1 ☐ EVPP 110 Lecture Dr. Largen - Fall 2002

Matter & Energy:

Thermodynamics, Enzymes, Membranes, Diffusion

- ² Energy
 - ✓ Energy
 - the capacity to do work
 - to move matter in a direction it would no move if left alone
 - all organisms require energy to stay alive
 - energy exists in two states
 - · kinetic energy
 - · potential energy
- 3 Energy and the Cell
 - 5.1: Energy is the capacity to perform work
 - ✓ Energy exists in two states
 - kinetic energy
 - · the energy of motion
 - · moving objects perform work by causing matter to move
 - potential energy
 - · stored energy
 - objects that are not actively moving but have the capacity to do so possess energy
- 4 Energy work
 - ✓ Energy exists in two states
 - potential energy vs kinetic energy
 - a boulder perched on a hilltop has potential energy
 - as it begins to roll down the hill some of the energy is converted into kinetic energy
 - much of the work that living organisms carry out is involves transforming potential energy to kinetic energy
- 5 Energy
 - ✓ energy exists in many forms
 - mechanical energy
 - heat
 - sound
 - electric current
 - light
 - radioactive radiation
 - chemical energy
 - the potential energy of molecules

- · most important type of energy for living organisms
- 6 ☐ Energy
 - √ there are many ways to measure energy
 - most convenient way to measure energy is in the form of **heat**
 - =a measure of the random motion of molecules
 - -because all other forms of energy can be converted into heat
- 7 ☐ Energy
 - ✓ Life depends on the fact that energy can be converted from one form to another ✓ thermodynamics
 - the study of energy transformations that occur in a collection of matter

✓ Laws of Thermodynamics

- a set of universal laws that govern all energy changes in the universe
 - from nuclear reactions to buzzing of a bee
- 8 Two laws govern energy conversion

√ First Law of Thermodynamics

- concerns the amount of energy in the universe
- states that energy can be changed from one form to another but can neither be created or destroyed
- total amount of energy in the universe remains constant
- ⁹ Two laws govern energy conversion

√ First Law of Thermodynamics

- in any living system, potential energy can be shifted to other molecules, stored in different chemical bonds, convert into other forms
- during each conversion some of the energy dissipates into the environment in the form of heat
- although amount of energy in universe remains constant, energy available to do work decreases as progressively more of it dissipates as heat
- 10 Two laws govern energy conversion

√ Second Law of Thermodynamics

- concerns the transformation of potential energy into heat, or random molecular motion
- states that the disorder (or **entropy**) in the universe is continuously increasing;
 disorder is more likely than order
 - **entropy** is a measure of the disorder of a system
 - heat is one form of disorder
- 11 Two laws govern energy conversion

√ Second Law of Thermodynamics

- entropy increases
- when universe was formed 10-20 billion years ago it had all the potential energy it will
 ever have
 - · has become more disordered ever since
 - · every energy exchange has increased the amount of entropy in the universe
- more likely that a column of bricks will tumble over than spontaneously arrange themselves to form a column

12 Chemical reactions either store or release energy ✓ Chemical reactions, including those within cells, are of two types - endergonic reactions · "energy in" · require a net input of energy - exergonic reactions · "energy out" · release energy 13 Chemical reactions either store or release energy ✓ endergonic reactions - yield products rich in potential energy · start with reactants molecules that have little potential energy • absorb energy from the surroundings as the reaction occurs · such that the products store more energy that the reactants did - don't proceed spontaneously · requires input of energy - example is photosynthesis 14 🗷 15 Chemical reactions either store or release energy ✓ exergonic reactions - reactants store more energy than products · energy is released to the surroundings as reaction proceeds - tend to proceed spontaneously · does not require an input of energy - example is cellular respiration • the energy-releasing breakdown of glucose molecules storage of energy in a form the cell can use to perform work 16 🗷 17 Chemical reactions either store or release energy ✓ Cellular metabolism - the sum of the exergonic and endergonic reactions carried out by working cells 18 Energy and the Cell

√ Energy coupling

- using energy released from exergonic reactions to drive essential endergonic reactions
 - usable energy released from most exergonic reactions is stored in ATP
 - energy used in most endergonic reactions comes from ATP
- ✓ ATP powers nearly all forms of cellular work

19 Energy and the Cell

✓ ATP (adenosine triphosphate)

- has 3 parts, connected by covalent bonds
 - adenine = a nitrogenous base
 - ribose = a 5-carbon sugar
 - phosphate groups = a chain of 3 phosphate groups
- 20 🗷
- 21 🗷
- 22 Energy and the Cell

√ The ATP cycle (ATP is renewable resource)

- hydrolysis of ATP to ADP + P
 - · removes a phosphate
 - is an exergonic reaction
 - releases energy for endergonic reactions
- dehydration synthesis of ADP + P to ATP
 - · adds a phosphate
 - is an endergonic reaction
 - that requires energy from exergonic reactions
- 23 🗷
- 24 How Enzymes Work

✓ Energy of activation (E_A)

- the amount of energy that reactants must absorb to start a chemical reaction
- can be thought of as an energy barrier
- since most reactions require energy to get started
 - ATP and other vital molecules in our cells do not break down spontaneously
- 25 How Enzymes Work

✓ Energy of activation (E_A)

- illustrated with "jumping bean" (JB) analogy
 - JBs in left side of container represent reactants of a chemical reaction that must have enough energy to jump over the "energy barrier" to make it to product side
 - · beans vary in amount of energy they have
 - may take a very long time for a significant number of "reactant" beans to get over barrier to become "product" beans

26 🗖	 and reaction may take too long to be of any use to cell How Enzymes Work
	 ✓ solution for speeding up a reaction lies in enzymes protein molecules that serve as biological catalysts increase the rate of a reaction without being changed into a different molecule does not add energy to a cellular reaction speeds up reaction be lowering the Energy of activation (E_A), or energy barrier ✓ without enzymes, many reactions would occur too slowly to sustain life
27 🗖	How Enzymes Work
	 ✓ In jumping bean analogy, an enzyme would lower the partition between containers, or lower the energy barrier making it possible for beans with less energy to clear the barrier resulting in more beans being able to clear the barrier in a given amount of time leading to the speeding up of the reaction
28 🗷	
29 🗷	
30	How Enzymes Work
	 ✓ enzymes can lower E_A by holding reactant molecules in a particular position are selective in which reactions they catalyze have a unique 3-dimensional shape (since it's a protein) that determines specificity recognize only the substrate(s) of the reaction it catalyzes substrate is substance enzyme acts on
31 🗖	How Enzymes Work
32 🗖	 ✓ catalyzing a reaction enzyme binds to its substrate only at small part of enzyme, its active site a pocket or groove on surface of enzyme enzyme is specific because its active site fits only one substrate molecule while joined, substrate changes into product enzyme releases the products enzyme emerges from the reaction unchanged How Enzymes Work

✓ enzyme emerges from the reaction unchanged

- its active site now ready for another substrate molecule and another cycle
- a single enzyme molecule may act upon thousands or millions of substrate molecules per second
- 33 ☑ How Enzymes Work
 - ✓ Activity of an enzyme is affected by its environment
 - for each enzyme, there are conditions under which it is most effective
 - any chemical or physical factor that alters an enzyme's three-dimensional shape can affect its ability to catalyze a reaction
- 35 How Enzymes Work
 - √ Factors affecting enzyme activity
 - temperature
 - pH
 - salinity
- 36 How Enzymes Work
 - ✓ Factors affecting enzyme activity
 - temperature
 - at optimum temperatures (35-40°C)
 - highest rate of contact occurs between enzyme's reactive site and substrate
 - because temperature affects molecule motion
 - at high temperatures
 - enzyme can be denatured, lose its 3-dimensional shape, and lose its function
- 37 How Enzymes Work
 - √ Factors affecting enzyme activity
 - pH and salinity
 - · cause variations in number of salt and hydrogen ions
 - that can interfere with some of the chemical bonds that maintain protein structure
 - optimum pH = 6-8
 - optimum salinity = cell salinity
- 38 How Enzymes Work
 - ✓ Factors affecting enzyme activity
 - presence of non-protein helpers called cofactors
 - required by some enzymes

- cofactors	
 may be inorganic molecules, called cofactors 	
- such as zinc, iron, copper	
may be organic molecules, called coenzymes such as vitamins or vitamin products.	
 such as vitamins or vitamin products 	
39 How Enzymes Work	
✓ A chemical that interferes with an enzyme's activity is called an inhibitor	
two types of inhibitors	
competitive inhibitor	
non-competitive inhibitor	
40 🗷	
41 How Enzymes Work	
✓ competitive inhibitor	
resembles enzyme's normal substrate	
competes with substrate for enzyme's active site	
 when bound to active site it prevents enzyme from acting 	
42 🗷	
43 How Enzymes Work	
✓ non-competitive inhibitor	
does not compete with active site	
 binds to enzyme outside of active site 	
 binding causes shape of enzyme to change 	
 such that active site no longer fits substrate 	
44 🗷	
45 🗷	
46 Membrane Structure and Function	
✓ Many metabolic reactions occur simultaneously in a cell	
 chaos would result if cell were not highly organized and able to time reactions precisely 	s
 teams of enzymes function like assembly lines 	

right enzymes have to be in right place at right time
 ✓ Membranes provide the structural basis for metabolic order

47 Membrane Structure and Function

- ✓ For all types of cells
 - the plasma membrane is the edge of life
 - · forming the boundary between living cell and its surroundings
- ✓ For most eukaryotic cells
 - membranes form
 - most organelles
 - compartments within cells that contain enzymes
- 48 Membrane Structure and Function
 - ✓ <u>All</u> membranes are selectively permeable
 - control passage of molecules into and out of cell (or organelle)
 - takes up substances needed by cell
 - · disposes of cell waste
 - allows some substances to cross more easily
 - blocks passage of some substances entirely
- 49 Membrane Structure and Function
 - ✓ Plasma membrane (cell membrane)
 - very thin
 - 20 times too small to be seen by light microscope
 - · can be seen by electron microscope
 - shows up as three zones
 - much knowledge of plasma membranes come from study of red blood cells
 - · obtaining plasma membrane from "ghosts"
 - split and emptied red blood cells
- 50 Membrane Structure and Function
 - ✓ Plasma membrane (cell membrane) is composed mainly of phospholipids
 - phospholipid molecule has two parts, which interact oppositely with water
 - "head"
 - glycerol and phosphate group
 - polar = hydrophilic
 - " tail"
 - two fatty acid tails
 - non-polar = hydrophobic
- 51 🗷
- 52 Membrane Structure and Function
 - ✓ Structure of phospholipids is suited to their role in membranes
 - in water, they spontaneously form a stable two-layer sheet, a phospholipid bilayer
 - hydrophilic (polar) heads face outwards towards the water
 - · hydrophobic tails point inward, shielded from the water
 - this is the arrangement of membrane phospholipids in aqueous environment living

organisms

- 53 🗷
- 54 Membrane Structure and Function
 - ✓ membranes are selectively permeable
 - partly due to hydrophobic interior of the bilayer
 - nonpolar, hydrophobic molecules are soluble in lipids
 - can easily pass through membranes
 - polar, hydrophilic molecules are not soluble in lipids
 - passage of polar molecules is dependent on protein molecules within the phospholipid bilayer
- 55 Membrane Structure and Function
 - ✓ Structure of plasma membrane is described as a **fluid mosaic**
 - mosaic = surface made of small fragments
 - membrane has diverse protein molecules embedded w/in framework of phospholipids
 - fluid = moveable
 - most of the protein and phospholipid molecules can drift laterally w/in membrane
 - "kinked" tails of fatty acids keeps phospholipids from packing tightly together, helps maintain fluidity
- 56 Membrane Structure and Function
 - √ The two surfaces of the plasma membrane are different
 - outer surface (exterior of cell)
 - has carbohydrates covalently bonded to proteins and lipids in the membrane
 - glycoproteins, glycolipids
 - inner surface (interior of cell)
 - has microfilaments of cytoskeleton, proteins
- 57 🚁
- 58 Diffusion and Osmosis

✓ Diffusion

- the tendency for particles of any kind to spread out spontaneously to regions where they are less concentrated
- it requires no work, results from
 - random motion (kinetic energy)
 - universal tendency of order to deteriorate into disorder (entropy)
- diffusion of molecules across a biological membrane is called passive transport
 - · since it requires no work
- 59 Diffusion and Osmosis

✓ passive transport

- concentration affects the direction in which a substance diffuses across a membrane
 - substance moves from area of higher concentration to area of lower concentration until equilibrium is reached
 - a substances diffuses down its concentration gradient
 - at equilibrium, there is no **net** change in concentration on either side of membrane

- 60 🗷
- 61 🗷
- 62 Diffusion and Osmosis

✓ Passive transport

- different substances diffuse independently of one another
 - · each down its own concentration gradient
- is extremely important to all cells
 - · oxygen passes from lungs into red blood cells
 - · carbon dioxide passes from red blood cells into lungs

63 Diffusion and Osmosis

✓ Osmosis

- is a special case of passive transport involving diffusion of water molecules across a selectively permeable membrane
 - water molecules move down their concentration gradient
- plays role because cells contain and are surrounded by aqueous solution
 - · solution contains solutes
 - solutes also diffuse down their concentration gradient

64 Diffusion and Osmosis

√ Osmosis

- the aqueous solution on either side of the membrane can be described on the basis of the concentrations of their solutes
 - solution with higher concentration of solutes is said to be hypertonic
 - solution with lower concentration of solutes is said to be hypotonic
 - when solutions on both sides of membrane have same concentration of solutes, they're said to be isotonic

65 Diffusion and Osmosis

√ Osmosis

- as solutes diffuse
 - from the hypertonic solution (area of higher concentration) across the membrane into the hypotonic solution (area of lower concentration)
- water molecules will move via osmosis
 - from hypotonic solution (area of higher concentration of water molecules) across the membrane into the hypertonic solution (area of lower concentration of water molecules)
- 66 🗷
- 67 🗷
- 68 Diffusion and Osmosis
 - ✓ If an animal cell is immersed in
 - an **isotonic** solution

- · cell's volume remains constant
 - gains water at same rate it loses it
- a hypotonic solution (lower solute conc than cell)
 - cell gains water (loses solutes), swells, may lyse (pop)
- a hypertonic solution (higher solute conc than cell)
 - cell loses water (gains solutes), shrivels, may die
- 69 Diffusion and Osmosis
 - ✓ If a plant cell is immersed in
 - an **isotonic** solution
 - · cell is flaccid, plant wilts
 - needs a <u>net inflow</u> of water (to balance transpiration), has no net change in water conc in this scenario
- 70 Diffusion and Osmosis
 - ✓ If a plant cell is immersed in
 - a hypotonic solution (lower solute conc than cell)
 - cell is turgid, plant is healthiest
 - has net inflow of water (balances transpiration) (loses solutes), cell wall helps prevent cell from bursting
 - a hypertonic solution (higher solute conc than cell)
 - cell loses water (gains solutes), shrivels, may die
- 71 🗷
- 72 🔽
- 73 Active Transport
 - ✓ Substances can be moved across a membrane <u>against</u> its concentration
 - in a process called active transport which
 - requires a cell to expend energy
 - usually in the form of ATP
 - a transport protein actively pumps a substance across the membrane <u>against</u> the substance's concentration gradient
- 74 🗷
- 75 🗷
- 76 🗷
- 77 🗷