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Abstract

In many research contexts it is useful to group experimental subjects into behavioral “t
Usually, this is done by pre-specifying a set of candidate decision-making heuristics and as
each subject to a heuristic in that set. Such approaches might perform poorly when applied
jects with prefrontal cortex damage, because it can be hard to know what cognitive heuristic
subjects might use. We suggest that the Houser, Keane and McCabe (HKM) robust classifica
gorithm can be a useful tool in these cases. An important advantage of this classification app
that it does not require one to specify either the nature or number of subjects’ heuristics in ad
Rather, both the number and nature of the heuristics are discerned directly from the data. T
trate the HKM approach, we draw inferences about heuristics used by subjects in the well-
gambling task [Bechara, A., Damasio, A.R., Damasio, H., Anderson, S., 1994. Insensitivity to
consequences following damage to human prefrontal cortex. Cognition 50, 7–12].
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1. Introduction

The unhappy circumstances of Phineas Gage are by now well known. Briefly, as r
by Antonio Damasio (1994) in hisDescartes Error, Gage was working as the forem
for a railroad construction team in Vermont in 1848, when an explosion blew an iro
through his left cheek, skull and the front of his brain. The bar exited the top of his
at high speed, and Gage managed to survive the blast. Although his post-acciden
mained high according to standard measures, he nevertheless underwent radical pe
changes and, perhaps more interestingly, seemed to lose the ability to make good de
In particular, he systematically made decisions that were, by any objective measure
his long-run best interest. He eventually lost his job and family, and spent much of th
of his life working as a sideshow attraction for a circus.

We now know that Gage suffered damage to the ventromedial (VM) area of his
frontal cortex (see, e.g., Damasio et al., 1994). People with damage in this area ty
maintain good memory and score well across a wide range of personality and intell
tests. However, they tend to have difficulty in making “good” decisions. That is, they
make decisions that seem clearly contrary to their best interest, even when they cla
they know this is the case.

Investigating the natures of the differences between VM and normal decision m
has proved challenging, because VM patients perform as well as normal patients on
standard diagnostic tests. However, Bechara et al. (1994) describe one laboratory
iment in which VM patients perform remarkably differently than control subjects.
experiment has been dubbed the “gambling task,” because it involves turning over ca
quentially and earning and losing money, according to the markings on each card. B
et al. (1994) report that VM patients choose cards from “bad” decks systematically
often than people without such brain damage. In their experiment, a bad deck is o
yields high immediate rewards but higher future losses, so that on average a person
a bad deck will lose money. A good deck, on the other hand, provides lower immedia
wards but even lower future costs, so that on average a person drawing from the goo
will earn money. The main result reported by Bechara et al. (1994) is that about 6
VM patients draws are from bad decks, while this is true for only about one-third of
control subjects.

Bechara et al. (2000) investigate three reasons, not mutually exclusive, for differen
behavior in the gambling task. These are that VM patients might be relatively (i) hype
sitive to reward; (ii) insensitive to punishment; or (iii) insensitive to future conseque
To discriminate these hypotheses they designed a new experiment, a variant of th
bling task, such that the bad decks yield low immediate punishment and even lower
earnings, while the good decks yield high immediate punishment and even higher
reward. Analysis of this experiment’s data allows them to conclude that neither (i) n
is supported by the experimental data, and that (iii) is a simple hypothesis consiste
the evidence.

In this paper we discuss an alternative procedure for drawing inferences abo

heuristics used by VM and control patients when playing the original gambling task. Our



D. Houser et al. / Games and Economic Behavior 52 (2005) 373–385 375

cation
e new
er the
beyond
her, in
n pro-
out of

ntation
tients

of the

omics,
One is
heuris-
fication

(e.g.,
nalyz-

ective
-
ontrol
re is to
ss of

enteen
a out-
rtex).
ps sub-
d that
itivity

teen
d six
spond
ted by

rmal”
plains
edure
of deci-
normal
approach is to analyze data from the original environment using the statistical classifi
algorithm suggested by Houser et al. (2004). The goal of our analysis is not to provid
results about the behavior of people with VM damage. Indeed, experimentation ov
last decade by Bechara and others has expanded the knowledge of VM behavior far
what one can expect to gain by a statistical analysis of a relatively old data set. Rat
this paper we demonstrate that the Houser, Keane and McCabe (HKM) classificatio
cedure can be used to discern behavioral patterns that were not originally teased
this data set, and that those patterns line-up well with what subsequent experime
has already discovered. In particular, we show that hypothesis (ii) above, that VM pa
might be relatively insensitive to losses, can be informed through an HKM analysis
original gambling-task data.

There are several reasons that behavioral researchers in all fields, including econ
psychology and neuroscience, might be interested in the HKM statistical approach.
that HKM does not require the researcher to pre-specify the nature or number of the
tics used by subjects. This is in marked contrast to many approaches to type-classi
that require the investigator to pre-specify the universe of possible decision rules
the popular strategy suggested by El-Gamal and Grether (1995)). Especially when a
ing the behavior of people with brain damage, it seems likely that the usual introsp
process that generates this universe may fare quite badly.1 In addition, HKM does not re
quire that all subjects with a particular brain condition (in the present case, VM and c
subjects) use the same heuristic. As discussed below, the idea behind the procedu
group subjects according to similarities in their decision-making behavior, regardle
any known physical abnormalities they might possess.2

The data set analyzed in this paper is small and unbalanced. It consists of sev
VM patients, and eight lesion control subjects who have brain damage in an are
side of the ventromedial prefrontal cortex (in particular, to the left-somatosensory co
Nevertheless, we demonstrate that a simple analysis can be conducted that grou
jects according to similarities in their decision-making strategies (or heuristics), an
allows inference with respect to whether these heuristics differ in terms of their sens
to losses.

We allow for two types of heuristics in our population. Our results indicate that fif
VM patients and two controls use one type of heuristic, while two VM patients an
controls use the other. The two heuristics do not differ with regard to the way they re
to losses, which lines up well with the results of subsequent experimentation repor
Bechara et al. (2000).

1 This is not to say that introspection necessarily works well when trying to explain the behavior of “no
subjects: even in very simple environments it can be extremely difficult to write down a model that ex
or predicts individual decision making well. Also, while quite common, introspection is not the only proc
available to determine a universe of possible heuristics. Objective evidence from neuroeconomic studies
sion making might provide useful insights into the cognitive strategies used by both brain damaged and
subjects (see, e.g., McCabe et al., 2001).
2 It is possible, of course, to incorporate this information into the HKM classification procedure.
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2. Statistical methodology

The statistical procedure used in this paper is developed in detail in Houser et al. (
and will be only briefly described here. Papers that discuss closely related procedu
inference in multinomial choice frameworks include Geweke and Keane (1999a), G
et al. (2001) and Houser (2003). The HKM approach is useful whenever an investig
interested in drawing inferences about the nature of behavioral heterogeneity in a p
tion, but does not feel comfortable taking a strong stand with respect to the nature
heterogeneity. In particular, under relatively weak assumptions, the HKM algorithm d
inferences about both the nature and number of heuristics (or, equivalently, decision
used by subjects in a given population.

A decision rule is a map from information to action. For example, if people sittin
a theatre are given the information that the theatre is burning, many will likely deci
act by leaving the building. Behavioral heterogeneity might exist even here: a few
decide to stay. Intuitively, the HKM approach allows one to draw inferences about bo
nature and number of relationships that exist between the information people have a
actions they take, at least within a given context.

While many interesting types of decisions are easily observed, it is usually the ca
the information that resulted in a particular action is not. This is less the case in labo
experiments. There, much (even most) of the information that is relevant to subjects
ratory decisions is under the control of, and therefore known to, the researcher. We
this control to specify the form of the heuristics that we investigate below.

2.1. The HKM classification procedure3

In order to provide additional detail about the HKM algorithm, we consider an ex
iment where subjects solve aT period dynamic decision problem. The “gambling tas
analyzed below is an instance of this environment, although the discussion in this s
is more general. Suppose that each period subjects choose either alternativeA or B, each
of which results in a finite monetary reward. Payoffs can be stochastic, but the realiz
of the random variables in periodt occur before the decision att is made, while the real
izations of period(t + 1)’s random variables occur after the decision att . Each subject’s
total payoff is the sum of the rewards earned over theT periods. Subjects have comple
information regarding the stochastic link between their current choices and future pa
but the link is complicated and it is difficult to determine the decision rule that maxim
expected total payoffs.

The goal is to learn about the dynamic decision rules that subjects actually use
solving this difficult problem. To do this, Houser et al. (2004) (henceforth, HKM)
gin by assuming that subjects are rational in a weak sense. In particular, a subje
choose alternativeA in period t if and only if, in periodt , the value that they place o
choosingA is greater than the value they place on choosingB. Because the problem
dynamic, the value that subjects place onA andB depend both on the immediate rewa
3 This section follows Houser (2003) closely.
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to each choice and on the way subjects believe that choice will impact their future
offs.

The idea is that choices, in general, have both immediate and future costs and b
and that even when people have the same information they might use it different
draw different inferences about the immediate and future consequences of their dec
This is the fundamental intuition that guides the HKM algorithm. To implement the H
type classification procedure one posits that individual alternative valuations are add
separable into a contemporaneous component that captures the immediate net be
a choice (e.g., the alternative’s immediate monetary payoff) and a “future compo
that depends on a subject’s information and accounts for the subjective way inform
is used to value alternatives. We use the term “future component” because it is n
for economists to think that this function might map a subject’s information to his o
expected net future benefits from taking a particular action. However, this need not
case. For example, if a subject is “myopic” in the sense that they are focused on
immediate rewards, then the future component would be identically zero. A key adva
of the HKM algorithm is that it does not require one to take a strong stand on the nat
the future component.

In the laboratory it is often reasonable to assume that the contemporaneous payo
ture is known (and is equal to the cash value of a choice), so that differences in
behaviour between subjects who face otherwise identical contemporaneous returns
traced to differences between the subjects’ future components. The idea put forth by
(Houser et al., 2004) is to cluster subjects into groups that seem to have similar futur
ponents, while simultaneously drawing inferences about the future components’ for
this way, HKM avoid taking a strong a-priori stand on either the nature or number of
sion rules at use in the population subjects.

HKM (Houser et al., 2004) model the unobserved future component of each al
tive’s value as a parametric stochastic function of the subject’s information setInt . The
information set can include anything the researcher believes is relevant to subject
making their decisions, such as choice and payoff histories. Then, the value that sun

assigns to alternativej ∈ {A,B} in periodt , Vnjt(Int), given that they use decision rulek,
can be written

Vnjt (Int | k) = wnjt + F(In,t+1 | Int , j,πk, ςnjtk),

In,t+1 = H(Int , j).

Here,wnjt is the known immediate reward associated with alternativej . F(·) represents
the future component. It depends on the alternativej and information setInt , and is charac
terised by a finite vector of parametersπk , whose values determine the nature of decis
rule k, and a random variableςnjtk that accounts for idiosyncratic errors subjects m
when attempting to implement decision rulek. (The researcher must specify the distrib
tion of the idiosyncratic errors.) The functionH(·) is the information set’s stochastic la
of motion. It provides the dynamic link between current information and actions and f
information, and it is exogenous with respect to the decision rule.

We denote the choice in periodt of subjectn following decision rulek with informa-

tion Int by:
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dk(Int ) =
{

A if Znt (Int | k) > 0, ∀k ∈ K,
B otherwise,

whereZnt (Int | k) = VnAt (Int | k) − VnBt (Int | k).
The goal is to draw inferences about the parametersπk (∀k ∈ K), and about the prob

ability with which each subject uses each decision rule. To do this HKM construc
likelihood function associated with this framework. This requires knowing the probab
conditional on a subject’s information set, that they will chooseA or B.

The probability that subjectn using decision rulek chooses alternativeA at periodt ,
given that they have informationInt is given by

P
(
dk(Int ) = A

) = P
(
VnAt (Int ) > VnBt (Int )

) = P
(
wnAt − wnBt + f (Int | πk) > 0

)
,

where f (·) is a stochastic function that represents the differenced future compo
F(In,t+1 | Int ,A,πk, ςnAtk) − F(In,t+1 | Int ,B,πk, ςnBtk). The conditional probability
thatB is chosen is one minus the conditional probability thatA is chosen.

With conditional choice probabilities in hand it is straightforward to construct the
lihood function needed to draw inferences about the different decision rules at use
population, and the probability with which each subject uses each rule. Under the
butional assumptions made by HKM, the likelihood function corresponds to a mixtu
normals probit model. This likelihood can be computationally burdensome to maxi
and numerical procedures such as Gibbs sampling are typically required. Interes
searchers should consult Houser et al. (2004) for discussion on this point.

3. The gambling task

Bechara’s gambling task (Bechara et al., 1994) is a sequence of static decision pr
under ambiguity. The experimenter begins by giving a subject $2,000 in play mone
experimenter places four decks of cards in front of the subject, and tells him/her tha
can earn more play money by turning over cards, and that his/her goal is to earn a
play money as possible. The subject is told that every card they choose will result in
earning some amount of money, and that there will be occasional cards that impos
on them. The subject is told nothing else. The subject then begins turning over card
by-one, until they are told to stop by the experimenter. The stopping point is after 100
have been selected, although the subject does not know this in advance.

The subject is told nothing about the payoff or cost distributions within any of the d
of cards. In fact, the decks have been constructed in a very particular way. The fir
decks, call them A and B, provide a positive payment of $100 for each card. Howeve
also have occasional very high costs. On average, turning over 10 cards in the A or B
will have a net cost of $250. The C and D decks have lower rewards per card, $50, b
have lower occasional costs. On average, turning over 10 cards in the C or D decks y
positive return of $250. For this reason, we will refer to decks A and B as the “bad” d
and C and D as the “good” decks.

The main result reported by Bechara et al. (1994) (see also Bechara et al., 1997
VM patients choose from the bad decks statistically significantly more often than n

subjects. On average, around 60% of all VM patients’ draws are from the bad decks, while
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this is true of only about one-third of the normal patients’ draws. This led to much spe
tion about the source of the behavioral difference. One question was whether VM p
were relatively insensitive to losses, and if this insensitivity could explain the differe
Subsequent research by Bechara et al. (2000), which used a new experiment des
address this question, suggested that differences in loss aversion-behavior were no
the source of the different choices. The results we report below provide converge
dence for this conclusion.

4. A simple model

The Houser et al. (2004) approach to type classification requires that subjects’ re
information sets, and the link between information and action, be specified. We a
that each subject has a subjective value associated with draws from each deck o
and that they draw a card from the deck on which they place the highest value. Th
that values are formed can be modeled in any way that the researcher chooses,
only to identification issues. In this paper, because our intent is only illustrative, w
a simple model that nevertheless allows us to address whether VM subjects resp
losses differently than lesion controls. We noted in the introduction that this was one
primary hypotheses advanced to explain the behavioral patterns observed in the o
gambling task data. We also noted that this hypothesis was not supported by resul
subsequent experiments.

Denote the deck byj (with total number of decksJ ), the subject byn and the curren
draw byt . Assume that subjects assign values to draws inH different ways (that is, ther
areH valuation heuristics used in the population). With this notation, we model the
jective value that subjectn assigns to drawing a card from deckj at roundt , assuming they
use heuristich, as:

Vn(j, t;h) = b1jh + b2jhI (last draw was from deckj & t > 50) · Loss(t − 1)

+ b3jhI (last draw was from deckj & t > 50) · Reward(t − 1)

+ en(j, t;h),

wheree is an identically and independently distributed Gaussian random variable tha
resents idiosyncratic noise, which arises due to failures to implement the heuristic pe
Because this is a situation of ambiguity, the model assumes that the subject uses
50 draws to gain experience in each deck. Inferences with respect to loss and rew
fects are based on the final 50 draws experienced by each subject. Finally, the functiI (·)
represents an indicator function that takes value one if the condition inside the br
is true, and is otherwise zero. This model simply posits that the value a subject pla
drawing from deckj depends on a constant, noise, and his/her most immediate pre
experience with that deck.

It is possible to use the HKM algorithm to draw inferences about the numberH of
heuristics in the population, the nature of each heuristich in H (that is, the coefficien
values), and to determine the probability with which each subject uses each he

A specific way to do this is detailed in Houser et al. (2004), and involves a Bayesian
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For this paper’s purposes, however, we assume that there are exactly two heuri
use in the population. There are two reasons for this decision. First, the results of sub
previous research with this population suggest that there are in fact two types of beh
heuristics in this population, and using these previous results to inform our current
is reasonable. At the same time, note that there is no necessary reason to expec
VM patients will follow the same heuristic, or that all normal controls will follow the sa
heuristic. For example, some VM patients might follow a strategy that looks very si
to the control subjects. The HKM procedure allows for this and other possibilities.

A second reason to assume that there are two types of decision rules in this pop
is that, as a practical matter, it would be difficult to interpret the finding that there are
or more heuristics in the population. The reason is that our sample size is rather
(8 controls and 17 VM patients), and evidence of more than two heuristics might n
robust to a larger sample, or the nature of the heuristics that we estimate might be
biased reflection of the true heuristics at use in the population, given the relatively
number of subjects that would be assigned to each.

This highlights an important feature of the HKM approach to type classification
cause it is a robust approach, in the sense that both the nature and number of he
are determined endogenously, it can be less efficient than procedures that take
on the heuristics subjects use. Of course, if such a stand is wrong, and the model
quently misspecified, then the efficiency gain might come at the cost of specification
bias.

4.1. Implementation and identification

Although there are two good decks, and two bad decks in the actual experiment,
section we report results based on a model that treats each pair as one. Equivale
model the individual as making a choice between choosing a deck with $100 payo
$50 payoffs, and then randomizing across the two decks within that choice. Hence,
J = 2, which turns out to mean that there are three identified coefficients, along wit
variance term with a pegged value, that characterize each heuristic.

Note that the value function described above requires both location and scale n
ization for identification. Location normalization is achieved by differencing:

Vn(1, t;h) − Vn(2, t;h)

= b11h − b12h

+ b21hI (last draw was from deck 1 &t > 50) · Loss(t − 1)

− b22hI (last draw was from deck 2 &t > 50) · Loss(t − 1)

+ b31hI (last draw was from deck 1 &t > 50) · Reward(t − 1)

− b32hI (last draw was from deck 2 &t > 50) · Reward(t − 1)
+ en(1, t;h) − en(2, t;h).
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The differenced constants are not separately identified, but are estimated as a sing
stant. Similarly, the differenced error component is treated as a single noise term
because the nature of the experiment induces little variation in rewards, the coefficie
lagged rewards are only weakly identified. Consequently, we choose to drop them
remainder of our analysis. Finally, scale normalization is achieved by pegging the va
of the error at a fixed value.

To implement the Bayesian version of HKM as described in Houser et al. (2004
must specify priors on the coefficientsb that appear in the value expression above, al
with the fraction of each type that exists in the population. We follow Houser et al. (2
and use Gaussian priors with means of zero and standard deviations of one for th
cepts, and 0.1 for the coefficients on losses. We use a diffuse Dirichlet prior centered/2
for the fraction of each type in the population.

5. Data and results

Our data set consists of 25 subjects who played the gambling task one time. 17
subjects are VM patients, and 8 are lesion controls with damage to the left somatos
cortex. The data were collected by Antoine Bechara and colleagues at the Univer
Iowa, and represent a subset of data that has been previously published in various bo
journals. Figure 1 compares the frequency with which the two types of patients drew
the bad decks (the $100 decks). As has been previously reported, VM patients dra
the bad decks statistically significantly more often than the normal patients. More
as seen in Fig. 2, the rate at which VM patients draw from the bad deck seems ro
constant over the entire experiment. The rate at which LC’s draw from the bad d
similar to the VM rate over the first 20 or so draws, but then declines substantiall
stays roughly constant over the last 70 or so draws.

5.1. Results

Our results are derived through the use of a Gibbs sampling algorithm. Details
the Gibbs sampler, and the way in which it can be implemented to draw inferences
Fig. 1. Mean number of bad deck choices by frontals and controls.
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Fig. 2. Cumulative number of bad deck choices by frontals (�—) and controls (—).

present environment, are presented in Houser et al. (2004) and will not be repeate
Briefly, the Gibbs sampler is a recently developed numerical procedure for drawing
ences within the context of statistical models like ours. The Gibbs sampler is attr
because it provides accurate inferences under weak regularity conditions, and tho
ditions are satisfied by our model. Our results are based on a Gibbs sampling alg
that we coded in FORTRAN 77 and that makes extensive use of IMSL subroutine
ran the sampler for a total of 500 cycles. The results reported below are based on
250 cycles.4

Consider first the way in which we type-classify subjects. We based our subjec
sification on the posterior mean probability that they were each type. If the pos
probability of being the VM type is greater than or equal to 0.50,5 then they are class
fied as that type. Otherwise, they are classified as the lesion control type. The po
type probabilities favored one type over another by only a few percentage points fo
of our subjects. The highest posterior mean probability across all subjects of being th
type was about 66%, and the smallest was about 36%.

Table 1 provides the results of our typing procedure. We call one of the two estim
heuristics the “VM” heuristic, simply because most of the subjects assigned to it ar
patients. We denote the other heuristic as the “LC” heuristic for the same reason. I
out that 17 subjects are classified as VM types, which is identical to their frequency
data. However, two subjects classified as VM are in fact lesion controls. Thus, four su
are “mislabeled,” in the sense that their actual brain condition is not reflected by the
of the heuristic that they use.

Table 2 describes the marginal posterior distributions for the coefficients of each h
tic. Notice first that the marginal posterior distributions of the coefficients for the am
lost in the previous period have the majority of their mass to one side of zero for

4 Visual inspection of the draw sequences suggested that convergence had been achieved by cycle 2
plete draw sequences are available from the authors on request.

5 Three subjects had a posterior probability of 0.496 of being the ventromedial type, and in each c
assigned then to the ventromedial type. Two of these three are actually VM, so reversing the classification
three reduces the number of total VM types by 3 (from 17 to 14), and induces one additional type class

error (from 4 to 5).
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Table 1
Number of subjects of each classified type by actual brain condition

Classification Actual brain condition

VM LC Total

VM 15 2 17
LC 2 6 8
Total 17 8

Table 2
Marginal posterior distributions

LC heuristic VM heuristic

Mean SD Mean SD

Constant −0.05362 0.09747 0.04513 0.08600
Loss bad deck 0.00062 0.00028 0.00066 0.00033
Loss good deck −0.00381 0.00138 −0.00400 0.00125

Note. These coefficients correspond to the differenced value function described in Sec-
tion 4.1, where the bad deck is deck 1 and the good deck is deck 2. Hence, the constant is
b11 − b12, loss bad deck isb21, and loss good deck is−b22.

the LC and VM heuristics. Moreover, the values of these coefficients are very si
This suggests immediately that, as reported by Bechara et al. (2000) based on a d
experimental design, both VM and lesion control patients respond to losses incur
the previous period, and that these responses are similar. On the other hand, the p
means of the constant terms for the two heuristics differs by about 0.1, and the po
means lie on different sides of zero. Given the small sample size, this provides som
dence that the baseline rate at which VM’s and LC’s choose from the bad deck diffe6 In
particular, the coefficient estimates imply that VM’s choose from the bad deck at a ba
rate of about 55%, while lesion controls choose from the bad deck at about a 45% b
rate.

In addition to the baseline rates, our estimates imply that both types of subjec
more likely to choose from the same type of deck after experiencing a loss in that
than they would be otherwise.7 For example, a subject who turns over a card in the
deck and receives a cost of $1,250 will choose from one of the bad decks agai
probability 0.82 if they are using the VM heuristic, and with probability 0.77 under the
heuristic. Experiencing a cost of $250 from the good decks generates probabilities
deck choices of 16 and 15% for the VM and LC heuristics, respectively. Overall then,
findings suggest that VM patients choose cards from the bad decks at a higher base

6 Note that the standard deviations of the intercepts are large relative to their means: zero lies in a high m
posterior density region for each.

7 This might be counterintuitive. One possible explanation for this behavior is that subjects come to
that it is unlikely to experience two losses in a row in a given deck. Alternatively, this result might refle
aggregation effect embedded in our statistical model. In particular, it is possible that subjects are in fact sw

decks after a loss, but not switching reward amounts.
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than the LC subjects. Consequently, they experience large losses more frequently, a
losses lead to yet more frequent choices from the bad decks.

Our analysis leaves unanswered the question of why VM patients would tend to c
from the $100 decks at a higher baseline rate than the lesion controls. Further expe
tation by Bechara et al. (2000) suggests that the reason may be that VM damage
one unable to assess the future negative consequences of one’s actions accurately
consistent with the patterns observed in Fig. 2, which suggests LC patients reduc
baseline choice rates in the bad deck after the first 20 draws or so, while this reduc
not apparent in the VM subjects’ data.

6. Concluding comments

Uncovering the nature and number of behavioral heuristics that people use, even
narrow contexts, presents one of the most important current challenges to the beh
sciences (see Houser (2003) for an elaboration of this point). A standard approach
involves somehow determining a universe of possible ways that people might act, an
determining which one among this universe fits each person’s behavior best (se
El-Gamal and Grether, 1995). While this approach has been shown to work well in
circumstances (see, e.g., Houser and Winter, 2004), there are some environments i
its success is less likely. The study of brain damaged people is one such enviro
because it does not seem likely that introspection by a person with a normally funct
brain could provide accurate guidance on the heuristics that might be used by someo
a brain abnormality. The HKM classification procedure is a robust alternative. We
demonstrated in this paper that the results obtained by application of the HKM stat
procedure to data from the original gambling-task design line-up well with results
subsequent new experiments with VM patients.

Although this paper focused on a behavioral study, it is important to point out tha
HKM algorithm has broad applicability that extends beyond the analysis of beha
data. In particular, it would be straightforward to apply the algorithm to data that inc
behavioral decisions and neuronal firing information, say as might be collected dur
fMRI imaging experiment. Analyzing such a data set holds the promise of identi
jointly both the behaviors that neuroeconomists should seek to explain, along wi
neural structures that support those behaviors.
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