1 ☐ EVPP 110 Lecture Dr. Largen - Fall 2002

Life: Cell Structure and Major Processes for Fueling Life's Activity

2 🔳

Structure of the Cell

- 3 ☐ Introduction to the cell
 - ✓ Before microscopes (first used in 17th century), no one knew living organisms were composed on cells
- 4 🗖
- 5 All cells share fundamental features
 - ✓ Major features common to all cells
 - -plasma membrane
 - -DNA
 - -cytoplasm
 - -carry out metabolism
- 6 ☐ All cells share fundamental features
 - ✓ Major features common to all cells
 - plasma membrane = encloses a cell and separates its contents from its surroundings
 - is a phospholipid bilayer 5-10 nanometers thick
 - contains embedded proteins
- 7 All cells share fundamental features
 - ✓ Major features common to all cells
 - DNA the hereditary molecule
 - prokaryotes
 - nucleoid area near center of cell, contains circular molecule of DNA
 - » **not** differentiated from the rest of the cell's contents by membrane
 - · eukaryotes
 - **nucleus** double-membrane bound organelle which contains the DNA
- 8 All cells share fundamental features
 - ✓ Major features common to all cells
 - cytoplasm
 - semi-fluid matrix that fills the interior of the cell, exclusive of the nucleoid or

nucleus

- contains the chemical wealth of the cell
 - sugars
 - amino acids
 - proteins
- · contains organelles in the eukaryotes

9 All cells share fundamental features

- ✓ Major features common to all cells
 - carry out metabolism
 - · the interconversion of different forms of energy and of chemical materials
 - two major metabolic processes
 - » photosynthesis
 - » cellular respiration

10 All cells share fundamental features

√ the primary tenants of the Cell Theory

- all organisms are composed of 1 or 1+cells
 - · where processes of metabolism & heredity occur
- the cell is the smallest (basic) unit of life
 - · the smallest living thing
- cells arise only by the division of a previously existing cell
 - life evolved spontaneously on early earth
 - all life on earth represents a continuous line of descent from those early cells

11 Introduction to the cell

- ✓ Two kinds of structurally different cells have evolved over time
 - prokaryotic cells
 - Archaebacteria
 - Eubacteria
 - eukaryotic cells
 - Protista
 - Fungi
 - Plantae
 - Animalia

12 Introduction to the cell

- ✓ Prokaryotic cell characteristics
 - small, avg. 1/10th size of eukaryotic cell
 - lacks a nucleus
 - DNA contained in **nucleoid region** which is not membrane bound
 - surrounded by plasma membrane
 - most also have bacterial cell wall

- some also have a 3rd layer-the capsule
- some have projections called **pili** (sticky)
- some are propelled by a flagellum
- 13 🗷
- 14 Introduction to the cell

✓ Eukaryotic cells

- name eukaryotic, from Greek eu for "true" and karyon for kernal or "nucleus"
- are fundamentally similar to each other
 - profoundly different from prokaryotic cells
- √ characteristics of eukaryotic cells
 - in general
 - comparing animal and plant cell
- 15 Introduction to the cell

✓ Eukaryotic cells

- -presence vs. absence of **cell walls**
 - · animal cells lack cell walls
 - some protists lack cell walls
 - plants, fungi and some protists have cell walls
- 16 Introduction to the cell

✓ Eukaryotic cells

- have complex interior organization
 - extensive compartmentalization
 - many membrane-bound organelles
 - true, membrane-bound nucleus
 - complex DNA molecule
 - contain vesicles and vacuoles which function in storage and transport
- 17 🗷
- 18 Introduction to the cell

✓ Eukaryotic cells

- membranes partition the cytoplasm into compartments called membranous organelles
 - many of the chemical activities known as cellular metabolism
 - occur in the fluid-filled spaces within the membranous organelles

 w/o internal membranes, eukaryotic cells wouldn't have enough membrane surface area to meet metabolic needs

19 Introduction to the cell

✓ Eukaryotic cells, animal vs. plant

- animal cells
 - cell wall absent
 - · chloroplasts absent
 - central vacuole absent
 - mitochondria present
 - · centrioles present
 - lysosome present
 - flagella may be present

20 🗷

²¹ Introduction to the cell

✓ Eukaryotic cells, plant vs. animal

- plant cells
 - cell wall present
 - chloroplasts present
 - mitochondria present
 - central vacuole present
 - flagella absent (except in some sperm)
 - lysosome absent
 - · centrioles absent

22 🗷

23 Introduction to the cell

✓ membranous organelles

- nucleus
- endoplasmic reticulum
- Golgi apparatus
- mitochondria
- lysosome
- peroxisome
- chloroplast
- central vacuole
- 24 Introduction to the cell

✓ non-membranous structures

centriole

- -flagellum
- ribosome
- microtubule
- microfilament
- cell wall

25 Energy converting organelles

- ✓ Chloroplasts are the photosynthesizing organelles of plants and protists
 - internal membranes create 3 compartments
 - space between inner and outer membranes
 - · space enclosed by inner membrane
 - · space inside tubules and disks

²⁶ Energy converting organelles

√ Chloroplasts

- space between inner & outer membranes
 - called intermembrane space
- space enclosed by inner membrane
 - · contains thick fluid called stroma
 - network of tubules and hollow disks
- space inside tubules and disks
 - · disks occur in stacks, called grana
 - grana are the chloroplasts solar power packs

- 27 🗷
- 28 🗷
- ²⁹ Energy converting organelles

✓ Mitochondria

- organelles that convert chemical energy from one form to another
- carryout **cellular respiration**, in which
 - chemical energy of foods such as sugars

- converted to chemical energy of a molecule such as ATP (adenosine triphosphate)
 - » ATP is main energy source for cellular work

30 Energy converting organelles

✓ Mitochondria

- enclosed by 2 membranes, has 2 compartments
 - space between inner & outer membrane
 - intermembrane space
 - » a fluid filled compartment
 - · space enclosed by inner membrane
 - contains fluid called mitochondrial matrix

31 Energy converting organelles

✓ Mitochondria

- space enclosed by inner membrane
 - contains mitochondrial matrix
 - many of the chemical reactions of cellular respiration occur here
 - · inner membrane has many folds
 - called cristae
 - increases surface area
 - contains enzymes that make ATP

32 🗷

33 Tueling the activities of life

√ two main mechanisms by which organisms obtain food for the activities of life

- autotrophs (self-sustaining)
- heterotrophs (not self-sustaining)

34 Fueling the activities of life

✓ two main mechanisms by which organisms obtain food for the activities of life

- autotrophs (self-sustaining)
 - · plants and other photosynthetic organisms
 - can produce from inorganic compounds the organic molecules they need for life

35 Tueling the activities of life

- ✓ two main mechanisms by which organisms obtain food for the activities of life
 - heterotrophs (not self-sustaining)
 - animals
 - must obtain the organic molecules that they need by consuming organic molecules already produced by other organisms

36 Tueling the activities of life

- √ heterotrophs have two main methods of feeding
 - absorptive feeders
 - lack mouth or digestive tract
 - absorb nutrients through their body surface
 - example, tapeworms
 - ingestive feeders
 - ingest living or dead organisms (plant or animal) through a mouth

37 ☐ Fueling the activities of life

- ✓ Ingestive feeders are divided into three groups on the basis of their food sources
 - omnivores
 - herbivores
 - carnivores

38 Tueling the activities of life

- ✓ Inaestive feeders
 - omnivores
 - · ingest both plants and animals
 - ex., humans, crows, cockroaches,
 - herbivores
 - · ingest plants and algae
 - · examples, cattle, deer, gorillas
 - carnivores
 - · ingest animals
 - examples, lions, hawks, spiders, snakes

39 ☐ How organisms harvest energy from food molecules

- ✓ Two major processes enable organisms to fuel the processes of life
 - hetertrophs
 - · ingest their food
 - cellular respiration harvests the energy from the food molecules
 - autotrophs
 - manufacture their own food via photosynthesis
 - cellular respiration harvests the energy from the food molecules

40 Cellular Respiration

- 41 Introduction to Cellular Respiration
 - ✓ Respiration often used as synonym for breathing
 - respiration refers to an exchange of gases
 - organism obtains O₂ from its environment & releases CO₂

√ Cellular respiration

- the aerobic harvesting of energy from food molecules by cells
- 42 Introduction to Cellular Respiration
 - ✓ Breathing and cellular respiration are related
 - organism takes in O2 from its environment
 - distributes O₂ to its cells
 - mitochondria in cells use O₂ in cellular respiration
 - » to harvest energy that cell uses to do work
 - » CO₂ waste produced by cellular respiration in cells is removed to external environment
- 43 🗷
- 44 Introduction to Cellular Respiration
 - ✓ Harvesting energy from food molecules is a fundamental function of cellular respiration
 - glucose is usually used as a representative food molecule
 - cells may use many organic molecules in cellular respiration
 - ✓ summary equation for cellular respiration
 - $-C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATPs$
 - bond energy from reactants is stored in the chemical bonds of ATP
- 45 🗷
- 46 Introduction to Cellular Respiration
 - ✓ Efficiency of cellular respiration
 - glucose contains a lot of chemical energy
 - but each ATP molecule made by cellular respiration contains only about 1% of the amount of chemical energy present in one glucose molecule
 - cellular respiration is not able to harvest all the energy of glucose in a usable form
 - · a typical cell banks about 40% of glucose's energy in ATP molecules
 - most of other 60% is converted to heat
- 47 Introduction to Cellular Respiration
 - ✓ Efficiency of cellular respiration
 - comparison
 - · glucose burned in lab converts 100% of its energy to heat and light

- glucose "burned" in cell converts about 40% its energy into stored energy in ATP molecules
- gasoline engine converts about 25% of the energy in gasoline into the kinetic energy of movement
- 48 ☑
 49 ☐ Introduction to Cellular Respiration
 - ✓ Cellular respiration is more efficient than any other process a cell can perform without oxygen
 - a yeast cell in an anaerobic environment harvests only about 2% of the energy in glucose
- 50 🗖 Basic Mechanisms of Energy Release & Storage
 - ✓ Underlying mechanisms of energy release and harvest in the cell
 - energy available to a cell is contained in the specific arrangement of electrons in chemical bonds of a molecule (glucose)
 - cellular respiration dismantles glucose in a series of steps
 - taps the energy carried by electrons
 - that are rearranged when old bonds break and new bonds form
- 51 Basic Mechanisms of Energy Release & Storage
 - ✓ cellular respiration shuttles electrons through a series of energy releasing reactions
 - at each step, electrons start out in a molecule where they have more energy & end up in molecule where they have less energy
 - thus, energy is released in small amounts
 - · cell stores some of that energy in ATP
- ✓ cells transfer energy from glucose to ATP by coupling exergonic & endergonic reactions
- 52 Basic Mechanisms of Energy Release & Storage
 - ✓ cellular respiration shuttles electrons through a series of energy releasing reactions
 - movement of hydrogen atoms in chemical equation for cellular respiration can illustrate electron transfers
 - glucose loses hydrogen atoms as it is converted to carbon dioxide
 - molecular oxygen gains hydrogen atoms as it converted to water
 - oxygen serves as the ultimate electron acceptor in cellular respiration
- 53 🗷
- 54 Mechanisms of Energy Release & Storage
 - ✓ Movement of electrons from one molecule to another is an oxidation-reduction reaction (redox)
 - oxidation is the loss of electrons from one substance (molecule is oxidized)

- reduction is the addition of electrons to another substance (molecule is reduced)
- oxidation-reduction reactions always go together because an electron transfer requires both a donor and an acceptor

55 Mechanisms of Energy Release & Storage

- ✓ Movement of electrons from one molecule to another is an oxidation-reduction reaction (redox)
 - glucose gives up energy as it is oxidized
 - enzymes remove electrons from(oxidize) glucose and transfer them to (reduce) a coenzyme
 - electrons are moved about by moving hydrogen atoms (along with their electrons)

56 🗷

- 57 Mechanisms of Energy Release & Storage
 - ✓ electron cascade in which electrons "fall" down an energy "hill" of electron carriers
 - each electron carrier is a different molecule
 - electrons move "downhill" because each carrier molecule has a greater affinity for electrons than its uphill neighbor
 - at each step, the redox reactions release energy in small amounts, useful to the cell
 - last molecule at the bottom of the hill is O2
 - with greatest electron affinity of all the carriers

58 🗷

59 Mechanisms of Energy Release & Storage

✓ Electron transport chains

- series of electron carriers
- ordered groups of molecules embedded in the membranes of a eukaryotic cell's mitochondria
 - in prokaryotes, they are located in the plasma membrane
- as electrons pass along chain, they lose energy
 - which the cell can use to make ATP

60 🗷

61 🗷

- 62 Stages of Cellular Respiration
 - ✓ Cellular respiration is a continuous process but it can be divided into
 - three main stages
 - 1st & 2nd stages are exergonic
 - glycolysis
 - Krebs cycle
 - 3rd stage is endergonic

- electron transport chain & chemiosmosis

63 Stages of Cellular Respiration

√ Glycolysis

- first stage of cellular respiration
- occurs outside the mitochondria in the cytoplasm of the cell
- means "splitting of sugar"
- universal energy-harvesting process of life
 - · occurs in all cells
 - because of its universality, it is thought to be an ancient metabolic system
- starts with glucose

64 🗷

65 Stages of Cellular Respiration

√ Krebs cycle

- 2nd stage
- takes place in the mitochondria
- completes breakdown of glucose
 - by decomposing a derivative of pyruvic acid to carbon dioxide
- contributes electrons to 3rd stage
- produces 2 molecules of ATP
 - by substrate-level phosphorylation
- produces other energy-rich molecules

66 🗷

67 Stages of Cellular Respiration

✓ Electron transport chain

- 3rd stage
- takes place in the mitochondria
- chain uses downhill flow of electrons from electron carriers to oxygen
 - · uses that energy to pump hydron ions across membrane
 - which provides energy for ATP synthase to make ATP by chemiosmosis

68 🗷

69 🗖

Photosynthesis: Using Light to Make Food

70 ☐ Photosynthesis uses light energy to make food molecules
✓ Photosynthesis

- most of living world depends on the food-making machinery of this process
 - on a global scale billions of tons of organic matter are produced each year by this process
 - no other chemical process of Earth matches this output
- consists of two stages that occur in the chloroplast

71 Autotrophs are the producers of the biosphere

- ✓ Plants are autotrophs
 - "self-feeders"
 - · make own food
 - sustain themselves
 - » without eating other organisms or organic molecules
 - chloroplasts capture energy in sunlight
 - · and with water and carbon dioxide convert sun's energy to chemical energy
 - stored in form of glucose and other organic molecules

72 🗷

73 Autotrophs are the producers of the biosphere

- ✓ Producers are the organisms that produce the food consumed by heterotrophs
 - all organisms that use light energy to make food molecules from inorganic molecules are
 - · producers
 - · photosynthetic autotrophs
 - producers include
 - plants
 - · certain archaea
 - · certain bacteria
 - · certain protists

74 Autotrophs are the producers of the biosphere

✓ Predominant producers

- terrestrial
 - plants such as trees
- aquatic
 - photosynthetic protists (algae)
 - · photosynthetic bacteria

⁷⁵ Photosynthesis occurs in chloroplasts

- ✓ All green parts of a plant have chloroplasts and can carry out photosynthesis
 - in most plants, leaves have most chloroplasts
 - · are major sites of photosynthesis
 - green color in plants is from chlorophyll pigments in chloroplasts
 - · chloroplhyll absorbs light energy from sun

⁷⁶ Photosynthesis occurs in chloroplasts

- ✓ Green tissue in interior of leaf is called mesophyll
 - each mesophyll cell has numerous chloroplasts

- membranes in the chloroplast form the structural framework where many reactions of photosynthesis occur
- inner membrane encloses a compartment filled with a thick fluid called stroma
 - within the stroma, disklike membranous sacs called **thylakoids** are suspended
 * thylakoids are concentrated in sacks called **grana**
- 77 🗷

78 ☐ Plants produce O₂ gas by splitting water

✓ Photosynthesis equation

 $-CO_2 + H_2O \rightarrow light \rightarrow C_6 H_{12}O_6 + H_2O + O_2$

⁷⁹ Photosynthesis is a redox process, as is cellular respiration

- ✓ Photosynthesis is a redox process
 - water is oxidized to O₂
 - · when water molecules are split apart
 - they lose electrons & hydrogen ions
 - CO₂ is reduced to sugar
 - · when electrons & hydrogen ions are added to it

⁸⁰ □ Photosynthesis is a redox process, as is cellular respiration

- ✓ Photosynthesis is a redox process
 - water is oxidized & carbon dioxide is reduced
 - · electrons gain energy by being boosted up an energy hill
 - converts light energy to chemical energy
- ✓ Cellular respiration is a redox process
 - sugar is oxidized and oxygen is reduced
 - · electrons lose energy as they travel down an energy hill
 - converts chemical energy from one form to another
- 81 🗷

82 Photosynthesis occurs in two stages

- ✓ Photosynthesis is not a single process
 - has two stages, each with multiple steps
 - · light reactions
 - first stage
 - converts light energy to chemical energy and oxygen gas
 - · Calvin cycle
 - second stage
 - assembles sugar molecules using CO₂ and energy-containing products of the light reactions
- 83 Photosynthesis occurs in two stages
 - √ Light reactions
 - occur in thylakoid membranes

- absorb solar energy & convert it to chemical energy by
 - making ATP from ADP + P
 - transferring electrons from H₂O to NADP+ to form NADPH
 - electron carrier similar to NAD+
 - notice that no sugar is produced during these reactions
- requires light

84 Photosynthesis occurs in two stages

- √ Calvin cycle
 - occurs in stroma of chloroplasts
 - carries out process of carbon fixation
 - incorporation of the C from CO₂ into organic compounds
 - enzymes of the cycle then make sugars by further reducing the fixed carbon
 - · by adding high-energy electrons and hydrogen ions to it
 - does not require light directly
 - · but occurs during day in most plants

85 🗷

86 Photosynthesis uses light energy to make food molecules

- √ light reactions
 - occur in thylakoid membrane
 - photosystems I & II capture solar energy and energize electrons
 - water is split and O2 is released
 - photosystems transfer electrons to ETCs
 - where energy is harvested and used to make NADPH and ATP

87 Photosynthesis uses light energy to make food molecules

- ✓ Calvin cycle
 - occurs in stroma
 - incorporates carbon from CO₂ in the air into the 3 carbon sugar G3P
 - G3P is used to make sugars which are
 - · used as fuel for cellular respiration
 - · used as starting material for other organic molecules such as cellulose
 - · stored as starch in chloroplasts, roots, tubers, fruits

88 🗷