look-Up Tables for high-performance
Altera families (#ALUTs). Our secondary optimization targets
are the improvement in throughput, and the reduction in the
amount of reconfigurable logic resources.

Our primary optimization target is especially appropriate
for situations in which embedded resources of a target FPGA
remain underutilized by an application, including a hash core.
In such scenarios, the exact amount of such resources used by
the hash core is irrelevant, and does not need to be explicitly
taken into account in the performance metrics. This situation
may appear in the implementations of complex cryptographic
systems-on-chip using high-performance families if none of
the components of the system relies heavily on either DSP
units or block memories. This assumption may also apply
for stand-alone implementations of hash cores using low-cost
FPGA families.

Our study is limited to versions of all investigated functions
with 256-bit output. Additionally, we consider only non-
pipelined architectures, i.e., architectures capable of process-
ing only one stream of data at a time. We intend to investigate
the use of pipelined architectures in our future work.

IV. OVERVIEW OF AVAILABLE EMBEDDED
RESOURCES

A. DSP Units and multipliers

Xilinx Virtex 5 FPGAs include DSP48E units. Each unit has
a two-input multiplier followed by multiplexers and a three-
input adder/subtractor/accumulator. The unit can be configured
as a 25x18 multiplier and/or 48-bit adder with up to three
inputs. The third input of an adder can be used only when
multiple DSP units are cascaded and an adder output of one
DSP unit is connected to an adder input of an adjacent DSP
unit.

The DSP unit of the Stratix III FPGAs consists of four
subunits (called DSP 18s) and a total of eight 18x18-bit
multipliers. Two neighboring 18x18 multipliers share a 37-
bit adder/subtractor. The outputs of two 37-bit adders are
fed to second stage adder/accumulator. Xilinx Spartan 3 and
Altera Cyclone II contain only embedded multipliers. Spartan
3 devices support 18x18 signed multiplication. Cyclone II
devices support 9x9 and 18x18 multiplication for signed and
unsigned numbers.

B. Block Memory

The Block Memory (BRAM) in Spartan 3 FPGAs has a size
of 18 kbits, including parity bits. Word size is configurable in
the range from 1 to 36 bits. The maximum word size is used in
the configuration 512 x 36 bits. The block memory (BRAM)
in Virtex 5 FPGAs can store up to 36 kbits of data. It supports
two independent 18 kbit blocks (with the word size up to 18
bits), or a single 36 kbit memory block (with the word size
up to 36 bits).

Altera devices have different capacity of basic embedded
memory blocks. The low-cost Cyclone II family is based on
4 kbit blocks. The high-performance Stratix III family is less
homogenous. It consists of two types of memory blocks, of
the size of 9 kbits and 144 kbits, respectively.

All block memories have single-port and dual-port modes,
and can be used to implement any operations that can be
expressed in terms of table look-ups.

V. CATEGORIES

In Table II, we present a list of internal operations of 13
Round 2 SHA-3 candidates (256-bit variants), suitable for
implementing using embedded resources of modern FPGAs.
The 14th Round 2 candidate, Luffa, is not listed in the Table
because none of its operations can be efficiently implemented
using either DSP units or Block Memories.

The SHA-3 candidates can be divided into the following
three categories based on the potential use of embedded
resources.

• Functions using DSP Units
• Functions using DSP Units and Block Memories
• Functions using Block Memories

BMW is the only algorithm that uses multi-operand addition
with more than six operands. The core of this algorithm is
an adder with 17 32-bit inputs. Skein is the only algorithm
that uses 64-bit addition. SIMD combines the use of adders,
multipliers and ROMs.

TABLE II: Internal operations of 13 Round 2 SHA-3 can-
didates (256-bit variants), suitable for implementing using
embedded resources of modern FPGAs. Notation: xN mul-
tiplication by a constant N, mADDn - multi-operand addition
with n operands, ADD/SUB - 32-bit addition/subtraction with
two operands, ADD-64, 64-bit addition with two operands.
Luffa is not listed in the table as none of its operations were
suitable to be implemented with embedded resources.

Hash
Function

Tables of Constants MUL mADDn ADD/SUB

DSP Units
BMW mADD17 ADD, SUB
CubeHash ADD
Shabal x3,

x5
ADD, SUB

Skein ADD-64
DSP Units and Block Memories

BLAKE Message Expansion mADD3 ADD
Tables

SHA-2 Round Constants mADD6 ADD
SIMD Twiddle Factors x185,

x233
mADD3 ADD

Block Memories
ECHO AES S-box or T-box
Fugue AES S-box or T-box
Groestl AES S-box or T-box
SHAvite-
3

AES S-box or T-box

Hamsi Message Expansion
Tables

JH Round Constants
Keccak Round Constants

BLAKE and Hamsi include large ROMs used to implement
the message expansion tables. JH and Keccak use Block
Memories to store round constants.

As stated earlier, for all hash functions with rounds based
on Advanced Encryption Standard (AES) (namely, ECHO,
Fugue, Groestl, and SHAvite-3), we have implemented two
architectures: first based on S-boxes and the second based on
T-boxes [2].

VI. RESULTS

In this section, we present a comparison between the
basic designs, implemented using reconfigurable logic, and
embedded designs, with DSP units and Block Memories. All
basic designs are identical to those described in detail in [9].
The differences between hardware architectures used in basic
designs and embedded designs are summarized in Table IV.
Results for 256-bit versions of all investigated hash functions
and four FPGA families are summarized in Tables III, A.1,
V-VII, and Figs. 1 and 2.

It is worth mentioning here that BLAKE, SHA-2 and SIMD
exist in the category of “DSP units and Block Memories”
in Table II. However in subsequent Tables III, VI-VII, these
functions are placed in different categories. SIMD is moved
to category “DSP Units”, SHA-2 remains in category “DSP
units and Block Memories”, where as BLAKE is shifted to the
category “Block Memories”. The decision is made on the basis
of best Throughput to Area ratio results obtained for these
functions in all three configurations (DSP only, DSP units and
Block Memories, Block Memories).

In Tables III and A.1 we present the detailed results for
Virtex 5 and Stratix III, respectively. Resource Utilizations
for both investigated architecture are treated as vectors. As a
result, shifting resources from one category to another can
be easily seen. Additionally, absolute values of maximum
clock frequencies and throughputs are included as well. Fi-
nally, the Resource Replacement Ratio, defined as the amount
of reconfigurable logic saved in exchange for each specific
embedded block (DSP unit or memory), is provided in order
to demonstrate the relative efficiency of using any given
embedded block as a part of various hash functions.

In Table V, we demonstrate comprehensive results of
throughput analysis across all families (Virtex 5, Spartan 3,
Stratix III and Cyclone II). We optimized the designs to
achieve comparable throughput while replacing logic with
embedded resources. However, we observed a 17.6% drop
on average in frequency and throughput across all families.
For high-speed families, we observed a drop for 23 out
of 28 (82.14%) hash function-FPGA family pairs. For low-
cost families, this drop appeared for 9 out of 16 (56.25%)
investigated pairs.

Overall, the throughput drop occurred most likely due to
the delays between reconfigurable logic (used to implement
majority of operations) and embedded resources. Additionally,
in category “DSP Units”, we observed a very high throughput
drop (53% on average) for embedded designs using DSP units
for addition.

TABLE III: Timing characteristics and Resource Utilization for basic architectures and architectures based on the use of
embedded FPGA resources for implementations of 13 Round 2 SHA-3 candidates and the current standard SHA-2 in case
of Xilinx Virtex 5 FPGAs. Notation: Clk Freq - clock frequency, Tp - throughput, ∆Tp - relative improvement in throughput,
∆#CLB Slices - relative reduction in the number of CLB Slices, ∆Tp/#CLB slices - relative improvement in throughput/#CLB
slices ratio[%], Arch. - Architecture, Emb - Embedded, Util. - Utilization.

Algorithm Arch.
Clk Freq Tp Resource Util. Tp/#CLB ∆Tp ∆#CLB slices ∆Tp/#CLB slices Resource Replacement

[MHz] [Mbits/s] [#CLB slices,
#BRAMs, #DSPs

slices [%] [%] [%] Ratio

A. DSP Units:

BMW
Basic 8.7 4482 5442, 0, 0 0.82

-13.7 36.9 36.8
17.9 CLB

Emb 7.5 3870 3436, 0, 112 1.13 slices/DSP

CubeHash
Basic 248.2 3972 663, 0, 0 5.99

-20.7 5.6 -16.0
2.3 CLB

Emb 196.9 3150 626, 0, 16 5.03 slices/DSP

Shabal
Basic 214.9 1719 283, 0, 0 6.07

-22.2 1.4 -21.1
0.8 CLB

Emb 167.1 1337 279, 0, 5 4.79 slices/DSP

SIMD
Basic 54.8 3121 8922, 0, 0 0.35

-24.7 46.8 41.5
43.5 CLB

Emb 41.3 2350 4748, 0, 96 0.49 slices/DSP

Skein
Basic 95.2 2565 1306, 0, 0 1.96

-8.0 3.2 -5.0
1.3 CLB

Emb 87.5 2359 1264, 0, 32 1.87 slices/DSP

B. DSP Units and BlockRAMs:

SHA-2
Basic 212.6 1675 418, 0, 0 4.01

2.6 23.4 34.1
N/A

Emb 218.2 1719 320, 1, 5 5.37

C. Block RAMs:

(i) AES Tables

ECHO
Basic 204.7 12094 4888, 0, 0 2.47

-19.4 21.1 2.3
15.4 CLB

Emb (S-box) 165.0 9748 3856, 69, 0 2.53 slices/BRAM

Fugue
Basic 213.4 3414 700, 0, 0 4.88

-7.3 18 12.9
15.8 CLB

Emb (T-box) 197.8 3165 574, 8, 0 5.51 slices/BRAM

Groestl
Basic 321.7 7845 1633, 0, 0 4.80

-22.3 27.3 6.9
9.3 CLB

Emb (T-box) 250.1 6098 1188, 48, 0 5.13 slices/BRAM

SHAvite-3
Basic 271.0 3751 1104, 0, 0 3.40

-5.9 29.3 32.9
20.2 CLB

Emb (T-box) 255.1 3530 781, 16, 0 4.52 slices/BRAM

(ii) Message Expansion Tables

BLAKE
Basic 130.2 3176 1623, 0, 0 1.96

-19.0 55.3 81.0
69.0 CLB

Emb 105.4 2572 726, 13, 0 3.54 slices/BRAM

Hamsi
Basic 280.9 2997 778, 0, 0 3.85

-12.6 25.2 16.8
6.1 CLB

Emb 245.5 2619 582, 32, 0 4.50 slices/BRAM

(iii) Constant Tables

JH
Basic 403.5 5739 1004, 0, 0 5.72

-12.1 1.9 -10.4
4.8 CLB

Emb 354.7 5045 985, 4, 0 5.12 slices/BRAM

Keccak
Basic 296.7 13452 1369, 0, 0 9.83

-16.4 2.3 -14.4
31.0 CLB

Emb 248.2 11252 1338, 1,0 8.41 slices/BRAM

	

	

	
Fig. 1. Comparison of basic designs with designs based on the use of embedded resources in Xilinx Virtex 5 FPGAs in terms of a)

Throughput/#CLB_slices b) #CLB_slices. Notation : DSP – Designs based on DSP units, DSP & BRAM – designs based on DSP units
and BlockRAMs, BRAM – designs based on BlockRAMs.

	

	

!"
#"
$"
%"
&"
'"
("
)"
*"
+"

#!"

,-." /0123456" 764148" 79-:" 7;2<=" 73>?$" @/3A" B0C02" DEF25G8" 73>H<G2"%" ,I>J@" 34K5<" L3" J2MM4;"

>@7"N41825" -2554C2"@OP4=5<F="

N41825"

QF0=R"/F=5G4=G"

N41825"

:7S" :7S"T"

,Q>-"

,Q>-"

4U"N6EF0C6P0GVW/I,X58<M25"YZ<EG2O"'U"

!"#$%& '()*++*+&

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

*!!!"

+!!!"

#!!!!"

,-." /0123456" 764148" 79-:" 7;2<=" 73>?$" @/3A" B0C02" DEF25G8" 73>H<G2"%" ,I>J@" 34K5<" L3" J2MM4;"

>@7"N41825" -2554C2"@OP4=5<F="

N41825"

QF0=R"/F=5G4=G"

N41825"

:7S" :7S"T"

,Q>-"

,Q>-"

1U"V/I,W78<M25"XY<EG2O"'U"

!"#$%& '()*++*+&

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

()*" +,-./012" 320-04" 35)6" 37.89" 3/:;&" <+/=" >,?,." @AB.1C4" 3/:D8C."'" (E:F<" /0G18" H/" F.II07"

:<3"J0-4.1").110?."<KL0918B9"
J0-4.1"

MB,9N"+B91C09C"
J0-4.1"

63O" 63O"P"
(M:)"

(M:)"

0Q"J2AB,?2L,CRS:ETJ1"U3CA0VK"555Q"

!"#$%& '()*++*+&

	
Fig. 2. Comparison of basic designs with alternative designs based on the use of embedded resources in Altera Stratix III FPGAs in
terms of a) Throughput/#ALUTs b) #ALUTs. Notation: DSP – designs based on DSP units, DSP & BRAM – designs based on DSP

units and Block Memory. BRAM – design based on Block Memory.

Table IV. Characteristic features of implemented architectures, i.e., non-pipelined architectures optimized for the best ratio of
Throughput to the amount of reconfigurable logic resources. Notation: ME Tables – Message Expansion Tables. Arch –

Architecture.

Algorithm
Common for Basic and
Embedded Architectures Specific for Basic Architecture Specific for Embedded Architecture

BLAKE
4G arch., with horizontal
folding by a factor of 2.

Message Expansion implemented using
Logic

Message Expansion implemented
using block memories.

BMW Fully Unrolled
All adders implemented using Standard Carry
Chain Logic (“+” in VHDL)

All 17-operand adders implemented
With 7 DSP units and 5 standard carry
chain adders.

CubeHash
Basic Iterative Architecture All adders implemented using Standard Carry

Chain Logic (“+” in VHDL)
Selected adders (50%) implemented using
DSP units

ECHO 3 Clock cycles per round
S-box based architecture with S-box Tables
implemented using distributed memory or logic.

S-box based architecture using block
memories for Virtex 5, Spartan 3 and
Cyclone II. T-box based architecture
using block memories for Stratix III.

Fugue Basic Iterative Architecture
S-box based architecture with S-box Tables
implemented using distributed memory or logic.

T-box based architecture with T-box
Tables implemented using block memory

Groestl
Quasi-pipelined Architecture
with P & Q permutations
interleaved.

S-box based architecture with S-box Tables
implemented using distributed memory or logic

T-box based architecture with T-box
Tables implemented using block memory

Hamsi Basic Iterative Architecture Message Expansion done using logic
ME Tables implemented using block
memory

JH Basic Iterative Architecture
On the fly generation of round constants. Round Constants permuted and stored in

block memory

Keccak Basic Iterative Architecture
Table of constants implemented using
distributed memory or logic

Table of constants implemented using
block memory.

Luffa Basic Iterative Architecture N/A N/A

Shabal
Basic Iterative Architecture
with 32-bit datapath.

Multiplication by 3 and 5 implemented using
logic

Multiplication by 3 and 5 implemented
using DSP units or embedded multipliers

SHAvite-3 4 Clock cycles per round
S-box based architecture with S-box Tables
implemented using distributed memory or logic.

T-box based architecture with T-box
Tables implemented using block memory

SIMD 4 SIMD steps unrolled All multiplications implemented using logic
All multiplications implemented using
DSP units or embedded multipliers.

Skein 4 Threefish rounds unrolled
All adders implemented using Standard Carry
Chain Logic (“+” in VHDL)

Selected adders implemented using DSP
units

SHA-2 Basic Iterative Architecture
Round Constants stored in distribted memory.
All adders implemented using Standard Carry
Chain Logic (“+” in VHDL)

Round Constants stored in block
Memory. Selected adders implemented
using DSP units

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&!!!!"

'()" *+,-./01" 21/,/3" 24(5" 26-78" 2.9:%" ;*.<" =+>+-" ?@A-0B3" 2.9C7B-"&" 'D9E;" ./F07" G." E-HH/6"

9;2"I/,3-0" (-00/>-";JK/807A8"
I/,3-0"

LA+8M"*A80B/8B"
I/,3-0"

52N" 52N"O"
'L9("

'L9("

,P"Q9DRI0"S2B@/TJ"444P"

!"#$%& '()*++*+&

Between the two high-performance families, this drop was
higher for Altera Stratix III than for Xilinx Virtex 5. This is
because in Stratix III, DSP addition must be always executed
together with preceding dummy multiplication by 1. The drop
in performance was relatively smaller for SIMD in Stratix III,
because in this case DSP units were used for multiplication.

For AES-based hash functions, throughput increases for
low-cost families, and decreases (in 7 out of 8 cases) for
high-performance families. This behavior can be explained as
follows: In Spartan 3, basic implementation of an AES S-box
costs 64 slices based on 4-input LUTs. For Virtex 5, the cost is
8 slices based on 6-input LUTs. The corresponding number of
LUT levels is 5 for Spartan 3, and 2 for Virtex 5. Moving to the
T-box based implementations in Spartan 3 replaces the large
routing delay inside of an S-box, by a medium routing delay
between logic and BRAMs. The same transition in Virtex 5,
replaces the small routing delay inside of an S-box, by a larger
routing delay between logic and BRAMs.

TABLE V: Relative Improvement in Throughput, ∆ Tp [%], across
four FPGA families. Notation: N/A not applicable, N/F not fitting

Algorithm Virtex 5 Spartan 3 Stratix III Cyclone II

A. DSP Units:
BMW -13.7 N/A -62.7 N/A
CubeHash -20.7 N/A -55.3 N/A
Shabal -22.2 -35.5 -54.6 -27.4
SIMD -22.4 N/F -1.4 N/F
Skein -8.0 N/A -39.5 N/A

B. DSP Units and Block Memories:
SHA-2 2.6 N/A -2.0 N/A

C. Block Memories:
(i) AES Tables

ECHO -19.4 N/F -22.3 N/F
Fugue -7.3 13.7 -6.8 23.3
Groestl -22.3 4.8 -33.5 5.6
SHAvite-3 -5.9 25.9 15.4 19.5

(ii) Message Expansion Tables
BLAKE -19.0 -30.4 -15.6 -40.8
Hamsi -12.6 -8.3 0.6 -2.3

(iii) Round Constant Tables
JH -12.1 0.5 4.2 -13.3
Keccak -16.4 -11.1 1.2 -0.1

Cyclone II does not contain distributed memory (i.e., mem-
ory inside of basic Logic Elements, LE) As a result, in
the basic architecture, each S-box is first converted to a set
of Boolean functions, and then these functions are mapped
into 4-input combinational LUTs. The result amounts to 208
Logic Elements and 7 levels of LUTs per each S-box. This
transition is obviously quite costly in terms of performance.
The embedded T-box based designs can take advantage of 4
kbit memory blocks present in Cyclone II, and as a result
are more efficient. In Stratix III, compared to Cyclone II,
larger and more flexible Adaptive Look-up Tables (ALUTs)
are used for implementing S-boxes. As a result, basic designs,
with a small number of ALUT levels, are relatively faster
than embedded designs, which suffer from the relative large
interconnect delays between reconfigurable logic and memory

blocks.
In Table VI, we present consolidated results of our effort

to transfer reconfigurable resources to embedded resources for
all investigated families (Virtex 5, Spartan 3, Stratix III and
Cyclone II).

TABLE VI: Relative Reduction in the amount of Reconfigurable
Logic Resources (CLB slices for Spartan 3 and Virtex 5, LEs for
Cyclone II, and ALUTs for Stratix III) across four FPGA families.
Notation: N/A not applicable, N/F not fitting

Algorithm Virtex 5 Spartan 3 Stratix III Cyclone II

A. DSP Units:
BMW 36.9 N/A 22.0 N/A
CubeHash 5.6 N/A -11.5 N/A
Shabal 1.4 6.0 13.2 1.4
SIMD 46.8 N/F 20.8 N/F
Skein 3.2 N/A -30.3 N/A

B. DSP Units and Block Memories:
SHA-2 23.4 N/A 19.5 N/A

C. Block Memories:
(i) AES Tables

ECHO 21.1 N/F 38.9 N/F
Fugue 18.0 37.5 34.2 55.6
Groestl 27.3 54.2 63.5 79.3
SHAvite-3 29.3 50.0 49.6 65.9

(ii) Message Expansion Tables
BLAKE 55.3 57.5 47.8 55.7
Hamsi 25.2 23.9 24.0 20.0

(iii) Round Constant Tables
JH 1.9 9.4 14.7 17.2
Keccak 2.3 0.5 -1.3 0.3

For high-speed families, we were successful in reducing the
amount of reconfigurable logic resources in 26 out of 28 (92.8
%) hash function-FPGA family pairs. For low cost families,
the equivalent percentage was 100 (16 out of 16 relevant pairs).
Biggest savings can be observed in BMW, SIMD, all AES
based functions (ECHO, Fugue, Groestl and Shavite-3), as
well as in BLAKE and Hamsi. Here, the only exceptions are
CubeHash and Skein, DSP Units, when implemented in Stratix
III.

In SIMD, multiplications consume large chunk of logic
resources. Big improvement for SIMD in Xilinx and Altera
FPGAs results from efficiently utilizing embedded DSP mul-
tipliers. BMW architecture involves multi-operand addition. In
order to best exploit the potential of DSP units, they are used
in cascaded mode. This mode enables the designer to take
third input from adjacent DSP unit. This feature reduces the
total number of adders required in multi-operand addition, and
thus improves the ratio of the number of DSP units added to
the number of logic resources saved.

Finally, Skein hash function with 64-bit addition exposes a
lack of good support for this precision in Altera Stratix III.
In order to perform a 64-bit addition, the DSP unit needs
to be supported with extra logic implemented using regular
reconfigurable logic resources.

AES-based functions, in both S-box and T-box architectures,
resulted in much bigger area reduction because the functions
implemented using embedded resources are a big part of the

entire hash function circuit. In case of functions using round
constant tables (JH, Keccak), the relative improvement is not
significant because these tables are relatively small.

In Table VII, we illustrate overall throughput to area results
across all families (Virtex 5, Spartan 3, Stratix III and Cyclone
II). It was our primary goal to optimize Throughput to Area
ratio. For high-speed families, we obtained an improvement
for 19 out of 28 (67.8 %) hash function-FPGA family pairs.
For low-cost families, we saw an improvement for 13 out of
16 (81.2%) pairs.

In the category Block memories, similar improvement was
shown for 92.15% pairs. Biggest achievers are AES and
Message Expansion based function with 100 % improvement
in each case. Results of AES based functions really stand
out with biggest potential of improvement. These benefit from
throughput improvement for low-cost families (see Table V),
and area reduction for all families (see Table VI), thus scoring
highest in Throughput to Area Ratios (see Table VII).

In order to evaluate the usefulness of embedded resources,
we also calculated the “Resource Replacement Ratio” (see
Table III). This ratio represents a relative benefit from con-
version of logic to embedded resources. Results depict that
BMW, SIMD in category “DSP Units”, all AES based func-
tions (ECHO, Fugue, Groestl and Shavite-3), and BLAKE in
category “Block Memories” give a largest benefit in replacing
logic resources with embedded resources.

TABLE VII: Relative Improvement in the Throughput to the
Amount of Reconfigurable Resources ratio across four FPGA fami-
lies. Notation: N/A not applicable, N/F not fitting

Algorithm Virtex 5 Spartan 3 Stratix III Cyclone II

A. DSP Units:
BMW 36.8 N/A -52.2 N/A
CubeHash -16.0 N/A -59.9 N/A
Shabal -21.1 -31.4 -47.8 -26.3
SIMD 41.5 N/F 24.4 N/F
Skein -5.0 N/A -53.5 N/A

B. DSP Units and Block Memories:
SHA-2 34.1 N/A 21.8 N/A

C. Block Memories:
(i) AES Tables

ECHO 2.3 N/F 27.2 N/F
Fugue 12.9 82.0 41.6 177.9
Groestl 6.9 128.8 82.0 410.5
SHAvite-3 32.9 151.5 129.0 50.1

(ii) Message Expansion Tables
BLAKE 81.0 63.6 61.7 33.8
Hamsi 16.8 20.5 32.4 22.1

(iii) Round Constant Tables
JH -10.4 10.9 22.1 4.8
Keccak -14.4 -10.6 -0.4 0.2

VII. CONCLUSIONS
Fourteen modern cryptographic hash functions have been

implemented using four FPGA families from Xilinx and
Altera. All functions have been optimized using embedded
resources of the target FPGAs. They involve addition (32-bit,
64-bit, and multi-operand), multiplication, and use of block

memories (AES, Message Expansion, and Round Constant
based tables). As a result, it is a non-trivial problem to
generalize the usefulness of embedded resources across all
FPGA families (Virtex 5, Stratix III, Spartan 3 and Cyclone
II).

We employed criteria like Best Throughput to Area Ratio
and Resource Replacement Ratio in different categories and
across FPGA families to comprehend the usefulness of em-
bedded resources. Our results demonstrate significant savings
in the amount of reconfigurable logic, especially high for func-
tions based on large look-up tables, such as four AES-based
candidates, as well as BLAKE and Hamsi. The advantage of
using DSP units and multipliers was much more limited, and
typically associated with the significant performance drop. The
main reason for that was that the majority of investigated hash
functions use only addition, and cannot take any advantage of
multipliers present in these units.

Future designers interested in using embedded resources do
need to consider right FPGA family selection for their im-
plementations because FPGA vendors have different features
and architectures for embedded resources. Our results show a
significant difference in performance across FPGA families.

Overall, embedded resources provide an interesting and
important alternative to the use of basic reconfigurable logic
resources in implementations of modern cryptographic hash
functions. We hope that this paper will support the design
process involving these resources, and pave the way to their
extended use in future implementations of cryptography in
modern FPGAs.

REFERENCES

[1] D. Suzuki, How to Maximize the Potential of FPGA Resources for
Modular Exponentiation, in Proc. CHES 2007, Vienna, Austria, Sep.
2007, pp. 272-288.

[2] K. Gaj and P. Chodowiec, “FPGA and ASIC Implementations of AES,”
Chapter 10 in C. K. Koc (Ed.), Cryptographic Engineering, pp. 235-320,
Springer, Dec. 2008.

[3] S. Drimer, Security for Volatile FPGAs, Ph.D. Dissertation, University of
Cambridge, Computer Laboratory, Nov 2009, uCAM-CL-TR-763.

[4] S. Drimer, T. Güneysu and C. Paar, DSPs, BRAMs and a Pinch of Logic:
Extended Recipes for AES on FPGAs, ACM Trans. Reconfig. Techn. and
Systems, Issue 3, Volume 1, 1/2010.

[5] SHA-3 Contest, http://csrc.nist.gov/groups/ST/hash/sha3/index.html
[6] SHA-3 Zoo, http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo
[7] SHA-3 Zoo: SHA-3 hardware implementations,

http://ehash.iaik.tugraz.at/wiki/SHA3 Hardware Implementations.
[8] K. Gaj, E. Homsirikamol, and M. Rogawski, Fair and Comprehensive

Methodology for Comparing Hardware Performance of Fourteen Round
Two SHA-3 Candidates Using FPGAs, in Proc. CHES 2010, Santa
Barbara, CA, USA, Aug. 2010, pp. 264-278.

[9] E. Homsirikamol, M. Rogawski, and K. Gaj, “Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs,”
Cryptology ePrint Archive: Report 2010/445.

[10] ATHENa Project Website, http://cryptography.gmu.edu/athena
[11] K. Gaj, J.P. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol, B.Y.

Brewster, ATHENa Automated Tool for Hardware EvaluatioN: Toward
Fair and Comprehensive Benchmarking of Cryptographic Hardware using
FPGAs, in Proc. 20th Int. Conf. on Field Programmable Logic and
Applications, FPL 2010, Milan, Italy.

[12] R. Chaves, G. Kuzmanov, L. Sousa, S. Vassiliadis, Improving SHA-2
Hardware Implementations, in Proc. CHES 2006, Yokohama, Japan, Oct.
2006, pp. 298-310.

	

Appendix

	

[13] R.P. McEvoy, F.M. Crowe, C.C. Murphy, W.P Marnane, Optimisation
of the SHA-2 Family of Hash Functions on FPGAs, in Proceedings of
the 2006 Emerging VLSI Technologies and Architectures (ISVLSI06),
pp. 317-322

[14] Federal Information Processing Standard Publication (FIPS PUB) 180-3,
Secure Hash Standard (SHS), October 2008 (FIPS 180-3)

[15] T. Güneysu, “Utilizing hard cores of modern FPGA devices for high-
performance cryptography”, J. Cryptographic Engineering, Vol. 1. 2011,
pp. 37-55.

[16] V. Fischer and M. Drutarovsky, Two methods of Rijndael implementa-
tion in reconfigurable hardware, in Proc. CHES 2001, Paris, France, May,
2001, pp. 81-96.

[13] R.P. McEvoy, F.M. Crowe, C.C. Murphy, W.P Marnane, Optimisation
of the SHA-2 Family of Hash Functions on FPGAs, in Proceedings of
the 2006 Emerging VLSI Technologies and Architectures (ISVLSI06),
pp. 317-322

[14] Federal Information Processing Standard Publication (FIPS PUB) 180-3,
Secure Hash Standard (SHS), October 2008 (FIPS 180-3)

[15] T. Güneysu, “Utilizing hard cores of modern FPGA devices for high-
performance cryptography”, J. Cryptographic Engineering, Vol. 1. 2011,
pp. 37-55.

[16] V. Fischer and M. Drutarovsky, Two methods of Rijndael implementa-
tion in reconfigurable hardware, in Proc. CHES 2001, Paris, France, May,
2001, pp. 81-96.

Table A.1. Timing characteristics and resource utilization for basic architectures and architectures based on the use of embedded FPGA
resources for implementations of 13 Round 2 SHA-3 candidates and the current standard SHA-2 in case of Altera Stratix III FPGAs.
Notation: Clk Freq – clock frequency, Tp – throughput, Mem-bits – number of memory bits, ! Tp – relative improvement in throughput,
! #CLB slices – relative reduction in the number of CLB slices, ! Tp/#CLB slices – relative improvement in throughput/#CLB slices
ratio.

Clk
Freq Tp

Resource
Utilization ! Tp

!
#ALUTs

!
Tp/#ALUTs

Algorithm Architecture

[MHz] [Mbits/s]

[#ALUTs,
#Mem-bits,

#DSPs]

Tp/#ALUTs

 [%] [%] [%]

Resource

Replacement
Ratio

DSP Units

Basic 12.5 6408 1254,0,0 0.51 BMW
Embedded 4.6 2389 9783, 0, 448 0.24

-62.7 22.0 -52.2 6.2 ALUTs/DSP

Basic 233.1 3730 1919,0,0 1.94 CubeHash
Embedded 104.3 1668 2139, 0, 64 0.78

-55.3 -11.5 -59.9 -3.4 ALUTs/DSP

Basic 202.2 1618 744,0,0 2.17 Shabal
Embedded 91.7 734 646, 0, 20 1.14

-54.6 13.2 -47.8 4.9 ALUTs/DSP

Basic 55.3 3146 25434,0,0 0.12 SIMD
Embedded 54.5 3101 20150, 0, 127 0.15

-1.4 20.8 24.4 41.6 ALUTs/DSP

Basic 90.2 2432 4380,0,0 0.56 Skein
Embedded 54.7 1472 5705, 0, 128 0.26

-39.5 -30.3 -53.5 -10.4 ALUTs/DSP

DSP Units and Block Memory
Basic 209.9 1654 988,0,0 1.67 SHA-2
Embedded 205.8 1621 795, 2048,16 2.03

-2.0 19.5 21.8 N/A

Block Memory
(i) AES Based Tables

Basic 235.4 13910 20754,0,0 0.67 ECHO
Emb (S-box) 175.9 10802 12675, 512k, 0 0.85

-22.3 38.9 27.2 15.8 ALUTs/1kbit
Mem

Basic 202.5 3241 2391,0,0 1.36 Fugue
Emb (T-box) 188.9 3022 1574, 99k, 0 1.92

-6.8 34.2 41.6 8.3 ALUTs/1kbit
Mem

Basic 286.7 6990 6260,0,0 1.12 Groestl
Emb (T-box) 190.7 4650 2288, 528k, 0 2.03

-33.5 63.5 82.0 7.5 ALUTs/1kbit
Mem

Basic 238.1 3295 2930,0,0 1.12 SHAvite-3
Emb (T-box) 275.0 3804 1477, 256k,0 2.58

15.4 49.6 129.0 5.7 ALUTs/1kbit
Mem

(ii) Message Expansion Tables
Basic 121.3 2958 3637,0,0 0.81

BLAKE
Embedded 102.4 2498 1900, 12k, 0 1.31

-15.6 47.8 61.7
144.8

ALUTs/1kbit Mem

Basic 286.8 3060 2304,0,0 1.33 Hamsi
Embedded 288.6 3078 1750, 18k, 0 1.76

0.6 24.0 32.4
 30.8 ALUTs/1kbit

Mem

(iii) Round Constant Tables
Basic 383.0 5299 3526,0,0 1.50 JH
Embedded 388.3 5523 3009, 9k, 0 1.83

4.2 14.7 22.1 57.4 ALUTs/1kbit
Mem

Basic 303.2 13746 4221,0,0 3.26
Keccak

Embedded 306.9 13913 4277, 2k, 0 3.25
1.2 -1.3 -0.1

-28.0
ALUTs/1kbit Mem

