| 1 EVPP 110 Lecture Fall 2002, Instructor: Dr. Largen Earth Origin, Structure and Interplanetary Processes 2 Brief History of the Earth • Origin of the universe • unknown for certain • still being actively researched • many different theories exist • Big Bang theory • inflation theory • cold dark matter theory • origin theories are difficult to test                                                                     |                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 3 Priof History of the Earth                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
| <ul> <li>Brief History of the Earth</li> <li>Age of the universe</li> <li>unknown for certain</li> <li>still being actively researched</li> <li>several different methods exist for calculating age</li> <li>velocities and distances of galaxy clusters</li> <li>information about stars &amp; their life cycles</li> <li>age estimates vary greatly by source</li> <li>ranging from 8 billion to 14 billion years old</li> </ul> | of universe, using        |
| <ul> <li>4 ☐ Brief History of the Earth</li> <li>• origin and age of the universe</li> <li>• most "popular" origin theory</li> <li>• Big Bang Theory</li> <li>• most popular age estimate</li> <li>• ~ 12 billion years old</li> <li>• diameter of the universe</li> <li>• thought to have been continually increasing since if at present, ~ 2 x 10<sup>23</sup> km</li> </ul>                                                    | ts creation               |
| <ul> <li>Brief History of the Earth</li> <li>universe is thought to have had a dynamic adolescen</li> <li>from ~12 billion years ago (BYA) to ~7 BYA</li> <li>galaxies, stars and planets of universe were for</li> <li>birth of Earth</li> <li>~7 BYA</li> <li>a red giant star in vicinity of present Earth catas (supernova)</li> </ul>                                                                                         | med, destroyed, re-formed |

- ~4.6 BYA
  - remnants of that explosion form our solar system, including the Earth
- 6 The Earth in the context of our solar system
- <sup>7</sup> Our solar system
  - After collapse of red giant
    - a rotating, dense cloud (solar nebula) remained
      - · as cloud cooled, it condensed and contracted
        - rotating faster
        - forming a flattened disk, thinnest at edges
      - as contraction continued, rings of material separated from the cloud
        - which in turn, condensed to form planets
- 8 Our solar system
  - · Resulting 9 planets can be grouped
    - terrestrial plants
    - Jovian (non-terrestrial) planets
    - Pluto
- 9 Our solar system
  - · terrestrial plants
    - because they are "earth-like"
      - · rocky with metallic centers
        - heavier materials that stayed nearer sun
    - Mercury, Venus, Earth, Mars
- 10 Our solar system
  - Jovian (non-terrestrial) planets
    - · because they are similar to Jupiter
      - · composed mostly of liquids and gases
        - lighter materials that boiled away from areas nearest to the sun
    - Jupiter, Saturn, Uranus, Neptune
  - Pluto
    - · anamolous; terrestrial but outer
- 11 The Earth In Context
- 12 Earth is unique in our solar system
  - Why is the Earth so "special" relative to the other planets?
    - Temperature
    - · presence & composition of atmosphere
    - water
    - continued tectonic activity

- 13 Age of the Earth
  - 4.6 billion years old current estimate
    - great age of the Earth has not always been known or agreed upon
  - Greek philosophers
    - Earth ageless no beginning or end to time
  - · Biblical scholar
    - Bishop Ussher (1664)
      - put age at 5,668 years
        - concluded Earth was formed on October 26, 4004 B.C, based on a literal translation of Bible
- 14 Early ideas about physical features of the Earth
  - Throughout much of human history
    - was believed that major physical features of Earth were fixed and unchanging
      - continents, oceans, mountains, valleys were all in their "original" locations and would always remain in those locations, unchanged
- 15 Early ideas about physical features of the Earth
  - Catastrophism
    - concept subscribed to by most natural sciences up through early 19th century
      - proposes that supernatural forces caused catastrophic events that re-shaped the physical landscape
        - Earthquakes
        - Volcanic eruptions
        - Floods
- 16 Early ideas about physical features of the Earth
  - With rise of scientific thought and explorations
    - evidence against catastrophism grew over the centuries
- 17 Nicolaus Steno (1638-1686)
  - Formulated both the Principle of Superposition and Principle of Original Horizontality in 1669
- 18 Principle of Superposition
  - Layers on bottom were deposited first, and are the oldest (A older than B, B older than C, etc.)
  - In any unaltered sequence of rocks, oldest is at bottom, youngest at top
- 19 Principle of Original Horizontality
- 20 Principle of original horizontality

- Almost all strata are initially more nearly horizontal than vertical
- therefore, any strongly sloped stratum had to have been tilted by external forces after it was formed
- 21 Principle of Uniformitarianism James Hutton (1726-1797)
  - Geologic processes happening today operated in a similar fashion in the past, so provide guidance in studying the earth's history
- 22 Uniformitarianism
  - Principle of uniformitarianism
    - proposed by James Hutton in 1785
    - fundamental to modern science of geology
    - holds that laws of nature have not changed over time, were same in past as now
    - actualism
      - when we see ripples on ancient rock composed of hardened sand (sandstone)
        - we can assume that they developed in same way that similar ripples develop today
          - under influence of certain kinds of water movement or wind
- 23 Uniformitarianism
  - Principle of uniformitarianism
    - James Hutton
      - believed that rocks of the past had formed as a result of the same processes that were currently operated at or near surface of the Earth
        - · such as
          - volcanic activity
          - accumulation of grains of sand and clay under the influence of gravity
- 24 Uniformitarianism
- 25 Geologic Time 4,600,000,000 Years - Estimated Age of the Earth
- 26 Relative Dating
  - Relative Age is the answers to a question like, "Which is younger?"
  - Relative ages allow us to compare different geologic formations, and determine which is the oldest, next oldest, etc.
- 27 Principle of Cross-cutting Relationships Dike
  - A feature, such as a dike or fault, that cuts formations is younger than the formations it cuts
- 28 Principle of Cross-cutting Relation-ships
  - Fault
  - fault is younger than the beds it offsets

- 29 Principle of Inclusions
  - Fragments of other rocks contained within the body of a rock are older than the rock
- 30 Sedimentary Conglomerate
  - · Rock fragments in this conglomerate are older than the conglomerate itself
- 31 Principle of Faunal Succession -

(proposed by William Smith (1769-1839))

- states that over time, organisms on earth have changed in a definite order that is reflected in fossil record
- Rocks with recently evolved life forms are younger than those with older forms
- 32 Index Fossils
  - Organisms with specific characteristics:
    - Short lived (geologically)
    - Widespread occurrence
    - · Readily recognized
- 33 Unconformities
  - · Gaps in the rock record
  - mark boundaries between rocks of different ages
  - may result from non-deposition (a hiatus), or from deposition followed by erosion
- 34 Unconformity in Volcanic Ash
  - Outcrop photo of volcanic ash layers in Japan
  - There is an erosional discontinuity (disconformity) that separates earlier folding in the lower half from folding (above) after later ash flows were deposited.
- 35 Nonconformity
  - Boundary between unlayered igneous or metamorphic rocks, and overlying sequential sedimentary rocks
  - Lower rocks show evidence of erosion before the deposition of the sedimentary rocks
- 36 Angular Unconformity
  - Grand Canyon, Arizona
- 37 Geologic Correlation
  - seeks to establish age relationships between distant sequences of rock
    - often through the use of fossil assemblages, or index fossils
  - A key bed, a distinctive stratum that appears at several localities, may also be used
- 38 🗷 Absolute Age
  - Determination of the absolute age is usually done using radiometric dating
  - Absolute ages are expressed in years, or millions or billions of years, before present
- 39 Radiometric Dating
  - Requires a parent isotope that undergoes radioactive decays to yield a daughter isotope at a known rate
    - Example:

- $^{14}\text{C} \rightarrow ^{14}\text{N}$
- · Radioactive decay follows an exponential decay law
- 40 Radiometric Decay
- 41 Half-life, t<sub>1/2</sub>
  - time necessary for half of original atoms of parent isotope to decay into daughter isotope
- 42 Parent and Daughter Isotopes
  - In the previous example,
    - $^{14}\text{C} \rightarrow ^{14}\text{N}$
  - <sup>14</sup>C is the parent, and <sup>14</sup>N is the daughter
  - The half-life, t<sub>16</sub>, is 5730 years
- 43 Geologic Time Scale
  - Eons
    - largest divisions of time, beginning with the Archean (4.6 to 3.8 billion years ago)
    - Eras (subdivisions of eons)
      - · defined by dominant life forms
      - Periods (divisions of eras)
        - based on smaller scale changes
        - Epochs (divisions of periods)
          - · based on detailed, smaller scale changes
- 44 Geologic Time Scale
  - Archean Eon (4.6bya-2.5bya)
  - Proterozoic Eon (2.5bya-543mya)
  - Phanerozoic Eon (543mya-present) "interval of well-displayed life"
    - Paleozoic Era (543mya-251mya) "old life"
      - 8 periods; Cambrian, Ordovician, Silurian, Devonian, Mississippian, Pennsylvania, Permian
    - Mesozoic Era (251mya-65mya) "middle life"
      - 3 periods; Triassic, Jurassic, Cretaceous
    - Cenozoic Era (65mya-present) "modern life"
      - Paleogene Period (65mya-24mya)
        - 3 epochs; Paleocene, Eocene, Oligocene
      - Neogene Period (24mya-present)
        - 4 epochs; Miocene, Pliocene, Pleistocene, Holocene
- 45 **Geologic Time**
- 46 Paleozoic Era (543mya-251mya)
  - Trilobite fossil, early Paleozoic era
- 47 Mesozoic Era (251mya-65mya)
  - "age of the dinosaurs"
  - Dinosaurs were dominant life forms

- 48 Cenozoic Era (65mya-present)
  - "age of mammals"
  - Kangaroos are marsupials, a type of mammal
- 49 Components of the Earth System or "Ecospehre"
- 50 Components of the Earth System
- 51 Components of the Earth System
  - Ecosphere
    - entire earth system
    - · includes all other spheres
  - Lithosphere
    - solid earth, including earth's crust & part of upper mantle
  - Hydrosphere
    - liquid envelope of water which surrounds our planet
  - Atmosphere
    - layer of gas (air) which surrounds our planet
  - Biosphere
    - · living organisms which inhabit all of above spheres.
- 52 Interior Structure of Earth
- 53 Earth's Structure
  - "Layman's" description
    - · hot, dense, solid inner iron core
    - hot, dense, molten iron outer core
    - thick, rocky mantle
    - thin, rocky crust
  - · Two ways typically used to formally describe Earth's structure
    - chemical-based description
    - mechanical-based
- 54 Earth's Structure
  - · chemical-based description
    - Crust
    - Mantle
    - Core
- 55 🗷 Crust
  - outermost layer or shell of the Earth
  - represents <0.1% of Earth's total volume
  - total depth is ~100km
  - floats on upper mantle
  - is broken into 16 plates
- 56 🗷 Crust
  - Nine elements compose ~99% of mass of Earth's crust

- oxygen = 45%
- silicon = 27%
- aluminum = 8%
- iron = 5.8%
- calcium = 5.1%
- magnesium = 2.8%
- sodium = 2.3%

## 57 🗷 Crust

- · can be divided into
  - continental
    - 30-60km thick
    - composed of Al, Ca, K-rich silicate ("granite")
    - density ~2.8 g/cm<sup>3</sup>
  - oceanic
    - 6-10km thick
    - Fe, Mg-rich silicate ("basalt")
    - density ~3.0 g/cm<sup>3</sup>

## 58 Mantle

- zone of Earth below crust & above core
- ~3000km thick
- · consists of soft rock, mostly Fe, Mg-rich silicates
- density ~3.2-5.0 g/cm<sup>3</sup>
- constitutes ~ 67% of Earth's mass
- · can be divided into
  - · upper mantle
  - transition zone
  - lower mantle

## 59 **Core**

- central zone Earth's interior
- ~3000km thick
- · composed of metallic iron
  - no silicate
- density ~10 g/cm<sup>3</sup>
- · can be divided into
  - · inner core
  - transition zone
  - · outer core
- 60 Interior Of The Earth
- 61 Earth's Structure
  - Mechanical-based description

- Lithosphere
- Asthenosphere
- Mesosphere
- Outer Core
- Inner Core

# 62 🗖 Lithosphere

- solid portion of Earth
  - as compared with atmosphere & hydrosphere
- includes crust & part of upper mantle
- ~100 km thick
- rigid
- · very strong, rigid
- cool

# 63 Asthenosphere

- layer or shell of Earth below lithosphere
- · plastic but solid
- very weak
- hot
- ~200km thick
- is part of upper mantle

# 64 Mesosphere

- layer or shell of Earth below asthenosphere
- plastic
- · weak, but stronger than asthenosphere
- hot
- ~2600km thick
- · is remainder mantle

### 65 Outer Core

- Molten
  - iron, nickel, dissolved sulfur and oxygen
- constitutes ~30% of Earth's mass
- ~2200km thick
- · convection currents in this region generate Earth's magnetic field

## 66 Inner Core

- solid
  - mostly iron, some nickel
- ~1400km thick
- constitutes ~2% of Earth's mass

- · floats in middle of molten outer core
- pressure reaches ~3 million atmospheres
- temperatures range from 4000-5000°C
- 67 The Earth Is a Differentiated Planet It Has Layers
- 68 Interior of Earth
  - · is hot and dense
    - weight of upper layers presses on interior
    - extreme compression leads to extreme heating
    - · results in extremely hot and compressed deep interior
  - since metals are heavy and rocks are light
    - heavy metals sink to center (iron and nickel)
    - lighter minerals float to surface (silicates)
- 69 Interior of Earth
  - temperature
    - increases nonlinearly with depth
  - pressure
    - · increases linearly with depth
  - density
    - increases with depth
  - combination of temperature and pressure determines when materials in Earth will be molten versus solid
  - also affects production of convection process in asthenosphere
- 70 Isostasy
  - condition of equilibrium, comparable to floating, of units of lithosphere above asthenosphere
  - Crustal loading, as by ice, water, sediments, or volcanic flows, leads to isostatic depression or downwarping
  - Crustal unloading, as by erosion, or melting of ice, to isostatic uplift or upwarping
- 71 Plate Tectonics
- 72 Theory of plate tectonics
  - · Based on 6 lines of evidence
    - shapes of continents and continental shelfs
    - similarities
- 73 Alfred Wegener, 1880-1930

Wrote The Origin of Continents and Oceans in 1915

- 74 Continental Drift
  - 550 MYBP
- 75 Fossil Plant Evidence

Glossopteris

• Extinct group of seed plants that arose during the Permian on the great southern

#### continent of Gondwana

- 76 Lithologic (Rock) Evidence
- 77 How Can a Continent Move?
  - The biggest objection was the lack of a mechanism for moving continents
  - Wegener spent the rest of his life looking for evidence to support his ideas
  - He died in Greenland in 1930, while seeking more evidence
- 78 Convection Cell
  - Heat beaker
  - Water expands and rises
  - It spreads and cools at the top
  - · Cool water sinks
- 79 Asthenosphere
- 80 Oceanographic Exploration
- 81 Sea-floor Spreading
  - · Concept came from oceanographic investigations
  - Uses Convection cells, an idea Wegener would have been familiar with
- 82 Puzzles Solved
  - Why is there so little sediment on ocean floor?
  - What are the rock ages so young?
- 83 Age of Ocean Fossils
  - · Continental fossils are at least 3.5 billion years old
  - Oldest marine fossils are about 180 million years
  - Since life is though to originate in the oceans, why aren't ocean fossils older?
- 84 Seismic Evidence
- 85 Subduction Zones

The key to subduction is the density of the rock types involved

Density = mass/unit volume

- 86 Rock Densities
  - Continental lithosphere is about 3.00 grams/cubic centimeter
  - Oceanic lithosphere gradually increases in density as it ages, reaching a maximum value of about 3.28 grams/cubic centimeter
- 87 Converging Plates
  - When two plates collide, the denser plate will sink (subside) beneath the less dense plate

- Density differences as small as 1% are enough to cause subduction
- 88 Asthenosphere Density
  - density of the asthenosphere is about 3.3 g/cm<sup>3</sup>
  - Density increases with depth below the surface
- 89 Plate Movement
  - Plates move slowly (up to 15 cm/yr)
  - Plates may collide, move apart, or slide past each other
  - Friction during plate movement often generates earthquakes
- 90 Plate Tectonics and Oceans
- 91 Subduction Zones
  - Plots of earthquake foci over time delineate position of subducting plates
  - plate which is subducted is always denser than plate which remains on surface
- 92 Subduction Angle
  - Plates far from the spreading center will be relatively cold, and therefore dense -
    - they will subduct at a steep angle
  - Plates near the spreading center will be much warmer
    - they will be only slightly denser than surface plate, and the subduction angle will be shallow
- 93 Oceanic Trenches
  - Subducting plate drags part of the surface with it
  - Creates large oceanic trenches, which also serve to mark the top of the subduction zones
- 94 Volcanic Arcs
  - Plates subducted under continents create long chains of volcanoes on the continents
    - Cascades and Andes are examples
  - Plates subducted under oceanic plates create chains of oceanic islands
    - Japan, the Philippines, and Indonesia are examples
- 95 Plate Motions
  - · movement relative to each other
    - Convergent
      - plates move toward each other, often a head-on collision
    - Divergent
      - plates move away from each other
    - Transform
      - plates move past each other along transform faults
- 96 Plate Types
  - At any given point, a plate is either oceanic or continental
  - Interactions between plates are thus:
    - Ocean-ocean (O-O)

- Ocean-continent (O-C)
- Continent-continent (C-C)
- 97 Hydrothermal Vents
  - Spreading centers are marked by vents which spew hydrothermal fluids as hot as 350°C
  - Fluids contain dissolved metals which precipitate when they hit cold ocean water, encrusting basalt vents are called "black smokers" for this reason
- 98 Earth's Magnetic Field
  - · Earth has a strong magnetic field
  - It is dipolar, with the poles being called north and south
- 99 Earth's Magnetic Polarity
  - Present north magnetic pole is located near the south geographic pole
  - South magnetic pole is located near the north geographic pole
- 100 Rock Magnetism
  - Rocks often become magnetized because magnetic mineral grains (usually magnetite) are aligned
  - Rock's magnetic field is fixed at the time magma cools for igneous rocks, or at the time of lithification for sedimentary rocks
  - Magnetism of older rocks is called "paleomagnetism"
- 101 Magnetic Stripes
  - In the early 1960's oceanographic research uncovered a curious phenomenon, called magnetic stripes
  - Measurements of the earth's magnetic field show small variations from place to place
- 102 Magnetic Anomalies
  - Magnetic Anomaly = Average regional magnetic field of the earth magnetic field at a point
  - Plotting magnetic anomalies lead to a curious pattern of "stripes", first seen in the Atlantic, later in the Pacific
- 103 🗷
- Sea-floor spreading
  - new magma emerging at a mid-ocean ridge and hardening into rock, which then spread away from the ridge with time
- Polarity reversals
  - North and South magnetic poles changing position suddenly
- 104
- If we assume sea-floor spreading is occurring, the magnetic field of the rock is fixed, in alignment with the earth's field, at the time the rock cools
- The measured field above such rocks equals the earth's field plus the rock's field (because they are aligned)
- 105 Magnetic Stripes
  - As magma rises, it hardens and its magnetic field matches the present field of the earth - after a polarity reversal, it will be aligned against the earth's field

# 106 Hot Spots

- generate magma in the asthenosphere
  - below moving lithospheric plates
  - may be used as a reference since they are effectively stationary relative to lithospheric plate
- produce volcanoes
  - like Hawaiian Islands or many seamounts or guyots (mountains that made it above sea-level, then were flattened by wave erosion)
- 107 Earthquakes and The Earth's Interior

# 108 Earthquake

- A sudden motion or trembling in the Earth caused by the abrupt release of slowly accumulated strain
- Strain is a change in the shape or volume of a body as a result of stress

#### 109 Tocus

- initial rupture point of an earthquake
  - where strain energy is first converted to elastic wave energy
- point within Earth which is center of an earthquake

# 110 Epicenter

• The point on the Earth's surface that is directly above the focus of an earthquake

## 111 Seismograph

- An instrument that detects, magnifies, and records vibrations of Earth, especially earthquakes
- · resulting record is a seismogram

## 112 Example Seismogram

- Seismogram showing an earthquake the three different traces represent vibrations in different directions
- First peaks are P waves, the second peaks the S waves

#### 113 Richter Scale

- Numerical scale of earthquake magnitude
- Devised in 1935 by the seismologist C.F. Richter
- Defined local magnitude as the logarithm, to the base 10, of the amplitude in microns of the largest trace deflection that would be observed on a standard torsion seismograph at a distance of 100 km from the epicenter

## 114 Richter Scale Continued

- Measures vibrational amplitude of earth in response to seismic waves
- Does NOT measure energy release

### 115 Mercalli Scale

- Arbitrary scale of earthquake intensity, ranging from I (detectable only instrumentally) to XII (causing almost total destruction)
- Based on human perception of the earthquake, and damage observed after the

#### earthquake is over

- 116 Number of Earthquakes/Year
- 117 Energy Released by Earthquakes
  - A great earthquake releases the equivalent of 1 billion tons of TNT or more, over a period of 1-2 minutes
  - Most intense energy release per unit time of any natural event

### 118 Depth of Focus

- Earthquakes are classified by the depths of their foci below the surface, as follows:
  - Shallow 0-70 kilometers
  - Intermediate 70-300 kilometers
  - Deep 300-700+ kilometers

## 119 **Earthquake Damage**

- Earthquakes can cause damage in a number of ways
  - Building Collapse
  - Tsunami waves
  - · Seiche waves
  - Landslides
  - Liquefaction
  - Fire
  - Disease

### 120 Tsunami

- Gravitational sea wave produced by any large-scale, short-duration disturbance of the ocean floor
- Disturbances caused principally by a shallow submarine earthquake, but also by submarine earth movement, subsidence, or volcanic eruption

#### 121 Seiche

• Free or standing-wave oscillation of the surface of water in an enclosed or semienclosed basin (as a lake, bay, or harbor)

### 122 **Landslides**

- Earthquakes may trigger mass movement of rock and sediment on unstable slopes
- Damage is most likely to occur after fire removes vegetation, or clear-cutting of forests

## 123 Liquefaction

- Liquefaction is a physical process that takes place during some earthquakes that may lead to ground failure
- As a consequence of liquefaction, soft, young, water-saturated, well sorted, fine grain sands and silts behave as viscous fluids rather than solids

#### 124 **T** Fire

- Fire often does more damage than the earthquake itself
  - Underground pipelines and tanks rupture

- Above ground tanks may rupture or tip over, spilling contents
- Water lines break
- Streets are blocked by debris
- Downed electrical lines may spark, setting off fires

#### 125 Disease

- Earthquakes can cut underground sewer and water lines
- No drinking water
- Only available water is contaminated
- 126 Volcanoes and Volcanism

## 127 T Volcano

- A vent in the surface of the Earth through which magma and associated gases and ash erupt
- Also, the form or structure, usually conical, that is produced by the ejected material
- Plural: volcanoes
- Etymology: the Roman deity of fire, Vulcan
- 128 Pyroclastic Eruptions
  - Magma spews upward with great force through a central vent
- 129 Fissure Eruptions
  - · Volcanic eruptions may occur much more quietly along long cracks in the ground
- 130 Effect on Climate
  - Large volcanic eruptions can block a great deal of the sun's energy from reaching the earth's surface
  - This cools the climate until the tephra particles sink to the surface
- 131 **Krakatau Volcano** 
  - · Located in the Sunda strait between the islands of Java and Sumatra
- 132 Krakatau, 1883 Eruption
- 133 Nuée Ardente
  - A swiftly flowing, turbulent gaseous cloud, sometimes incandescent, erupted from a volcano and containing ash and other pyroclastics in its lower part; a density current of pyroclastic flow
  - Etymology: French, "glowing cloud"
- 134 Prediction of Volcanic Eruptions
  - Man cannot stop subduction, or magma generation therefore, the prediction of imminent eruption becomes very important