¹ EVPP 110 Lecture

Dr. Largen - Fall 2002

Life: Origin, Characteristics, Early Cells, Organization, Classification

² The origin of life

Definitions of "origin" and "life"

from

Webster's Seventh New Collegiate Dictionary

3 ☐ or - i - gin \ noun

- 1: ancestry, parentage
- 2: rise, beginning, or derivation from a source
- 3: the point at which something begins its course or existence
- 4: applies to the things or persons from which something is ultimately derived and often to the point where something springs into being

4 □ life \ noun

- 1 a : the quality that distinguishes a vital and functional being from a dead body or purely chemical matter
- 1 b: the state of a material complex or individual characterized by the capacity to perform certain functional activities including metabolism, growth and reproduction

5 The origin of life

- ✓ Key characteristics shared by living things
 - what is life?

✓ Many ideas about the origin of life

- ideas about the origin of life
- what the early earth was like
- testing the spontaneous origin hypothesis
- ✓ The first cells
 - origin of cells
 - the earliest cells bacteria
- √The first eukaryotic cells
- √ The kingdoms of life

Ideas about the origin of life

¬□ Ideas about the origin of life

- √ There are many ideas about the origin of life
 - ideas about the origin of life
 - · can't definitively answer question of how life originated
 - its impossible to go back in time and observe life's beginnings
 - some questions about life's origins can be answered from evidence in rocks
 - other questions cannot be answered at this time
 - in general, there are three possible explanations for the origin of life

Ideas about the origin of life

- ✓ ideas about the origin of life
 - three possible explanations for the origin of life
 - special creation
 - · extraterrestrial origin
 - · spontaneous origin

9 Three possible explanations for the origin of life

√ special creation

- the hypothesis that life forms were put on earth by supernatural or divine forces
 - hypothesis of divine creation is at the core of most major religions
- oldest and most widely accepted hypothesis
- considered an "unscientific" explanation
 - · because it cannot be tested and potentially disproved
- assumes forces operating in the past are different than those operating today

10 Three possible explanations for the origin of life

✓ extraterrestrial origin

- hypothesis that life did not originate on earth but was carried to earth by meteors or cosmic dust as an extraterrestrial "infection"
- cannot be rejected based on evidence currently available to science
 - · recent discovery of possible fossils in Mars rocks
 - · recent discovery of liquid water under surface of Jupiter's ice-shrouded moon Europa
- however, also considered an "unscientific" explanation because it cannot be tested and potentially disproved

11 Three possible explanations for the origin of life

√ spontaneous origin

- the hypothesis that life evolved from inanimate matter, as associations among molecules became more and more complex
 - · in this view, the force leading to life was selection
- as changes in molecules increased their stability and caused them to persist longer, these molecules could initiate more and more complex associations
 - · this culminated in the evolution of cells

12 Three possible explanations for the origin of life

√ spontaneous origin

- this view is not definitely the correct one
- this view does not preclude the other two possibilities

- · that a divine entity may have acted via evolution
- that life may have infected the earth from some other world and then evolved

13 Three possible explanations for the origin of life

√ spontaneous origin

- this view is considered the only "scientific" explanation of the three because it is the only one that can be tested and potentially disproved
 - as such, it is the only explanation to be focused on in this text and in this course

14 Three possible explanations for the origin of life

√ spontaneous origin

- the goal is attempting to understand whether
 - · the forces of evolution could have led to the origin of life and, if so
 - · how might the process have occurred

□ What is Life?

16 What is Life?

√ What is life?

- What qualifies something as "living"?
- must distinguish between necessary and sufficient criteria
 - · necessary criteria
 - possessed by all life
 - · sufficient criteria
 - possessed only by life

17 □ What is Life?

√ What is life?

- four possible criteria of life
 - movement
 - sensitivity (responding to stimuli)
 - · death
 - · complexity

18 ☐ What is Life?

√ four possible criteria of life

- movement
 - not necessary
 - not all living plants and animals move
 - · not sufficient
 - non-living clouds do move
- sensitivity (responding to stimuli)
 - not necessary
 - kicking a redwood tree
 - not sufficient
 - non-living street light w/ photo cell responds to light

19 What is Life?

- √ four possible criteria of life
 - death
 - necessary
 - all living things die
 - · not good criterion because of circular definition
 - complexity
 - necessary
 - all living things possess complexity
 - · not sufficient
 - many non-living things, like computers, all possess complexity

²⁰ All living things share key characteristics

- 21 All living things share key characteristics
 - ✓ All organisms on earth exhibit these 7 fundamental properties
 - cellular organization
 - sensitivity
 - growth
 - development
 - reproduction
 - regulation
 - homeostasis
 - heredity
- 22 All living things share key characteristics
 - √ cellular organization
 - · all organisms consist of one or more cells
 - complex, organized assemblages of molecules enclosed within membranes

√ sensitivity

- · all organisms respond to stimuli
- · not all organisms respond to stimuli in the same way
- 23 All living things share key characteristics

✓ arowth

- all living things assimilate energy and use it to grow via a process called metabolism
 - · all life on earth is based upon the transfer of the energy in covalent bonds
 - resulting from the ability of plants, algae and some bacteria to carry out the process of photosynthesis
 - » in which carbohydrates, with energy-storing covalent carbon-carbon bonds, are created from CO₂ and H₂O using energy from the sun
- 24 ☐ All living things share key characteristics
 ✓ development

 multi-cellular organisms undergo systematic, gene-directed changes as they grow and mature

25 All living things share key characteristics

√ reproduction

- all living things reproduce, passing on traits from one generation to the next
- no organism lives for ever, as far as we know, although some organisms can live for a very long time
- since all organisms die, ongoing life is not possible without reproduction

²⁶ All living things share key characteristics

√ regulation

- all organisms have regulatory mechanisms that coordinate internal processes

√ homeostasis

 all living things maintain relatively constant internal conditions, different from their environment

27 All living things share key characteristics

√ heredity

- all organisms on earth possess a genetic system that is based on the replication of a long, complex molecule called **DNA**
- this mechanism allows for adaptation and evolution over time and for the distinguishing characteristics of living things

28 What was the early earth like?

²⁹ What was the early earth like?

- ✓ exact composition of early earth and its atmosphere is not agreed upon by all scientists
- ✓ but some fundamental characteristics are agreed upon
 - · reducing atmosphere
 - · high temperatures

30 □ What was the early earth like?

√ some fundamental characteristics

- reducing atmosphere
 - · early atmosphere contained
 - principally CO₂ and nitrogen gas
 - significant amounts of water
 - H atoms bonded to other light elements such as S, N, and C
 - hydrogen gas
 - little, if any, oxygen gas
 - no layer of ozone (O₃) to protect from ultraviolet light

31 ☐ What was the early earth like?

√ some fundamental characteristics

- reducing atmosphere

- such an atmosphere called "reducing" atmosphere due to ample availability of hydrogen atoms and their associated electrons
 - takes less energy than today to form the C-rich molecules from which life evolved
- today's atmosphere is considered an "oxidizing" atmosphere, which contains app. 21% oxygen
 - in today's oxidizing atmosphere, the spontaneous formation of complex carbon molecules cannot occur

32 What was the early earth like?

√ some fundamental characteristics

- high temperatures
 - between 4.6 and 3.8 billion years ago the surface of the earth was kept molten hot as a result of bombardment from rubble from the forming solar system
 - around 3.8 billion years ago the bombardment stopped, temperatures dropped, ocean temperature was 49 to 88 °C (120-190°F)
 - between 3.8 and 3.5 billion years ago life appeared

33 🗷

Testing the spontaneous origin hypothesis

- 35 Testing the spontaneous origin hypothesis
 - ✓ What kinds of molecules might have been produced on the early earth?
 - the Miller-Urey experiment attempted to answer this question

³⁶ ☐ Testing the spontaneous origin hypothesis

 \checkmark the Miller-Urey experiment attempted to answer this question

- by repeating the process
 - · assemble an atmosphere similar to that thought to have existed
 - · exclude gaseous oxygen from the atmosphere
 - · place this atmosphere over liquid water
 - maintain this mixture at a temperature somewhat below 100 °C
 - simulate lightning by bombarding the mixture with energy in the form of sparks

37 🗷

38 ☐ Testing the spontaneous origin hypothesis

✓ Results of the Miller-Urey experiment

- w/in 1 week, 15% of C originally present as methane gas (CH₄) was converted into other simple C compounds such as formaldehyde and hydrogen cyanide
 - these compounds in turn combined to form molecules such as formic acid, urea, and the amino acids glycine and alanine, some of the basic building blocks of proteins
- in similar, later experiments, even the complex ring-shaped molecule adenine a base found in DNA and RNA – was formed

39 🗷

40 □ Evolution of early cells

⁴¹ □ Evolution of early cells

- ✓ Theories about the evolution of cells
 - the evolution of cells required early organic molecules to assemble into functional, independent units
 - · cells are essentially little bags of fluid
 - · every cells' content differs from the environment outside the cell
 - early cells may have floated along in an environment of "primordial soup" but its interior would have had a higher conc.of specific organic molecules

42 Evolution of early cells

- ✓ Theories about the evolution of cells
 - how did these "bags of fluid" evolve from simple organic molecules?
 - most scientists believe **bubbles** were involved in this evolutionary step
 - bubbles are spherical & hollow
 - certain molecules spontaneously form bubbles in water (ex. phospholipids)
 - the structure of the bubble shields the hydrophobic regions from contact with water

43 🗷

44 The Earliest Cells

45 The Earliest Cells

✓ Earliest evidence of life appears in microfossils

- fossilized forms of microscopic life

46 🗷

⁴⁷ The Earliest Cells

- √ Characteristics of earliest life forms
 - small (1-2 nanometers)
 - single-celled
 - lacked external appendages
 - little evidence of internal structure
 - did not have nucleus
 - in general, physically resembled today's bacteria
 - organisms with this general body plan are called prokaryotes ("before nucleus")

48 ☐ The Earliest Cells

✓ Bacteria

- are now divided into two groups
 - archaebacteria
 - · eubacteria

49 The Earliest Cells

✓ Archaebacteria

- present day organisms that differ in form and metabolism from other living things
- are found in areas sheltered from evolutionary alteration
 - · unchanging habitats that resemble earth's early environment
- these living relics are the surviving representatives of the first ages of life on earth

50 The Earliest Cells

✓ Archaebacteria

- are found in extreme environments
 - methanogens
 - exist in warm, oxygen-free environments
 - ingest CO₂ and H to produce methane
 - unusual lipids in their cell membranes (which aren't found anywhere else)
 - extreme halophiles (salt lovers)
 - extreme thermophiles (heat lovers)
 - boiling waters of springs & deep sea vents

51 The Earliest Cells

✓ Eubacteria

- are the second group of bacteria
- characteristics
 - strong cell walls with peptidoglycan
 - · simpler gene architecture
 - some evolved ability to photosynthesize
 - cyanobacteria (formerly blue-green algae)
 - » appeared ~ 3 billion years ago, contributed to increasing atmosphere oxygen concentration

52 The First Eukaryotic Cells

√ Eukaryotes

- eukaryote means "true nucleus"
- first appeared ~ 1.5 billion years ago
- are larger than bacteria
- have internal membranes, membrane-bound structures including nucleus
- they rapidly evolved to produce the diverse life forms that inhabit the earth today
- all organisms other than bacteria are eukaryotes

53 The First Eukaryotic Cells

✓ Endosymbiont theory

- suggests that a critical stage in the evolution of eukaryotic cells involved symbiotic relationships with prokaryotic organisms (bacteria)
 - energy producing bacteria may have come to reside within larger bacteria, eventually evolving into mitochondria
 - photosynthetic bacteria may have come to reside within larger bacteria, eventually evolving into

chloroplasts

 flagellated bacteria may have come to reside within larger bacteria, eventually evolving into motile eukaryotes

54 🗷

55 The First Eukaryotic Cells

- ✓ Support for the endosymbiont theory
 - observation of many symbiotic relationships
 - observation of DNA in organelles
 - · many organelles have their own DNA
 - mitochondria
 - chloroplasts
 - centrioles
 - · organelle DNA is remarkably similar to bacterial DNA in size and character

56 🗷

57 Levels of Organization of Life

- ✓ Levels of organization of life
 - non-living components of life
 - atom
 - molecule
 - -within cells
 - macromolecule (biological)
 - organelle
 - cell

58 Levels of Organization of Life

- ✓ Levels of organization of life
 - -within multicellular organisms
 - tissue
 - organ
 - organ systems

59 Levels of Organization of Life

- ✓ Levels of organization of life
 - among organisms
 - species
 - population
 - · community
 - · ecosystem
 - biosphere

· ecosphere

60 ☐ Levels of Organization of Life

- ✓ Levels of organization of life
 - these levels represent a hierarchy
 - each level is built of parts at successively lower levels of organization
- 61 🗷
- 62 ☐ Evolution, Unity and Diversity
 - ✓ The diversity of life can be arranged into three domains
- 63 ☐ Evolution, Unity and Diversity
 - ✓ The diversity of life can be arranged into three domains
 - -how we classify organisms

64 ☐ The Classification of Organisms

- ✓ Millions of different organisms inhabit our planet
- ✓ To make some order of this diversity, biologists have developed a system of classification
- √ Taxonomy is the science of classifying and naming organisms
 - 300 years ago, scientists first began to develop an overall classification system for organisms

⁶⁵ ☐ The Classification of Organisms

- √ The binomial system
 - developed by Swedish biologist, Carl Linnaeus (1707-1778)
 - he gave a two-part (binomial) name to each species
- ✓ the names of genera (genus, singular) were the basic point of reference in classification systems
 - and these names eventually came to be written in Latin

66 ☐ The Binomial System of Classification

- ✓ A system based on a unique two-part name for each organism (hence bi nomial)
 - First part of name designates the genus, the second part the species
 - Species name always used together with full or abbreviated genus name preceding it
 - Genus is capitalized, species is not, both are underlined or italicized

67 ☐ The Binomial System of Classification

- ✓ Examples
 - Homo sapiens or H. sapiens (human)
 - Quercus alba or Q. alba (white oak)

68 Taxonomic Classification is Hierarchical

- √ The taxonomic heirarchy
 - in the decades following Linnaeus, taxonomists began to group genera into large, more inclusive categories known as families
 - membership in these families was intended to reflect perceived relationships between the genera included
 - the taxonomic system was eventually extended to include several, more inclusive units

69 ☐ Taxonomic Classification is Hierarchical

- √ Species are grouped to form a genus
- ✓ Genera (plural of genus) are grouped together to form a family
- √ Families are grouped to form orders
- ✓ Orders are grouped to form classes
- ✓ Classes are grouped to form divisions (fungi, plants) or phyla (protists, animals)
- √ Phyla (divisions) grouped into kingdoms

70 🗷

71 The Kingdoms of Life

- ✓ All organisms are grouped into a few major categories
 - the earliest classification systems recognized only two kingdoms of living things
 - · animal kingdom
 - · plant kingdom
 - as biologists discovered new organisms and learned more about existing ones, kingdoms were added in recognition of the fundamental differences being found

72 🗷

73 Domains

- ✓ as biologists learned more about the Archaebacteria it became clear that this ancient group was very different from other living organisms
 - to reflect these significant differences, biologists are increasingly adopting a classification system that recognizes a taxonomic level higher than kingdom
 - · three domains
 - Archaea
 - Bacteria
 - Eukarya

74 🔽

75 🗷

76 ☐ The Kingdoms of Life

- ✓ How many kingdoms?
 - most biologists now use a six-kingdom classification system first proposed by Carl

Woese of the University of Illinois

- all "life" currently classified into 6 kingdoms
 - Archaebacteria
 - Eubacteria
 - Protista
 - Fungi
 - Plantae
 - Animalia

77 The Kingdoms of Life

✓ Prokaryotic kingdoms

- Archaebacteria
- Eubacteria

✓ Eukaryotic kingdoms

- Protista
- Fungi
- Plantae
- Animalia

78 ☐ The Kingdoms of Life

✓ Domain Archaea

- Kingdom Archaebcateria

✓ Domain Bacteria

- Kingdom Eubacteria

✓ Domain Eukarya

- Kingdom Protista
- Kingdom Fungi
- Kingdom Plantae
- Kingdom Animalia

79 Classification of the Human Being

✓ Domain: Eukarya

√Kingdom: Animalia

√ Phylum: Chordata

✓Class: Mammalia
✓Order: Primates

√ Family: Hominidae

√Genus: Homo

√ Species: sapiens

80 Evolution, Unity and Diversity

- ✓ Unity in diversity
 - All forms of life have common features

 Life is diverse, but there are common themes that all living things exhibit

81 Evolution, Unity and Diversity

- ✓ All forms of life have common features
 - Basic characteristics of life
 - order
 - · cellular organization
 - movement
 - growth and development
 - reproduction
 - · regulation
 - · ability to evolve and adapt as a population

82 Evolution, Unity and Diversity

- ✓ All forms of life have common features
 - Basic characteristics of life
 - order
 - complexity high degree of organization
 - cellular organization
 - cell theory
 - » sensitivity
 - » responsiveness to stimuli
 - » movement

83 Evolution, Unity and Diversity

- ✓ All forms of life have common features
 - Basic characteristics of life
 - · growth and development
 - reproduction
 - regulation
 - coordination of an organisms internal functions
 - » homeostasis
 - » metabolism
 - ability to evolve and adapt as a population

84 Evolution, Unity and Diversity

- ✓ Evolution explains the unity and diversity of life
 - theory of evolution explains the unity and diversity of life
 - theories are much broader in scope than hypotheses and have much greater explanatory power

85 Evolution, Unity and Diversity

- ✓ Evolution explains the unity and diversity of life
 - Darwin showed that evolution can explain the diversity of life and the underlying commonalities of life's diversity

86 Evolution, Unity and Diversity

✓ Living organisms and their environments form interconnecting webs

87 Evolution, Unity and Diversity

- ✓ Living organisms and their environments form interconnecting webs
 - living organisms do not exist in isolation
 - an organism's environment includes both living and non-living components

88 Evolution, Unity and Diversity

- ✓ Living organisms and their environments form interconnecting webs
 - plants, some prokaryotes and protistans make food from carbon dioxide, water and the energy of the sun
 - · via the process of photosynthesis
 - all animals ultimately depend on these photosynthetic organisms for food
 - decomposers help recycle organic matter back to photosynthetic organisms

89 Evolution, Unity and Diversity

- ✓ Living organisms and their environments form interconnecting webs
 - relationships among the living and non-living components of an ecosystem can be illustrated as a web

90 🗷