1 EVPP 110

Instructor: Dr. Largen

Oceans

² Global Environments

- ✓ Global Environments
 - distribution of biomes results from interaction of physical geography and two key physical factors
 - · solar radiation
 - · global circulation patterns
 - oceanic
 - atmospheric

3 🗷

4 Global Environments

- ✓ Global Environments
 - interdependent relationship between the ocean and the atmosphere
 - · has profound ramifications over the earth
 - because the same physical processes determine the operation of both systems
 - changes that occur in the ocean lead to long-term shifts in the general circulation of the atmosphere
 - » observing key features and processes in the oceans can lead to the prediction of atmospheric phenomena

5 Global Environments

- ✓ Global Environments
 - the atmosphere and ocean together act like a global heat engine
 - continually redistributing heat that reaches the earth from the sun

Global Environments:

Solar radiation

- ✓ Solar radiation
 - warms the earth's surface and drives the circulation of the oceans and the atmosphere
 - is emitted by the sun, in the form of radiant energy, at same average rate in all directions
 - is received on the earth's surface in varying amounts, depending on
 - · distance between earth's surface and sun
 - duration of daylight (exposure to sun's rays)
 - varies with season and latitude
 - angle at which sun's rays impinge on surface

7 🗷

8 🗷

9 ☐ Global Environments: Solar radiation

✓ Solar radiation

- variations in the amount of solar radiation reaching the earth's surface
 - · leads to uneven heating of the atmosphere and the oceans
 - which in turn drives the interrelated patterns of circulation of the oceans and the atmosphere

10 🗷

11 Global Environments

- ✓ The Oceans
- √ The Atmosphere
 - composition and structure
 - water vapor and its effects
 - circulation
 - special focus topics
 - air quality
 - · acid deposition
- ✓ Global climate change

12 Global Environments:

The Oceans

- ✓ The Oceans
 - circulation
 - El Nino
 - tides

13 The Oceans: Circulation

- ✓ Historical perspective
 - most early knowledge of ocean currents came from ship captains and explorers
 - Pliny (~AD 50) described strong currents flowing into Mediterranean thru Strait of Gibraltar
 - Arabs (around 9th century) were aware of reversing currents of Arabian Sea & timed trading voyages to Africa to take advantage of the currents
 - · Benjamin Franklin (in 18th century) developed crude chart of the Gulf Stream current

14 The Oceans: Circulation

- ✓ Historical perspective
 - Matthew Fontaine Maury
 - · a lieutenant in US Navy
 - first person to use large amounts of ocean data in a systematic study of surface currents
 - from 1841 1853 he worked to compile data accumulated in thousands of old log books
 publishing the first pilot charts and sailing directions for all the world oceans

- ✓ Historical perspective
 - Matthew Fontaine Maury

- additionally, he
 - laid the foundation for the establishment of the US Weather Bureau
 - did most of the work in determining the location for the first transatlantic cable
 - was instrumental in the establishment of the US Naval Academy

- ✓ Circulation patterns of oceans
 - two types of circulation exist in the oceans
 - · surface circulation
 - horizontal movement of water
 - driven by force of winds at water surface
 - · thermohaline circulation
 - vertical movement of water
 - driven by density differences resulting from variations in water
 - » temperature
 - » salinity

17 The Oceans: Circulation

- ✓ Circulation patterns of oceans
 - are affected by four main factors
 - · wind acting on the ocean surface
 - wind itself is produced by uneven heating resulting from solar radiation
 - containment of the oceans within boundaries set by land masses
 - due to interference from land masses, no currents run all the way around the world except in the Antarctic region
 - · earth's rotation
 - · water density

18 The Oceans: Circulation

- ✓ mechanics of ocean circulation patterns
 - the effect of wind
 - blowing over the surface of the ocean exerts a push on the water
 - due to the friction forces that are stronger in the water than in the air
 - » the speed of the water is only a fraction of that of the wind
 - response time of ocean currents to changes in atmospheric circulation is many months

- ✓ mechanics of ocean circulation patterns
 - the effect of wind
 - if earth was covered entirely with water,
 - the winds would form well-defined belts and ocean currents would also move in distinct belts under the influence of prevailing winds

20 🗷

21 The Oceans: Circulation

✓ mechanics of ocean circulation patterns

- the effect of continents
 - the presence of landmasses, continents, modifies the idealized oceanic circulation patters
 - · since an ocean current cannot easily leave its basin
 - generalized circulation patterns in ocean basins tend to consist of closed loops called gyres

22 🗷

²³ The Oceans: Circulation

✓ mechanics of ocean circulation patterns

- the effect of the earth's rotation
 - due to the rotation of the earth, objects moving in a straight line along its surface are deflected, as if a sidewise force were acting on it
 - this is called the Coriolis effect
 - » which always acts sidewise on objects moving horizontally on the earth

²⁴ The Oceans: Circulation

- ✓ mechanics of ocean circulation patterns
 - the effect of the earth's rotation
 - because the earth spins to the east, the Coriolis effect causes a deflection
 - to the right of the direction of motion in the Northern Hemisphere
 - to the left of the direction of motion in the Southern Hemisphere

25 🗷

²⁶ The Oceans: Circulation

- ✓ mechanics of ocean circulation patterns
 - the effect water density
 - · density increases with
 - increases in salinity
 - increases in pressure
 - decreases in temperature
 - thermohaline circulation

²⁷ The Oceans: Circulation

✓ mechanics of ocean circulation patterns

- the effect water density
 - · thermohaline circulation
 - primarily a convection flow
 - » cold, dense waters from polar latitudes sink and move towards the tropics
 - » replaced by warmer surface waters that originated in the tropics

- ✓ Ocean surface circulation is dominated by two huge surface gyres which
 - move around the subtropical zones of high pressure between 30° N & 30° S latitudes
 - · Northern Hemisphere gyre
 - circulates in clockwise direction
 - » prevailing winds blow W to E due to earth's eastward rotation are deflected to the right
 - · Southern Hemisphere gyre

²⁹ The Oceans: Circulation

- ✓ Ocean surface circulation is dominated by two huge surface gyres which
 - move around the subtropical zones of high pressure between 30° N & 30° S latitudes
 - · Northern Hemisphere gyre
 - · Southern Hemisphere gyre
 - circulates in counterclockwise direction
 - » prevailing winds blow west to east due to earth's eastward rotation are deflected to the left

30 The Oceans: Circulation

- ✓ Principle oceanic surface currents
 - have tendency to
 - · form loops of circulation marked by
 - strong currents on the perimeters
 - relatively little movement internally
 - move warm water poleward and cold water toward tropics
 - thus helping to equalize distribution of heat

31 🗷

32 The Oceans: Circulation

- ✓ Principle oceanic surface currents
 - western boundary currents
 - eastern boundary currents
 - equatorial currents
 - polar circulation

- ✓ Principle oceanic surface currents
 - western boundary currents

- general northward current of warm equatorial water flowing at the west edge of each ocean basin
- tend to be narrow, swift, deep flows with well-defined boundaries

- ✓ Principle oceanic surface currents
 - western boundary currents
 - · strong in Northern Hemisphere
 - the Gulf Stream in the Atlantic Ocean
 - the Kuroshio or Japanese Current in the Pacific Ocean
 - · weaker in the Southern Hemisphere
 - the Brazil Current in the Atlantic Ocean
 - the West Australia Current in the Pacific Ocean

35 🗷

36 The Oceans: Circulation

- ✓ Principle oceanic surface currents
 - western boundary currents, examples
 - · the Gulf Stream
 - warm northward current in north Atlantic Ocean
 - runs from Cape Hatteras to near the Grand Banks of Newfoundland
 - reaches Europe near the southern British Isles
 - » as a result, western Europe is warmer and more temperate than eastern North American at similar latitudes

37 🗷

- ✓ Principle oceanic surface currents
 - western boundary currents, examples
 - the Kuroshio Current
 - warm northward current in northen Pacific Ocean
 - runs along Japan northeast towards Alaska
 - » as a result, Alaska has a more temperate climate than would be expected based on its latitude

39 🗷

40 The Oceans: Circulation

- ✓ Principle oceanic surface currents
 - eastern boundary currents
 - · occur along eastern sides of oceans
 - · tends to be broad, weak, shallow flows with poorly-defined boundaries
 - the force of the wind and the Coriolis effect combine at western continental seacoast and cause warm surface water to move away from the coast and out to sea
 - deep cold water then moves upward to replace the water that blows seaward
 - » producing a process called upwelling

41 The Oceans: Circulation

- ✓ Principle oceanic surface currents
 - eastern boundary currents, examples
 - in Northern Hemisphere
 - the Canary Current in the Atlantic Ocean
 - the California Current in the Pacific Ocean
 - in the Southern Hemisphere
 - the Benguela Current in the Atlantic Ocean
 - the Peru (Humboldt) Current in the Pacific Ocean

42 🗷

43 The Oceans: Circulation

- ✓ Principle oceanic surface currents
 - eastern boundary currents
 - · significance of upwelling
 - brings deep, cool, nutrient-rich water to the surface
 - » water is rich in nutrients because of the the numerous creatures that die in surface waters and then sink
 - the Peru (Humboldt) Current is an example

44

- ✓ Principle oceanic surface currents
 - eastern boundary currents
 - · significance of upwelling
 - the Peru (Humboldt) Current

- » flows northward along western coast of South America
- » a large amount of upwelling is normally associated with this current

- ✓ Principle oceanic surface currents
 - eastern boundary currents
 - · significance of upwelling
 - the Peru (Humboldt) Current
 - » upwelling provides nutrients for enough phytoplankton to support the largest anchovy population in the world
 - » the anchovy fishery is one of the largest industries in Peruvian economy

47 🗷

48 The Oceans: Circulation

- ✓ Principle oceanic currents
 - equatorial currents
 - · are confined mostly to the surface
 - warm, well-mixed surface layer and a sharp thermocline that separates warm surface water from cold water below
 - except at the equator where mixing across the thermocline occurs

49 The Oceans: Circulation

- ✓ Principle oceanic currents
 - equatorial currents
 - · North Equatorial Current
 - westward-flowing
 - southern-most portion of Northern Hemisphere gyre
 - · Equatorial Countercurrent
 - eastward-flowing
 - separates the North and South Equatorial Currents
 - · South Equatorial Current
 - westward-flowing
 - northern-most portion of the Southern Hemisphere gyre

50 ☐ Image 0049

Ocean Circulation

- ✓ Principle oceanic currents
 - polar circulation

- · circulation N & S polar regions is different
- · north polar region
 - Arctic Ocean is covered by pack ice
 - circulation is characterized by sluggish counterclockwise drift
 - deep cold water from the Arctic Ocean is kept from mixing freely with that in the Atlantic and Pacific Oceans by shallow sills between continental blocks

- ✓ Principle oceanic currents
 - polar circulation
 - · south polar region
 - water flows freely between the Atlantic and Pacific Oceans
 - Antarctic Circumpolar Current
 - » largest current in the world
 - » circles Antarctica
 - » extends all the way to the bottom
 - » flows eastward

53 ☐ Image 0049

Ocean Circulation

The Oceans: Circulation Special Focus Topic

✓ El Nino

- name originally coined in late 1800s by Peruvian fishermen as the name for a seasonal shift in the current pattern off the coast of Ecuador and Peru
 - · that occurred around Chrsitmas time
 - thus El Nino (Spanish for "Christ child)
 - would replace the cold, nutrient rich water in which they usually fished with less productive, warm southward flowing water
 - » slightly reducing the fish population and giving the fishermen some time off

55 ■ The Oceans: Circulation Special Focus Topic

✓ El Nino

- now the name refers to a catastrophic version of that original annual event
- part of a phenomenon known as El Nino-Southern Oscillation (ENSO)
 - a continual but irregular cycle of shifts in ocean and atmospheric conditions that affect the globe

The Oceans: Circulation Special Focus Topic

✓ El Nino-Southern Oscillation (ENSO)

- normally, the Pacific Ocean is fanned by constantly blowing east-to-west trade winds
 - which push away from the coast the warm surface water along western coasts of Peru, Chile, Ecuador
 - allowing cold, nutrient-rich water from depths to well up (upwelling) into the place of the warm water that has been pushed away

57 ☐ The Oceans: Circulation Special Focus Topic

✓ El Nino-Southern Oscillation (ENSO)

- warm water that was pushed away from the coast "piles" up in western portion f the Pacific Ocean
 - resulting in the waters of the western Pacific Ocean being several degrees warmer and about one meter higher than the waters in the eastern portion of the Pacific

58 🗷

59 🗷

60 ■ The Oceans: Circulation Special Focus Topic

✓ El Nino-Southern Oscillation (ENSO)

- if east-to-west trade winds slacken briefly
 - · warm water begins to slosh back across the Pacific Ocean from west to east
 - ocean & atmosphere can conspire to ensure that it keeps happening
 - the warmer the eastern ocean gets, the warmer and lighter the air above it becomes

61 The Oceans: Circulation

Special Focus Topic

✓ El Nino-Southern Oscillation (ENSO)

- the warmer the eastern ocean gets, the warmer and lighter the air above it becomes
 - and, hence, the more similar to the air on the western side (of the ocean)
 - reducing difference in pressure across ocean
 - since a pressure difference is what makes the wind blow, a lack thereof causes the easterly trade winds to weaken
 - the continued reduction in winds allows warm water to continue its eastward advance

62 🗷

63 ■ The Oceans: Circulation Special Focus Topic

✓ El Nino-Southern Oscillation (ENSO)

- end result is to shift the weather systems of the western Pacific Ocean about 6000km eastward
 - tropical rainstorms that usually drench Indonesia and the Philippines are caused when seawater abutting these islands cause the air above it to rise, cool and condense into clouds
 - when the warm water moves east, so do the clouds, leaving previously rainy

Indonesia and the Philippines in drought

- 64 🗷
- 65 🗷
- 66 🔽
- ⁶⁷ The Oceans: Circulation Special Focus Topic
 - ✓ El Nino-Southern Oscillation (ENSO)
 - ecological effects during an El Nino
 - in the waters of Peru and northern Chile
 - commercial fish stocks virtually disappear
 - » the commercially valuable anchovy fisheries of Peru were essentially destroyed by the 1972 El Nino
 - plankton dropped to 1/20th of their normal abundance
- 68 🗷
- 69 🗷
- The Oceans: Circulation Special Focus Topic
 - ✓ El Nino-Southern Oscillation (ENSO)
 - ecological effects during an El Nino
 - weather effects are propagated across world's weather systems
 - violent winter storms, accompanied by flooding, lash the coast of California
 - colder and wetter winters occur in Florida and along Gulf Coast
 - American midwest and the Mid-east experience heavier than usual rains
- 71 🗷
- The Oceans: Circulation Special Focus Topic
 - ✓ El Nino-Southern Oscillation (ENSO)
 - although effects of El Nino are clear, what triggers them is not
 - models suggest that the type of climate change that triggers El Nino is chaotic
 - wind and ocean currents return again and again to the same condition but never in a regular pattern
 - » small nudges can send them off in many different directions

The Oceans: Circulation Special Focus Topic

- ✓ El Nino-Southern Oscillation (ENSO)
 - in the news, Washington Post, "Science Notebook, El Nino: The Sequel", 1/14/02
 - El Nino may appear this spring after a 5 year absence
 - prediction based on detection of warming over tropical Pacific Ocean
 - · its return would likely cause
 - drier-than-normal fall in Pacific Northwest
 - wetter-than-normal winter in Gulf Coast and maybe California
 - warmer-than-normal in Great Plains

The Oceans: Circulation Special Focus Topic

- ✓ El Nino-Southern Oscillation (ENSO)
 - noteworthy El Ninos
 - 1982 1983: 2100 deaths, \$13 billion in damages
 - Austraila, already in midst of worst drought in a century, suffered losses that cost billions
 - » wildfires, catastrophic agricultural & livestock losses
 - drought in sub-Saharan Africa
 - » countries that were normally food-exporting had to turn to international community for help
 - southern Ecuador and northern Peru
 - » app. 100 inches of rain fell in 6 month period

The Oceans: Circulation Special Focus Topic

- ✓El Nino-Southern Oscillation (ENSO)
 - noteworthy El Ninos
 - 1997 1998:
 - California lashed by storms for months
 - » 1400 homes damaged or destroyed
 - Florida ravaged by series of tornadoes, killing 39
 - Panama Canal officials had to restrict shipping due to low water levels
 - Indonesia suffered forest and peat fires producing smoke that affected southeast Asia

76 The Oceans: Tides

√ Tides

- another type of movement of ocean waters

- normally raise and lower the water level of a coast, and as a result, are significant
 - · geomorphically
 - changes in water level expose different parts of coast to erosive action of waves
 - · biologically
 - organisms living in areas subject to changes in water level must have adaptations to deal with alternating periods of submersion and exposure

77 The Oceans: Tides

✓ Tides

- definition
 - a periodic rise and fall of the Earth's oceans
- caused by
 - · gravitational effects of the sun & moon on oceans
 - produce "bulges" of water
 - magnitude of these "bulges" is determined by the varying and complex interactions resulting from the relative positions of the earth, moon and sun

78 The Oceans: Tides

√ Tides

- role of the sun and moon
 - sun's gravitational pull on earth is less than 1/2 that of the moon, its significance on tides
 - is secondary to influence of moon
 - is strongest sun aligns with moon and during equinoxes
 - moon's gravitational pull on earth is ~ 2X that of the sun
 - it is primarily responsible for tides
 - because moon's distance from earth varies, so does its attractive forces

79 The Oceans: Tides

√ Tides

- characteristics
 - frequency
 - some areas have 2 high tides each day, some have only 1
 - average interval between successive high tides is app. 12.5 hours
 - · time of day
 - changes each day
 - · height
 - typically 1 2 meters above average sea level
 - varies with the relative positions of the earth, moon & sun
 - influenced by local coastal topography