

Performance on a statistical learning task predicts syntactic adaptation

Kelly Enochson¹ and Jennifer Culbertson^{1,2}

¹ Program in Linguistics, George Mason University ² Language Evolution and Computation Research Unit, University of Edinburgh

Introduction

- Adaptation occurs when language users dynamically update their behavior or expections based on changes in the linguistic environment.
- Statistical learning is argued to be a very general mechanism by which learners track and use distributional information to acquire linguistic structure.
- Does statistical learning underlie both acquisition and later adaptation? If so, performance on an independent measure of statistical learning should correlate with ability to rapidly adapt native language expectations.

Syntactic Adaptation Task

- Measures ability to rapidly adapt expectations about syntactic structure
- Task: self-paced reading task (based on Fine. et al. 2013)
- Critical stimuli: temporarily ambiguous sentences, main verb vs. relative clause
- 1) The experienced soldiers warned about the dangers before the midnight raid.
- 2) The experienced soldiers warned about the dangers conducted the midnight raid.

[10 ambiguous MV,10 ambiguous RC, 10 unambiguous MV, 10 unambiguous RC, +75 fillers]

• **Prediction:** individual variation in ability to adapt expectation from main verb (more common in everyday experience) to relative clause

Statistical Learning Task

- Measures ability to track distributional information to learn about dependencies
- Task: SRT non-adjacent dependency learning (based on Gomez 2002, Misvak et al., 2010)
- Stimuli:
- Sequences of aXb
- a b drawn from set of three pairs
- X drawn from set of 24 intervening elements

TOOD	BALIP	DAK
RUD	GENSIM	PEL

A sample array for the trial rud balip pel. Participants hear words one at a time, must click on matching cell each column.

[35 minute exposure period followed by forced-choice grammaticality judgment task]

Prediction: individual variation in ability to learn non-adjacent dependency

Method

Participants: 30 adults recruited via Amazon Mechanical Turk

Participants completed four separate HITs on AMT on separate days (\$\$ bonus for completing)

- Primary Tasks:
- Statistical learning task
- Syntactic adaptation task
- Additional Tasks:
- Cognitive control (Stroop task) Print exposure (author recognition task)
- Verbal working memory (reading span task)

Results: individual tasks

Statistical learning:

 Score on grammaticality judgment task • M=6.4. SD=2.7

Syntactic adaptation:

- (Ambiguous RC Unambiguous RC) at disambiguating region
- (First block Last block)
- M=79.2. SD=313.4

Results: correlation

- ✓ Syntactic adaptation correlates with statistical learning (r=0.41, p=0.025)
- In regression model:
- ✓ Statistical learning score predicts syntactic adaptation score (p=0.09)
- ✓ No other tasks are significant predictors

Acknowledgements

This research was funded by NSF doctoral dissertation research improvement grant 1451652.

Conclusions

- Statistical learning ability is correlated with syntactic adaption ability (other potentially confounding individual differences are not).
- Suggests that the same mechanism that underlies learning from distributional cues during acquisition can be **used to dynamically** impact the linguistic system at any age

Selected References

- Fine, A. B., Jaeger, T. F., Farmer, T. A., & Qian, T. (2013). Rapid Expectation Adaptation during Syntactic Comprehension. PLoS ONE, 8(10), e77661. doi:10.1371/journal.pone.0077661
- Gómez, R. L. (2002). Variability and Detection of Invariant Structure. Psychological Science, 13(5), 431-436. doi:10.1111/1467-9280.00476
- Misvak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010), On-line individual differences in statistical learning predict language processing. Frontiers in Psychology, 1, 31.