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Experiments and Econometrics 

Daniel E. Houser 

 

“Experimetrics” refers to formal procedures used in designed investigations of 

economic hypotheses. Fundamental experimetric contributions by Ronald A. Fisher 

provided the foundation for a rich literature informing the design and analysis of 

economics experiments. Key components of this foundation include the concepts of 

randomization, independence and blocking. Experimetric analysis plays a central 

role in advancing economic models, and will gain further importance as scholars 

adopt increasingly sophisticated designed research programs to illuminate positive 

economic theory. 

 

1. Introduction  

“Experimetrics” refers to formal procedures used in designed investigations of economic 

hypotheses. A series of pathbreaking experimetric contributions by Ronald A. Fisher, 

written largely during the 1920s and early 1930s, elucidated fundamental concepts in the 

design and analysis of experiments (see, e.g., Box, 1980 for a survey). He was first to 

obtain rigorous experimetric results on the importance of randomization, independence 

and blocking, and he created many powerful analysis tools that remain widely used, 

including Fisher’s non-parametric Exact Test (Fisher, 1926; see also Fisher, 1935).     

Controlled experiments allow compelling scientific inferences with respect to 

hypotheses of interest. Many economic experiments inform hypotheses regarding 

primitives assumed to be constant within an experiment (e.g., preferences or decision 

strategies), or the effects on economic outcomes of changes in institutions (e.g., 
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comparing different auction rules or unemployment regulations, see Vernon Smith entry 

on Experimental Economics). One conducts controlled experiments to inform economic 

hypotheses because relevant naturally occurring data typically include noise of unknown 

form and magnitude outside the investigator’s control. Econometric procedures can go 

some distance towards solving this problem, but even sophisticated approaches often 

allow only limited conclusions.    

 For example, suppose one wanted to investigate the (causal) effect of caffeine on 

heart rhythms.  One approach is to obtain a random sample of “heavy” coffee drinkers 

and compare them to a random sample of people who do not use caffeine. Because it is 

not possible with naturally occurring data to control the reason a person falls into a 

category, discovering that people with greater caffeine consumption have more cardiac 

episodes need not imply a causal caffeine effect. The reason is that a preference for 

coffee may stem from a biological characteristic that is itself causally tied to irregular 

cardiac events. 

 An advantage of designed investigations is that they allow cogent inference 

regarding causal effects through the appropriate use of randomization, independence and 

blocking.  

 

1.1. Randomization. Experiments with randomized designs allow compelling causal 

inference. The reason is that randomly assigning participants to treatments, and randomly 

assigning treatments to dates and times, minimizes the possibility of systematic error. In 

the caffeine example, intentionally assigning heavy caffeine drinkers exclusively to a 

caffeine treatment generates a systematic error and invalidates causal inference. 
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However, an experiment where subjects are randomly assigned to caffeine and no-

caffeine treatments independent of their typical caffeine use allows one to draw 

appropriate inferences regarding causal relationships. 

 

1.2. Independence. Randomization also helps to ensure independence both within and 

between treatments’ observations. Loosely speaking, observations are independent if 

information about one does not provide information about another. Independence is 

critical for many experimetric analyses, and its failure can lead to misleading 

conclusions. An objective randomization procedure for treatment assignments insures 

against the possibility that participants in one treatment might unintentionally 

systematically vary from other treatments’ participants.  

 

1.3. Blocking. Causal relationships can be assessed with greater precision through 

“blocking.” Blocking is a design procedure with which an experimenter can separate 

treatment effects from nuisance sources of data variation. In the above, heart rhythms 

might be affected by both caffeine and anxiety over the process of measuring heart 

rhythms. Especially because it is expected to differ between participants, anxiety is a 

source of nuisance variation that clouds inferences regarding caffeine effects. To address 

this one could “block” by participant. This involves measuring each subject both with and 

without caffeine (in separate, randomly ordered trials.) Caffeine effects are measured as 

the difference between trials, thus mitigating noise due to individual anxiety effects. 
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2. Experimetrics Toolbox  

Although many specialized experimetric tools have been developed, the experimetrics 

toolbox also includes a large number of general purpose procedures that have become 

standard in the experimental economics literature. A regular concern is that 

independence is not satisfied. The failure of independence can occur because of 

“session” effects, meaning that there is less behavioral variation within than between 

sessions. Violations of independence can also occur if repeated measurements are taken 

on the same individual due to individual effects. Standard procedures can address this. 

Sessions can be treated as fixed effects, and random effects can be used to control for 

individual differences. The resulting “mixed effect” model can be analyzed using 

standard parametric, panel-data procedures (see, e.g., Frechette, 2005).    

 Also in the toolbox is the McKelvey and Palfrey (1995) “Quantal Response 

Equilibrium” (QRE) framework (see entry on Quantal Response Equilibrium). QRE is a 

parametric procedure for analyzing data from finite games. The key idea is to incorporate 

errors into players’ best response functions, thus creating “quantal response” functions. 

This results in an extremely flexible model that can rationalize a wide variety of 

behaviors. Haile, et. al., (2006) point out that this flexibility comes with a cost: in 

general, QRE can rationalize any distribution of behavior in any normal form game, and 

imposes no falsifiable restrictions without additional assumptions on the stochastic 

components of the model. Thus, those who wish to implement QRE analyses face the 

experimetric challenge of creating designs within which such assumptions are defensible.  

For reasons including sample size and robustness, the experimetrics toolbox 

includes many nonparametric procedures (see Siegel and Castellan, 1988, for a user-
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friendly textbook treatment of popular nonparametric approaches). For example, Mann-

Whitney tests, and their k-sample generalization due to Jonckheere (1954), are 

frequently used to compare medians among treatments’ data. Also common is Fisher’s 

Exact Test, which uses all the information in the data and is the most powerful non-

parametric approach to inference with respect to differences among treatments. Its use is 

limited by the fact that it can be computationally cumbersome to implement when the 

numbers of treatments or observations are large.   

 

3. External Validity  

An experiment’s conclusions are “externally valid” if they can be extrapolated to other 

environments. To rigorously address external validity requires that the source of 

treatment effects can be identified, which in turn implies a fundamental rule of 

experiment design: Within any good experiment, any treatment can be matched with 

another that differs from it in exactly one way.  

External validity is both important and subtle. For example, consider the well-

known “dictator game” where one participant is assigned the role of “dictator”, and the 

other “receiver” (see entry on Dictator games). The dictator is given $20, and the receiver 

nothing. The dictator is told to split the $20 between herself and her receiver in any way 

she likes, after which the experiment ends. A widely replicated result is that a large 

fraction of dictators send half ($10) to an anonymous stranger, and one might question 

whether this finding is externally valid. In particular, there is no evidence that this 

behavior is prevalent among winners of naturally occurring lotteries.  
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There are clear similarities between the situations of lottery winners and dictators. 

Still, the fact that actions of dictators in laboratory games do not match actions of lottery 

winners does not necessarily mean that dictator games lack external validity. The reason 

is that identical decision strategies can imply different decisions in different 

environments. For example, recent research provides compelling evidence that dictators’ 

decisions are tightly connected to their beliefs regarding the decisions of others who have 

faced this same situation: dictators give because they believe other dictators give 

(Bicchieri and Xiao, 2007). This mechanism plausibly guides decisions in naturally 

occurring environments. In particular, lottery winners do not give because they believe 

other lottery winners do not give large fractions of their winnings to anonymous 

strangers. Thus, external validity does not require that one be able to match actions in an 

experiment to actions in another environment. Rather, an experiment is externally valid if 

one can extrapolate to novel contexts its conclusions with respect to individual or 

strategic decision processes.  

 

4. Applied Experimetrics Research 

An important application of experimetrics is to discriminate between many competing 

theories of learning that have emerged. (See entry on Individual Learning in Games). 

Doing this includes significant experimetric challenges, as it requires one to account for 

heterogeneity in the way subjects learn. The reason is that not doing so will tend to bias 

fit statistics in favor of reinforcement (and hybrid) models. Wilcox (2006) shows the 

reason is that reinforcement models condition behavior on informative functions of past 

choices, and in the presence of learning heterogeneity these choices will carry 
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idiosyncratic parameter information not otherwise incorporated into the specification. 

Having said this, it is also the case that many data sets from typical learning experiments 

can be roughly equally well described by many different learning models (Salmon, 

2001). Consequently, the “best” model can be highly sensitive to the particular criterion 

one uses for model selection, as well as the particular experiment under consideration 

(Feltovich, 2000). As a result, in-sample fit is often good, but this does not necessarily 

imply that much has been learned about the way in which people actually learn and make 

choices (Salmon, 2001).  

Knowing how people make choices is critical to advance both economic theory 

and institution design. Consequently, a significant experimetric literature explores how 

people make decisions in complex environments, with a focus on characterizing the 

nature and number of different “decision rules” at use in a population. Most approaches 

to accomplishing this require pre-specifying the decision rules the researcher believes 

people could follow, and then using choice data to assign one of those rules to each 

member of the population (see, e.g., El-Gamal and Grether, 1995). However, in some 

cases one might be unwilling or unable to pre-specify the decision rules, and it turns out 

that doing so is not necessary. In particular, Houser et. al. (2004) details a Bayesian 

experimetric procedure that uses individual choice data to determine endogenously the 

nature and number of decision rules in a population. The approach requires only that one 

specify the information relevant to individuals’ decisions.     

Substantive experimetric advances have been obtained in far too many areas to 

detail here. Although no general survey is available, Houser et. al., 2004, Ashley et. al., 
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2005, and Loomes, 2005, include excellent summaries of experimetric contributions to a 

variety of widely-studied games and decision problems. 

 

5. Conclusion 

Experimetrics continues to evolve as scholars adopt highly sophisticated design and 

analysis procedures to inform new questions. A ready example is the rapidly expanding 

research in Neuroeconomics (see entry on Neuroeconomics). The massive spatial-panel 

data structure that characterizes brain images poses unique inferential problems. Progress 

on these problems requires significant complementary innovations to both design and 

analysis strategies. The resulting experimetric advances are sure to have significant 

impact on economic theory and policy analysis.  
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