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Abstract

This paper empirically implements a dynamic, stochastic model of life-cycle labor supply and
human capital investment. The model allows agents to be forward looking. But, in contrast
to prior literature in this area, it does not require that expectations be formed “rationally”.
By avoiding strong assumptions about expectations, I avoid sources of bias stemming from
misspeci0cation of the expectation process. A Bayesian econometric method based on Geweke
and Keane (in: R.S. Mariano, T. Schuermann, M. Weeks (Eds.), Simulation Based Inference and
Econometrics: Methods and Applications, Cambridge University Press, Cambridge, 1999) is used
to relax assumptions over expectations. The results of this study are consistent with 0ndings from
previous research in the labor supply literature that makes the rational expectations assumption.
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1. Introduction

A substantial amount of recent empirical research has analyzed models of life-cycle
labor supply that include human capital. Such research has typically taken dogmatic
stands on the way people form expectations. In principle, however, inferences about
human capital’s eBect on labor supply can be sensitive to the form of the expectations
process. In this paper I empirically implement a dynamic, stochastic model of life-cycle
labor supply that incorporates human capital but does not make strong assumptions
about the way people form expectations. The estimated model provides wage and
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wealth elasticities of labor supply, and also allows inferences with respect to the way
the incentive to accumulate human capital aBects labor supply over the life cycle.
It is easily seen that the scope of the human capital eBect can be restricted by the

expectations process. For instance, if it is assumed that agents are not at all forward
looking, then, since human capital’s value lies in its future dividend stream, there can
be no eBect beyond any immediate impact on wages. More generally, joining particular
expectations processes to many common modeling assumptions (such as expected utility
maximization) can leave certain types of behaviors diJcult to explain. 1 For instance, it
is well known that young men in their late teens, who have completed their schooling,
often choose to supply relatively little market labor (see, e.g., Card, 1994). At the same
time, at least since Mincer (1974), market experience has consistently been found to
be a signi0cant and economically important determinant of wages. Rational agents
should accurately forecast the return to market experience and, consequently, have the
incentive to provide high labor supply early in the life-cycle. 2

To reconcile the empirical facts with rational expectations, which is a common as-
sumption in human capital labor supply studies (see, e.g., Eckstein and Wolpin, 1989;
Shaw, 1989, Keane and Wolpin, 1997, or Altug and Miller, 1998), it is often posited
that transition costs or complicated preference eBects play an important role in labor
supply outcomes (see, e.g., Keane and Wolpin, 1997). An alternative explanation is
that people come to understand the value of human capital slowly over time. If so, then
this would suggest that older men, rather than younger men, might be more inKuenced
by the human capital accumulation incentive. A goal of this paper is to characterize
the eBect of this incentive on life cycle labor supply in a way that is less dependent
on assumptions about the way people form expectations.
Strong assumptions about the expectations process might also lead to biased esti-

mates of a model’s structural parameters through model misspeci0cation. This might
be of particular concern in the labor supply literature, where much eBort has been
directed towards generating point estimates of, for instance, the intertemporal substitu-
tion elasticity (see, e.g., MaCurdy, 1981; Browning et al., 1985 or Altonji, 1986), the
return to education (see, e.g., Willis and Rosen, 1979 or Willis, 1986) and the return to
diBerent types of market experience (see, e.g., Heckman and Sedlacek, 1985 or Keane
and Wolpin, 1997). Unfortunately, it is usually very diJcult to determine whether the
expectations process is misspeci0ed, and, if so, whether the misspeci0cation has eco-
nomically meaningful consequences. The estimates of the wage and wealth elasticities
that I present in this paper should not be biased by this particular speci0cation error.
I relax assumptions over expectations by employing an econometric method sug-

gested by Geweke and Keane (1999). This method can be used to perform inference
in a wide class of dynamic models, and, in addition to being robust to the expec-
tations mechanism, has several advantages. First, with it one can estimate structural

1 Epstein and Zin (1989) point out that in many models that assume rational expectations and expected
utility maximization, it is impossible that agents are both highly risk averse and highly willing to substitute
consumption intertemporally.

2 In general of course, the particular labor supply pro0le will be sensitive to the model’s parameterization
(see, e.g., Blinder and Weiss, 1976).
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speci0cations that might otherwise be intractable. The model developed below, for
instance, includes serially correlated log-wage equation productivity shocks. While
there is substantial empirical evidence supporting this speci0cation (see, e.g., MaCurdy,
1982), it has not appeared in previous structural estimations due to the computational
diJculties it entails (see, e.g., Keane and Wolpin, 1994). Second, the data requirements
are not heavy. Inference is possible using only a single cohort of agents observed over
only part of their life-cycle. In addition, with this econometric methodology one can
draw inferences about agents’ decision rules. With decision rules in hand the model
can be simulated without computational burden, allowing one to examine wage, wealth
and other labor supply eBects easily.
Geweke and Keane (1999) provide Monte Carlo evidence that their procedure re-

covers structural parameters of dynamic models well when period return functions are
correctly speci0ed (see also Geweke et al., 2001). However, as detailed below, not
all of the parameters that enter their procedure have immediate structural interpreta-
tions. Moreover, in the usual case where period return functions are not known, I
point out below that the distinction between structural and other parameters can be
arbitrary. In this research, my approach is to adopt a variant of the commonly used
trans-log speci0cation for the period return function, and interpret the associated pa-
rameters as “structural”. Still, policy analysis based on my structural estimates should
be approached with caution.
I apply the Geweke–Keane method to a life-cycle labor supply model that includes

learning-by-doing human capital accumulation and savings of physical capital. Each
period, agents choose either not to work, or to work part-time, full-time or overtime,
and they choose levels for consumption and savings. I estimate this model using a panel
drawn from the National Longitudinal Survey of Youth. Although classical estimation
of the model might be possible, I perform Bayesian inference under diBuse priors. To
implement the Bayesian estimation I use Markov Chain–Monte Carlo methods.
The results are largely consistent with standard results in the labor supply literature.

The marginal posterior distributions for preference and log-wage equation parameters
are in all cases economically reasonable. Although inference about consumption eBects
is quite imprecise, Bayesian point estimates suggest that consumption and leisure are
complements for young men, and that consumption plays a smaller role than leisure in
determining the utility of diBerent hours alternatives. Education and market experience
are each found to have a plausible positive inKuence on wages, and I 0nd substantial
serial correlation in the log-wage equation’s error process. In addition, as reported
by Altug and Miller (1998) in a study of female labor supply, my 0ndings provide
evidence that recent work experience has a stronger eBect on wages than other work
experience.
Simulations of the estimated model shed light on the contributions of human capital,

wages and wealth to labor supply decisions. Consistent with usual 0ndings, wages and
wealth seem to contribute very little to labor supply variation. The incentive to invest
in human capital is found to have a relatively more important eBect on hours decisions,
particularly for men in their late 20’s. My results suggest that reducing the expected
bene0t of human capital accumulation might both shift down and Katten the age-hours
pro0le.
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This paper is in seven sections. Section 2 describes the model, Section 3 details
the method of Bayesian inference and Section 4 describes the data. Section 5 reports
marginal posterior distributions and the model’s 0t. Section 6 investigates the determi-
nants of the labor supply of young men, and Section 7 concludes.

2. The model

2.1. Endowments, technology, preferences and timing

Each of N agents lives for T ¡∞ periods. There is an initial period wealth endow-
ment An1. At each age t each agent n receives a wage oBer and nonlabor income. I
assume that the wage oBer, denoted wnt , depends on his age t, market experience xnt ,
number of hours worked in the previous year hnj; t−1, education Ent and an idiosyncratic
productivity shock nt , through the log-wage equation:

logwnt = �0 + �1xnt + �2hnj; t−1 + �3t + �4t2 + �5Ent + nt ; (1)

where lagged hours in the initial period are zero. I include lagged hours because of
the evidence that recent work experience has a greater eBect on wages than other
work experience (see, e.g., Altug and Miller, 1998; Miller and Sanders, 1997). In
addition, Altug and Miller (1990, 1998), among others, provide evidence that aggregate
changes in the supply and demand for labor can have signi0cant eBects on wages. Not
controlling for this could confound inferences about, in particular, human capital eBects.
Hence, I also include year dummies in the wage equation.
I denote the log-wage regressor matrix by Xnt , so logwnt = X ′

nt� + nt . Skills may
vary across individuals, and to capture this heterogeneity I allow the idiosyncratic
productivity shock to be serially correlated. 3 I assume that

nt = �n; t−1 + unt (t ¿ 1); (2)

n1 ∼ F; (3)

where the disturbance unt is independently and identically distributed over time and
individuals, and the distribution of the initial shock F will be speci0ed below.

I assume that wealth, Ant , evolves as follows:

Ant = Ry(n; t−1)an; t−1 + �nt (t ¿ 1): (4)

Here, an; t−1 is the end-of-period wealth remaining after consumption expenditure and
labor earnings in period t − 1 and �nt is nonlabor income that is independently and
identically distributed across agents and time. The return on savings Ry(n; t−1) depends
on the year, y(n; t − 1), that he is age t − 1: I assume these returns are both known
and exogenous to every agent. 4 An1 is taken as given.

3 There are many ways to account for unobserved skill heterogeneity. One possibility is to assume there are
a 0nite number of agent types, and that types diBer according to their log-wage equation intercept (see, e.g.,
Keane and Wolpin, 1997). My speci0cation has the advantage that a person’s position in the cross-section
heterogeneity distribution can evolve with age.

4 Note that �nt can be viewed as incorporating a stochastic return to savings.
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After receiving the wage oBer, return on savings and nonlabor income, individ-
uals form their labor supply and consumption decisions. They choose either to work
part-time, full-time or overtime, or not to work. Denote by hnjt the fraction of full-time
hours agent n works in period t if alternative j is chosen, and assign:

hn1t = 0:5; hn2t = 1:0; hn3t = 1:5; hn4t = 0:0 (5)

for any n and t, so that alternative one corresponds to part-time hours, alternative
two to full-time hours, alternative three to overtime hours and alternative four to zero
market hours. Because hnjt depends only on j, and does not vary with n or t, when
no confusion can arise I will drop the n and t subscripts. With this notation, the
consumption and labor supply decisions are related to wealth and savings through the
budget constraint

cnjt + anjt = Ant + hjwnt ; (6)

where cnjt is n’s date t level of consumption if they choose hours alternative j.
Preferences over period consumption and leisure allocations are ordered according

to the possibly stochastic function Ut(cnjt ; j; j∗n; t−1; �njt), where j∗n; t−1 denotes the actual
labor supply decision of agent n at period t − 1, and �njt is a preference shock. 5 The
value of j∗n;0 will be taken as given.
Finally, I assume xn1 =0, and individual n with experience xnt at age t who chooses

alternative j will of course have age t + 1 experience given by xn; t+1 = xnt + hj.

2.2. The state space

I denote the state space by S, with typical element s∈ S. If t ¿ 1, then an individual’s
state at the time of his labor supply and saving decisions is his current age t, current
wealth Ant , current interest rate Ry(n; t), cumulative labor market experience xnt , the
period t realization of each random variable, last period’s productivity shock realization
n; t−1, his level of educational attainment En, and his previous period’s work decision,
j∗n; t−1. Consequently, the state vector for young man n at age t ¿ 1 is

snt = {Ant ; t; xnt ; Ry(n; t); En; j∗n; t−1; n; t−1; nt ; �nt ; {�njt}j=1; :::;4}: (7)

At t = 1 the state vector is

sn1 = {An1; t = 1; xn1 = 0; Ry(n;1); En; j∗n0; n1; {�nj1}j=1; :::;4}:

2.3. Valuation of alternatives

Denote by Vnjt(snt) the value that person n places on hours alternative j in state snt .
Since the environment is dynamic, the way expectations are modeled plays a funda-
mental role in the way values are assigned to alternatives. For instance, if one assumes

5 Lagged hours decisions are included to allow for transition costs associated with hours changes across
consecutive years. Past research has shown that such costs seem to play an important role in generating
observed hours variation (see, e.g., Keane and Wolpin, 1997).
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the model’s agents have rational expectations, and that they discount future rewards at
rate �, then these values can be expressed with the usual Bellman formulation

Vnjt(snt)=max
anjt

{
Ut(cnjt ; j; j∗n; t−1; �njt)+�E

[
max

k∈{1;2;3;4}
Vnk; t+1(sn; t+1)|snt ; j; anjt

]}
(8)

given the laws of motion and boundary conditions

cnjt = Ant + hjwnt − anjt (t = 1; : : : ; T ); (9)

Ant = Ry(n; t−1)anj∗n; t−1 ;t−1 + �nt (t = 2; : : : ; T ); (10)

xn; t+1 = xnt + hj (t = 1; : : : ; T − 1); (11)

logwnt = X ′
nt� + nt (t = 1; : : : ; T ); (12)

Vn;T+1(sn;T+1) = B(sn;T+1); (13)

An1 given; xn1 = 0; j∗n;0 given (14)

and given the distributions for all of the stochastic variables. In general, the terminal
values B(sn;T+1) may be nonzero, to reKect, for instance, bequest motives. The con-
ditional expectation is with taken respect to the true distribution of the state vector
sn; t+1.
Since little is known about the way people actually form expectations, I noted earlier

that several diJculties could stem from positing rational expectations. In fact, even if
rational expectations is the correct speci0cation, explicitly imposing it in this envi-
ronment could cause diJculties. In particular, empirically implementing (8)–(14) with
the “nested maximum likelihood” algorithm (see, e.g., Wolpin, 1984, or Rust, 1987),
would be extremely computationally burdensome. The reason is that this technique re-
quires solving dynamic programming problem (8) at many trial values of the model’s
parameter vector. Since this model’s state-space is large, the solution procedure would
be tremendously time consuming (except in very special cases, such as when the payoB
functions are assumed to be linear quadratic.) 6

There are several alternatives to the nested maximum likelihood approach to imple-
menting dynamic selection models empirically. These include the well known sugges-
tions of Hotz and Miller (1993) and Manski (1993). The idea behind each of these
methods is to use data to learn about the values of the expectations on the right-hand
side of (8), and then use this information as input to a procedure that generates esti-
mates of the structural parameters. A limitation of these approaches is that, in order to

6 Assuming that wealth is discretized, solving the dynamic programming problem requires a high order
integration over the latent state variables at every combination of (t; x; E; d−1; A) in the state-space. The
dimension of the integration at every age-t state-point is t + 5, corresponding to the preference, wealth and
productivity contemporaneous shocks, as well as all lagged productivity shocks due to the serial correlation
of that disturbance. See Keane (1994) for additional discussion of the burdens serially correlated latent
variables can cause in solving and estimating selection models.
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learn about expectations, each requires the data to satisfy a strict form of stationarity
in order to rule out cohort eBects.
In this paper I empirically implement an alternative speci0cation that is based on a

suggestion by Geweke and Keane (1999). The speci0cation I use is tractable in the
present environment, does not have heavy data requirements and does not require strong
assumptions about individuals’ expectation mechanisms. It requires only that individu-
als follow a state and choice contingent savings decision rule, anjt ≡ a(snt ; j), and that,
in any period, an alternative’s total value is additively separable between a contempo-
raneous payoB and a “future” component, denoted respectively by Ut(cnjt ; j; j∗n; t−1; �njt)
and F(snt ; j; anjt). Under these conditions, individuals assign values to alternatives as
follows.

Vnjt(snt) =Ut(cnjt ; j; j∗n; t−1; �njt) + F(snt ; j; anjt)

s:t: (9)–(14) (15)

The selection rule is that agents choose alternative j∗ if and only if

Vnj∗t(snt)¿Vnjt(snt) (∀j 
= j∗)̇:

Note that (15) is equivalent to (8) if F(·)=�E[maxk∈{1;2;3;4} Vnk; t+1(sn; t+1)|snt ; j; anjt]
and anjt is the associated optimal savings rule (assuming such a rule exists). Of course,
(15) is also consistent with a variety of other expectation mechanisms. For instance,
if agents are not at all forward looking when making decisions, then F(·) and a(snt ; j)
may each be identically zero. In general, the shapes of F(·) and a(snt ; j) will vary
with the way people form expectations. Since the way people form expectations is not
generally known, neither are the forms of F(·) and a(snt ; j). Hence, I replace them
with parametric Kexible functional forms (polynomials) in the model’s state variables.
Then, I estimate the parameters that characterize the Kexible functional forms jointly
with the model’s structural parameters.
After substituting the Kexible functional form for the future component, the model

bears some resemblance to the model (Hotz and Miller, 1988) used to study female life
cycle labor supply and fertility. In that paper, their approach is to specify and estimate
parametric index functions that have as arguments the model’s state variables, and
that can consequently be interpreted as approximations to some underlying structural
model’s decision rules. Their approach is robust with respect to both the nature of
expectations and period return functions, in the sense that the underlying individual
decision problem is not, and need not be, speci0ed in their procedure.
The present model is also related to a static (Roy, 1951) selection model augmented

to include nonpecuniary eBects on decisions (as in Heckman and Sedlacek, 1986).
However, the fact that F(·) in (15) is common across alternatives implies that the
parameters associated with the nonpecuniary eBects are held 0xed across alternatives,
and this restriction is not typically invoked in the estimation of static selection models.
In addition, it turns out that the links between choices and states implied by the laws of
motion of the state variables suggest restrictions on the future component’s arguments. 7

7 See Geweke et al. (2001) for additional discussion on this point.
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It is important to emphasize that, as a practical matter, the distinction between the
parameters that characterize Ut and those that characterize F can be arbitrary. This dif-
0culty has at its root the identi0cation problem pointed out by Rust (1994), which ap-
plies to virtually all dynamic models that economists study and, in the present context,
implies that it is not generally possible to nonparametrically separately identify Ut and
F . Nevertheless, Geweke and Keane (1999) present results from a Monte Carlo study
that demonstrates the parameters of Ut can be recovered well with their approach when
Ut is correctly speci0ed (see also the Monte Carlo results reported in Geweke et al.,
2001). Because I cannot be sure that Ut has been correctly speci0ed in the present
case, the structural estimates that I report should be viewed with caution. In particular,
one should be aware that policy analysis based on my structural estimates might be
misleading. 8

3. Bayesian inference

3.1. Speci-cation of functional forms

This section speci0es parametric forms for the functions that appear in (15) and
(9)–(14). The wage equation is speci0ed in (1), and will not be repeated here. Also,
since the method of inference does not require me to solve the dynamic programming
problem, it is not necessary to specify the state-contingent terminal values B(·) that
appear in (13). If desired, inference about these values could be derived from the
estimated future component. This leaves to be speci0ed the utility function, future
component and savings rule.

3.1.1. Utility function
The total amount of time available to the agent is set to unity. Accordingly, assuming

there are 112 nonsleep hours available per week, an agent who works full-time spends
36% of their nonsleep hours in market work. I use a Kexible variation of translog
preferences that excludes a linear leisure term. This is an identifying restriction, as it
would be perfectly collinear with alternative speci0c intercepts that appear in the future
component. The utility function is:

U ∗
t (cj; j; j−1; �j) = #∗0 (j; j−1; t) + #∗1 log(cj) + #∗2 log(cj)

2 + #∗3 t log(1− 0:36hj)

+ #∗4 log(cj) log(1− 0:36hj) + #∗5 t log(1− 0:36hj)2

+ #∗6 t
2 log(1− 0:36hj) + �j (16)

8 Note that one could abandon the structural interpretation entirely and, as in Hotz et al. (1988), view the
procedure as estimating reduced form decision rules.
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Here, #∗0 (j; j−1; t) accounts for nonstochastic preference eBects not easily expressed in
terms of log leisure and log consumption, as follows.

#∗0 (j; j−1; t) =C∗
1 %(t ¿ 1 and j 
= j−1 and j 
= 4) + C∗

2 %(t = 1 and j 
= 4)

+&∗
1hj(t + 1) + &∗

2%j=1& t=1 + &∗
3%j=2& t=1: (17)

Here, % denotes an indicator function that takes the value one if the stated condition
is true, and zero otherwise, and note that t = age− 16. C∗

1 and C∗
2 are transition costs

to choosing diBerent hours alternatives across consecutive periods, although I assume
there is no cost to choosing not to work. Note that C∗

2 is an age 17 transition cost, and
I also include age 17 preference eBects in the terms &∗

2 , &
∗
3 (the analogous eBect on the

preference for overtime is excluded as for identi0cation purposes). The reason for these
eBects is that at age 17 young men are likely living at home, and this may inKuence
their ranking of alternatives. Finally, regressors in hj and thj allow for additional hours
eBects. Since linear hours terms are not identi0ed, I impose the restriction that the
coeJcients of these terms are identical, and include the single regressor hj(t + 1).

3.1.2. The future component
While people are not restricted to a particular expectation mechanism, it is useful

to specify the arguments of the future component in a way that is consistent with the
laws of motion of the underlying behavioral model. For example, contemporaneous
realizations of serially independent stochastic variables, such as wealth and preference
shocks, contain no information relevant for forecasting future outcomes, and so should
not enter the arguments of the future component’s Kexible functional form. Also, since
the preference shocks are serially uncorrelated, their contemporaneous realizations hold
no information useful for predicting future outcomes and so they should not enter the
future component’s regressors.
The model implies F(snt ; j; anjt) has arguments in period t′s choice (since that is

period (t+1)′s lagged choice, which is payoB relevant) and the terms (t+1); xnt+hj; Ent ,
Ry(n; t)aj, and �nt . The interpretation is that peoples’ predictions about the eBect their
current choice will have on their future outcomes depend on the state they expect to
realize the next period, conditional on their current state and choice. 9

In order to accommodate a wide class of expectation mechanisms I choose to model
the future component as a high order polynomial, as follows (the n and t subscripts
are suppressed for clarity).

F∗(s; j; aj; '∗) = '∗
0%j=1 + '∗

1%j=2 + '∗
2%j=3 + '∗

3%j=4

+ '∗
4 (t + 1) + '∗

5Ry(n; t)aj + '∗
6 (x + hj) + '∗

7�+ '∗
8E

+ '∗
9 (t + 1)2 + '∗

10(Ry(n; t)aj)2 + '∗
11(x + hj)2 + '∗

12(�)
2

+ '∗
13E

2 + '∗
14(t + 1)Ry(n; t)aj + '∗

15(x + hj)(t + 1)

9 One way to think about this is that I impose the restriction that the information relevant to agents is
consistent with the model, but then do not impose strong restrictions on the way they use this information
to form forecasts.
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+ '∗
16(t + 1)�+ '∗

17(t + 1)E + '∗
18Raj(x + hj)

+ '∗
19Ry(n; t)�aj + '∗

20Ry(n; t)ajE + '∗
21(x + hj)�+ '∗

22(x + hj)E

+ '∗
23�E + '∗

24(t + 1)3 + '∗
25(x + hj)3 + '∗

26E
3

+ '∗
27(t + 1)2(x + hj) + '28(t + 1)2E + '∗

29(t + 1)(x + hj)2

+ '∗
30(t + 1)E2 + '∗

31(x + hj)2E + '∗
32(x + hj)E2

+ '∗
33(x + hj)(t + 1)E: (18)

Here, % is an indicator function that takes value one if the stated condition is true, and
zero otherwise. I assume that agents’ expectations are such that their future component
lies along this Kexible functional form.

3.1.3. The savings rule
I assume the savings decision rule is a Kexible functional form in current wealth A,

current age t, market experience x, level of education E and oBered wage w,

a(s; j|() = (1 + (2hjwt + (3E + (4(xt + hj) + (5t + (6At (19)

so long as this level of savings is consistent with positive consumption, and does not
exceed greater than one-half of the total resources held by the young man. If (19)
leads to nonpositive consumption then consumption’s value is set to 100 dollars, and
savings accordingly de0ned. If (19) exceeds half of total 0nancial resources (the sum
of wealth and current income) then savings is set to one-half of total resources, and
consumption de0ned accordingly.

3.2. Distributional assumptions

The stochastic nonlabor income �, the identically and independently distributed wage
innovations u, the 0rst period wage shock 1, and the taste for leisure shocks � have
distributions:

�nt ∼ N(0; )2
�); (20)

unt ∼ N(0; )2
u); (21)

n1 ∼ N(0; )2
u=(1− �2)); (22)

{�njt}j=1;4 ∼ N(0; +�); (23)

where each )2 denotes a variance, and +� is a symmetric, positive de0nite matrix.

3.3. Identi-cation

Labor supply decisions depend on relative alternative valuations. Consequently, the
model is not identi0ed in levels. Identi0cation is achieved in the usual way by working
with the following diBerenced system.

znjt(snt) = Ṽ j(snt)− Ṽ 4(snt) j∈{1; 2; 3}; (24)
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where Ṽ j(snt) = Vj(snt)=(+&(1; 1)+ +&(4; 4)− 2+&(1; 4))1=2. Now de0ne

)̃2 = (+&(1; 1) + +&(4; 4)− 2+&(1; 4)): (25)

Then, suppressing n and t subscripts, the corresponding utility function diBerences are,
for j = 1; 2; 3,

(U ∗
t (cj; j; j−1; �j)− U ∗

t (c4; 4; j−1; �4)))̃−1

= #0(j)− #0(4) + #1(log(cj)− log(c4)) + #2(log(cj)2 − log(c4)2)

+ #3t log(1− 0:36hj) + #4 log(cj) log(1− 0:36hj)

+ #5t log(1− 0:36hj)2 + #6t2 log(1− 0:36hj) + .j; (26)

where #i = #∗i )̃
−1, .j = (�j − �4))̃−1, {.j} ∼ N(0; +.), var(.1) = 1, and

#0(j)− #0(4) = C1%(·) + C2%(·) + &1hj(t + 1) + &2%j=1& t=1 + &3%j=2& t=1: (27)

Here, Ci = C∗
i )̃

−1 (i = 1; 2), and &i = &∗
i )̃

−1, for i = 1; 2; 3.
Nobody in my sample chooses overtime hours at age 17. Consequently, &2, &3

and C2 are not globally separately identi0ed by the available data. (C2 needs to be
suJciently large to ensure nobody chooses overtime, and then &2 and &3 can be
chosen to ensure the appropriate fraction chooses each of the three other alternatives.)
I achieve identi0cation by imposing a diBuse but proper prior on the transition cost
C2.
For notational ease, denote the diBerenced utility function’s regressor structure by

2, and the entire set of utility function parameters by #, so that

(U ∗
t (cnjt ; j; jn; t−1; �njt)− U ∗

t (cn4t ; 4; jn; t−1; �n4t)))̃−1 ≡ 2′
njt#+ .njt : (28)

Next de0ne

Fj(snt) ≡ (F∗(snt ; j; anjt)− F∗(snt ; 4; an4t)))̃−1:

The arguments that remain in the diBerenced future components are described in
Appendix A. Denote by ' the coeJcients of the diBerenced future component’s
regressors, and let 3 be the associated regressor matrix (composed of polynomials
in the state-variables,) so that

Fj(snt) =3′
njt' (j = 1; 2; 3): (29)

It is worthwhile to emphasize again that the structure of 3 is derived from the laws
of motion, and that this feature distinguishes this framework from the usual selection
model.
Using the above notation, we write (24) as

znjt =2′
njt#+3′

njt'+ .njt

=Q′
njt5+ .njt ; (30)

where Qnjt = [2′
njt ; 3

′
njt]

′, and 5= [#′; '′]′.
It is important to conclude this section with a comment on measurement error in

the wage and wealth data. Measurement error variance is identi0ed oB the fact that
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measurement error realizations do not aBect the actual wage but only aBect the wage
observed by the econometrician. Hence, measurement error does not aBect decisions,
while shocks to actual wages and wealth inKuence both decisions and observed wages.
However, since it is consistently found that wages and wealth have a very small eBect
on choices, measurement error identi0cation typically requires a substantial amount of
data. The data set I use in this study, as noted in Section 4, is rather small and includes
many missing observations (about half of the wealth data is missing). Consequently,
measurement error variances are only very weakly separately identi0ed from the vari-
ances of the structural disturbances. Accordingly, this paper presents results for the
case when measurement error variance is set to zero. Failure of this assumption could
lead to downward biased estimates of the wage and wealth substitution elasticities, and
a masking of the eBect of market experience, in particular, on wages.

3.4. The joint posterior distribution

Before developing the desired joint posterior distribution, upon which Bayesian in-
ference is based, 0rst substitute out consumption using (6) the budget constraint. Terms
in log(cnjt) then become terms in log(wnthj +Ant − a(snt ; j|()). Since these terms enter
the 2 regressor structure, it follows that Qnjt depends on ( in a nonlinear way. In ad-
dition, Qnjt depends on functions of wages and wealth. It is worthwhile to emphasize
these facts as they play important roles in the development of the likelihood and the
subsequent discussion of the Gibbs sampling algorithm. However, to reduce notational
burden, I will suppress any direct indication of the dependence of Qnjt on functions
of wages and wealth and the parameters (. Also for notational ease, below I write Rnt

instead of Ry(n; t).
Next, it is convenient to work with precision matrices. De0ne these by 10

hu =
1
)2
u
; h� =

1
)2
�
; H. = +−1

. :

Finally, de0ne the choice indicator

dnjt =

(
1 if j was chosen by n at age t

0 otherwise

)
:

The posterior distribution of interest is the joint distribution of the parameters, latent
variables and unobserved variables conditional on all of the observed quantities. Let
Au indicate the vector of all unobserved wealth values, and let Ao denote the vector
of all observed quantities. De0ne the analogous vectors for unobserved and observed
wages. Then the joint posterior density of interest can be expressed as

p(Au;Wu; {{znjt}j=1;2;3}nt ; �; �; 5; (; hu; h�; H.|Ao;Wo; {xnt ; t; En; (dnjt)j=1;2;3}nt):
(31)

10 Because the notation is standard, and because no confusion should arise, for the remainder of this section
and the next I use h and H to denote precisions instead of market hours.
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Using Bayes’ theorem, it is easy to show that this density is proportional to

p({Ant ; wnt ; {znjt}j=1;2;3}nt |�; �; 5; (; hu; h�; H.; {xnt ; t; En; (dnjt)j=1;2;3}nt)
×p(�; �; 5; (; hu; h�; H.): (32)

To develop this joint posterior, consider the 0rst distribution in the product that de0nes
(32). Recalling that I treat the initial wealth observation as given, this distribution can
be factored into the product of the following conditional distributions.

p({An; t ; wnt ; {znkt}k=1;2;3}nt |·)
=p({{znkt}k=1;2;3}nt |{wnt; Ant ; ·}nt)p({An; t¿1}nt |{wnt}nt ; {An1}n; ·)

×p({wnt}nt |·): (33)

Using the distributional assumptions made above, the 0rst conditional distribution on
the right-hand side is

p({znjt}j=1;2;3|{wnt; Ant ; ·})

˙
∏
n; t

|H.|1=2 exp


−1

2




{zn1t − Q′
n1t5}

{zn2t − Q′
n2t5}

{zn3t − Q′
n3t5}




′

H.




{zn1t − Q′
n1t5}

{zn2t − Q′
n2t5}

{zn3t − Q′
n3t5}






×I({znjt ; dnjt}j=1;2;3); (34)

where

I({znjt ; dnjt}j=1;2;3) =




1 if dnjt = 1 & znjt ¿ 0 & (znjt ¿ znkt)(j 
= k)

or

1 if (∀j)(dnjt = 0 & (znjt ¡ 0))

or

0 otherwise




: (35)

The indicator function takes value zero unless the values for all zj are consistent with
observed choices. If a market alternative k is chosen, zk must be positive and greater
than the other values {zj}j �=k , while if ‘home’ is chosen all zj must be negative.

The distribution of wealth given wages and choices is:

p({An; t¿1}|{wnt; ·})˙
∏
n; t¿1

h1=2� exp
{
−h�

2
(Ant − Rn; t−1a(n; j∗t−1; t − 1|())2

}
;

(36)

where a(n; j∗t−1; t − 1) denotes the level of savings by person n who chose alternative
j∗t−1 in period t − 1, and R is the real gross return on that savings.
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Finally, the marginal distribution of wages is simply

p({wnt}|{·})˙ (hu(1− �2))N=2
∏
n

1
wn1

exp
[−hu(1− �2)

2
(logwn1 − X ′

n1�)
2
]

×
∏
n;t¿2

h1=2u
1
wnt

exp
{
−hu

2
(logwnt−� logwnt−1−X ′

nt�+�X ′
nt−1�)

2
}

:

Next, consider the second term in expression (32), which is the prior distribution
of the model’s parameters. I assume Kat and unbounded priors, except as follows.
I adopt uninformative priors p(hu) ˙ h−1

u , p(h�) ˙ h−1
� and p(H.) ˙ |H.|−2

(see, e.g., Zellner, 1971, Section 8.1). Priors for the savings function’s parameters
are (1 ∼ U [0; 4000], (2 ∼ U [ − 0:25; 0:25], (j ∼ U [ − 500; 500] for j = 3; 4; 5, and
(6 ∼ U [ − 0:6; 0:6]. Finally, I assume � is uniformly distributed over [ − 1; 1]. Use
of these boundary restrictions seemed to improve the performance of the numerical
algorithm, and Table 10 shows that the marginal posterior distributions generally lie
well within the prior. Finally, as an identifying assumption, the age 17 transition cost
C2 is posited to be distributed normally with a mean of zero and a standard deviation
of 1000.
Hence, the joint posterior distribution of interest (31) is proportional to

|H.|−2h−1
� h−1

u I(I� exp{−(C2=1000)2=2}

×
∏
n; t

|H.|1=2 exp


−1

2




{zn1t−Q′
n1t5}

{zn2t−Q′
n2t5}

{zn3t−Q′
n3t5}




′

H.




{zn1t−Q′
n1t5}

{zn2t−Q′
n2t5}

{zn3t−Q′
n3t5}




 I({znjt ; dnjt}j)

×
∏
n; t¿1

h1=2� exp
{
−h�

2
(Ant − Rn; t−1a(n; j∗t−1; t − 1|())2

}

× (hu(1− �2))N=2
∏
n

1
wn1

exp
[−hu(1− �2)

2
(logwn1 − X ′

n1�)
2
]

×
∏
n;t¿2

h1=2u
1
wnt

exp
{
−hu

2
(logwnt − � logwnt−1 − X ′

nt� + �X ′
nt−1�)

2
}

: (37)

I show in Appendix B that this distribution is proper.

3.5. The Gibbs sampler

To construct the marginal posterior distributions of the model’s parameters analyt-
ically is diJcult. One reason is the joint posterior is nonstandard, and to construct
marginal distributions it would be necessary to carry out integrations over all unob-
served wage and wealth values. Instead, I choose to approximate the marginal posteriors
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using Gibbs sampling 11 with data augmentation (see, e.g., Tanner and Wong, 1987).
Tierney (1994) proved that, under weak regularity conditions, draws from an appropri-
ate set of conditional posterior distributions may be conducted so that they converge
to the joint posterior distribution. It is easy to show that the regularity conditions hold
in the present case.

3.5.1. The algorithm
My Gibbs sampling-data augmentation algorithm involves 10 steps. For notational

convenience, I assume the sample consists of N agents, each of whom is observed
over T periods. The Gibbs sampler proceeds as follows. 12

1. Draw unobserved wages.
2. Draw unobserved wealth.
3. Draw h�, the precision of the wealth shock.
4. Draw ;, the coeJcients of the savings function.
5. Draw �, the log-wage equation coeJcients.
6. Draw �, the correlation coeJcient.
7. Draw hu, the precision of the log-wage equation shocks.
8. Draw znjt , the relative alternative valuations.
9. Draw ' and #, the coeJcients of the future component and utility function.

10. Draw H., the preference shocks’ precision matrix.

3.5.1.1. The wage draw. The distribution of wnt (T ¿ t¿ 1), conditional on all of
the other parameters and variables, is given by

p(wnt)˙
1
wnt

exp
{
−hu

2
(logwnt − � logwnt−1 − X ′

nt� + �X ′
nt−1�)

2
}

× exp
{
−hu

2
(logwn; t+1 − X ′

n; t+1� − � logwnt + �X ′
nt�)

2
}

× exp
{
−h�

2
(An; t+1 − Rntan;j∗nt ;t)

2
}

×exp
{
−1
2
({znjt − Q′

njt5}j=1;2;3)′H.({znjt − Q′
njt5}j=1;2;3)

}
: (38)

The 0rst two lines derive from the marginal distribution of wages, in the third line
wages enter the period t savings decision, and the fourth line includes functions of
wages in Qnjt . Recall that Qnjt is de0ned in (30) and discussed further in the 0rst
paragraph of Section 3.4.

11 A reader not interested in the computational details can skip directly to section four.
12 I coded the Gibbs sampler software in FORTRAN 77, and used the IMSL numerical libraries extensively.

The software is available from the author on request.
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To obtain the distribution for wn1 requires replacing the 0rst line of (38) with
1=wn1 exp[− (hu(1− �2)=2)(logwn1 −X ′

n1�)]. The distribution of wnT omits the second
and third lines of (38).
The wage distribution is nonstandard, since wages enter (38) in both levels and

logs. To sample from the wage distribution I use rejection methods (see, e.g., Geweke
(1992), Appendix A). For instance, when 1¡t¡T , my approach is to draw a can-
didate wage w̃nt from the Gaussian source distribution implied by the 0rst two lines
in (38). The draw is accepted with probability proportional to the product of the last
two lines in this expression. 13

3.5.1.2. The wealth draw. Given all other parameters and variables, Ant (T ¿ t¿ 1)
has distribution:

p(Ant)˙ exp
{
−h�

2
(An; t+1 − Rntanj∗nt t)

2
}
exp

{
−h�

2
(Ant − Rntanj∗n; t−1t−1)2

}

× exp
{
−1
2
({znjt − Q′

njt5}j=1;2;3)′H.({znjt − Q′
njt5}j=1;2;3)

}
(39)

Ant enters the 0rst exponential as an argument of anj∗nt t , and the third exponential in
Qnjt . The distribution of An1 omits the second exponential of (39), and the distribution
of AnT omits the 0rst exponential.

I sample from this distribution with rejection methods. For instance, when 1¡t6T ,
I use the source distribution exp{− h�

2 (Ant−Rntanj∗n; t−1t−1)2}, and accept each draw with
probability proportional to the product of the remaining two terms when evaluated at
the candidate draw. 14

3.5.1.3. The ( draw (savings function parameters). Given values for all the other
parameters and variables, the distribution of ( is given by

p(()˙ Xp(() exp


−1

2



{zn1t−Q′

n1t5}n; t
{zn2t−Q′

n2t5}n; t
{zn3t−Q′

n3t5}n; t




′

(H.⊗INT )



{zn1t−Q′

n1t5}n; t
{zn2t−Q′

n2t5}n; t
{zn3t−Q′

n3t5}n; t






×exp

{
−h�

2

∑
n; t¿1

(Ant − Rn; t−1a(n; j∗t−1; t − 1|())2
}

; (40)

where Xp denotes the uniform prior, and the 0rst exponential term is included since, as
noted above, the savings policy function appears in the regressors of Qnjt .
To sample from this distribution again use a rejection procedure. I draw the elements

of ( individually from their prior uniform distributions. Each draw is accepted with

13 An additional restriction imposed on unobserved wages was that they be no greater than 100,000. This
boundary restriction was useful for improving the performance of the Gibbs algorithm.
14 I imposed the additional restriction that unobserved wealth values are no less than −5000 and no greater

than 50; 000. I found that this boundary restriction improved the performance of the numerical algorithm.
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probability proportional to the right-hand side of (40) when evaluated at the candidate
draw.

3.5.1.4. The h� draw (precision of wealth shock). The conditional posterior for h�

is

p(h�)˙ h(N(T−1)−2)=2
� exp

{
−h�

2

∑
n; t¿1

(Ant − Rn; t−1anj∗n; t−1t−1)2
}

(41)

so that

h�

∑
n; t¿1

(Ant − Rn; t−1anj∗n; t−1t−1)2 ∼ %2N (T−1) (42)

which can be drawn directly.

3.5.1.5. The � draw (log-wage equation coe?cients). The conditional posterior
distribution of � is:

p(�)˙ exp

{
−hu

2

∑
n; t

(Y ∗
nt − X ∗

nt�)
2

}
; (43)

where

Y ∗
n1 = (1− �2)1=2 logwn1; (44)

Y ∗
nt = logwnt − � logwn; t−1 (t¿ 2); (45)

X ∗
n1 = (1− �2)1=2Xn1; (46)

X ∗
nt = Xnt − �Xn; t−1 (t¿ 2): (47)

I draw from the implied Gaussian distribution for � directly.

3.5.1.6. The � draw (productivity shock correlation coe?cient). The conditional
posterior distribution of � is

p(�)˙ %�∈[−1;1](1− �2)N=2 exp

[
−hu(1− �2)

2

∑
n

(logwn1 − X ′
n1�)

2

]

× exp

{
−hu

2

∑
n; t¿2

(Y ∗
nt − X ∗

nt�)
2

}

× exp
{
−1
2
({znjt − Q′

njt5})′j=1;2;3+
−1
. ({znjt − Q′

njt5})j=1;2;3

}
; (48)
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where Y ∗
nt and X ∗

nt (t¿ 2) are as de0ned above, the indicator function reKects the
prior imposed in Section 3.4, and the 0nal term enters because � enters the future
component regressors (see Appendix A), and thus Qnjt . To draw from this distribution
I used rejection sampling. I draw candidate �̃ from the Gaussian distribution

p(�̃)˙ exp

{
−hu

2

∑
n; t¿2

(Y ∗
nt − X ∗

nt�)
2

}
(49)

and accept candidate �̃ with probability proportional to the product of the remaining
terms of (48) when evaluated at the candidate draw.

3.5.1.7. The hu draw (log-wage error’s precision). The conditional posterior for hu

is

p(hu)˙h(NT−2)=2
u exp



−hu

2



(1−�2)

∑
n

(logwn1−X ′
n1�)

2

+
∑
n; t¿1

(logwnt−� logwnt−1−(X ′
nt−�X ′

nt−1)�)
2






(50)

so that

huS∗ ∼ %2NT ; (51)

where S∗ is the sum of squares in the inner brackets of (50).

3.5.1.8. The {znjt}j=1;3 draw (relative alternative values). Given values for all the
other parameters and variables, the conditional posterior distribution of {znjt}j=1;2;3 is
as follows.

p({znjt}j=1;2;3)˙
∏
n; t

|H.|1=2 exp



−1
2




{zn1t − Q′
n1t5}

{zn2t − Q′
n2t5}

{zn3t − Q′
n3t5}




′

× H.




{zn1t − Q′
n1t5}

{zn2t − Q′
n2t5}

{zn3t − Q′
n3t5}






I({znjt ; dnjt}j=1;2;3) (52)

Clearly, {znjt}j=1;2;3 follows a truncated multivariate Gaussian distribution. Following
Geweke (1991), I draw the znjt one-by-one. This reduces the problem to sampling from
three truncated, univariate Gaussian distributions, which is easily accomplished using
standard inverse CDF techniques.
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3.5.1.9. The ' and # draw (future component and utility function parameters).
Given values for all the other parameters and variables, ' and # can be drawn as a
block. Recalling that 5= [#′; '′]′, the draw is made from the following distribution:

p(5)˙ exp
{
−1
2
(C2=1000)2

}
exp


−1

2




{zn1t − Q′
n1t5}n; t

{zn2t − Q′
n2t5}n; t

{zn3t − Q′
n3t5}n; t




′

×(H. ⊗ INT )




{zn1t − Q′
n1t5}n; t

{zn2t − Q′
n2t5}n; t

{zn3t − Q′
n3t5}n; t




 : (53)

Hence, leaving aside the prior, the joint density of ' and # is Gaussian,

p(5)˙ N((Q′(H. ⊗ INT )Q)−1Q′Z; (Q′(H. ⊗ INT )Q)−1); (54)

where Z=




{zn1t}nt
{zn2t}nt
{zn3t}nt


 and Q=




{Qn1t}nt
{Qn2t}nt
{Qn3t}nt


. I draw from this distribution, and accept

with probability exp{− 1
2 (C̃2=1000)2}, where C̃2 is the current age 17 transition cost

draw.

3.5.1.10. The H. draw (precision matrix for preference shocks). In this step I draw
H. and impose the scale normalization that +.(1; 1)=1. An appropriate way to do this
is described in Geweke et al. (1994) and is as follows. First, note that unscaled H.

has a distribution with kernel

|H.|(NT−4)=2 exp


−1

2




{zn1t−Q′
n1t5}n; t

{zn2t−Q′
n2t5}n; t

{zn3t−Q′
n3t5}n; t




′

(H.⊗INT )




{zn1t−Q′
n1t5}n; t

{zn2t−Q′
n2t5}n; t

{zn3t−Q′
n3t5}n; t




 :

(55)

Hence, H. follows a Wishart distribution, or

H. ∼ W (S−1; NT );

where

S =
∑
n; t




{zn1t − Q′
n1t5}

{zn2t − Q′
n2t5}

{zn3t − Q′
n3t5}






{zn1t − Q′
n1t5}

{zn2t − Q′
n2t5}

{zn3t − Q′
n3t5}




′

:

It is easy to draw H. from the Wishart distribution, and then invert this matrix to form
+.. Finally, +. and the coeJcients of the utility function and future component regres-
sors 5 are appropriately normalized. The results I report are based on the normalized
coeJcient values.
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4. The data

The data are from the 1979 youth cohort of the National Longitudinal Surveys of
Labor Market Experience (NLSY). The NLSY consists of 12686 individuals, about
half of whom are male, that were 14–21 years of age as of January 1, 1979. The
sample consists of a core random sample, and an oversample of blacks, Hispanics,
poor whites, and the military. This work is based on the whites in the core sample
that were 16 years of age or less as of January, 1979. I follow each individual in the
subsample from the time they leave school through 1993. Thus, there are at most 15
annual observations available for each individual in the sample.
Estimation of the model requires information on annual hours worked, annual in-

come, and wealth for each individual. The NLSY includes the information needed to
obtain these quantities. However, because the model involves discrete labor-supply de-
cisions some de0nitional arbitrariness is unavoidable when assigning observations to
the model’s alternatives. I use the following de0nitions.
(1) Work: An individual was said to have worked part-time, 1000 annual hours, if

they reported 1–1500 h worked during the year. An individual was said to have worked
full-time, 2000 annual hours, if they reported 1501–2500 h worked during the year. An
individual was said to have worked overtime, 3000 annual hours, if they reported over
2500 h of work during the year. He is assumed to have remained at home otherwise.
(2) Real wage: The real annualized wage is determined by dividing the reported

real annual income by the number of reported annual hours and then multiplying by
2000.
(3) Wealth: Asset data is available only in years 1985–1990, and 1992–1993. When

available, I constructed the individual’s wealth position by subtracting a measure of
total reported debts from total reported assets. Total debt was determined by adding the
values of mortgages, back taxes, debts on farm or business, money owed on vehicles
and other debts that exceed $500. Total assets were found by adding the values of
residential property, savings accounts, farms or businesses, vehicles, and other assets
with worth that exceeded $500. 15

In my model labor market experience, education and age account for human capital.
Therefore, it is important to censor individuals that spend time in human-capital en-
hancing activities that are not accounted for by the model. In particular, all individuals
who spent any time in the military were censored from the sample. Also, because the
model treats school as exogenous, I begin to record individual observations in the year
following their 0nal year of school. Finally, to reduce the computational burden of
the numerical procedure, I censored from the sample all individuals with any missing
wealth information within the years 1985–1990 or 1992–1993.
(4) Real returns on savings: I construct this series by 0nding iy=(inKationy), where iy

is the 1-year t-bill rate available in year y (obtained from http://www.federalreserve.gov/

15 It is well known that wealth data includes a substantial amount of noise. In my case, the large variation
about age-speci0c means made eBective implementation of the estimation procedure diJcult. To help reduce
the inKuence of extreme values on the results I manipulated the asset data as follows. If individual n at age
t had an asset value Ant , and Ant �∈ [− 250t; 10000t], then I eliminated the observation from the sample.

http://www.federalreserve.gov/
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releases/H15/data/a/tbaa1y.txt), and inKationy is calculated from the cpi-urban price
index.
The 0nal panel includes 309 individuals and a total of 2524 observations. This panel

is small relative to other panels that have been used in the labor supply literature. There
are two points to note in this regard. First, I employ a Bayesian estimation procedure
so that inference is exact in small samples. Second, my panel is not atypical, in the
sense that, as I point out below, the behavior of the young men I observe is consistent
with well known stylized facts in male labor supply (see, e.g., Pencavel, 1986).

4.1. Summary statistics

Table 1 describes the choice distribution by age for the individuals in my panel.
Full-time work accounts for about 64% of overall choices, part-time another 13% and

Table 1
Hours choice distributions for white males ages 17–30

Choice Part-time Full-time Overtime Home Total

Age

17 6 2 0 1 9
66.67% 22.22% 0.00% 11.11% 100.00%

18 12 14 1 3 30
40.00% 46.67% 3.33% 10.00% 100.00%

19 39 52 5 4 100
39.00% 52.00% 5.00% 4.00% 100.00%

20 51 94 15 3 163
31.29% 57.67% 9.20% 1.84% 100.00%

21 33 119 29 1 182
18.13% 65.38% 15.93% 0.55% 100.00%

22 31 138 36 0 205
15.12% 67.32% 17.56% 0.00% 100.00%

23 24 150 44 2 220
10.91% 68.18% 20.00% 0.91% 100.00%

24 22 160 54 2 238
9.24% 67.23% 22.69% 0.84% 100.00%

25 19 169 56 2 246
7.72% 68.70% 22.76% 0.81% 100.00%

26 23 170 66 1 260
8.85% 65.38% 25.38% 0.38% 100.00%

27 13 181 76 2 272
4.78% 66.54% 27.94% 0.74% 100.00%

28 23 179 78 1 281
8.19% 63.70% 27.76% 0.36% 100.00%

29 15 128 67 1 211
7.11% 60.66% 31.75% 0.47% 100.00%

30 9 65 31 2 107
8.41% 60.75% 28.97% 1.87% 100.00%

Aggregate 320 1621 558 25 2524
12.68% 64.22% 22.11% 0.99% 100.00%

mailto:releases/H15/data/a/tbaa1y.txt
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Table 2
Transition rates of white males ages 17–30

Choice (t)

Choice (t − 1) Part-time Full-time Overtime Home

Part-time 0.381 0.527 0.068 0.025
Fulltime 0.070 0.813 0.115 0.003
Overtime 0.025 0.271 0.704 0.000
Home 0.565 0.087 0.087 0.261

Standard deviation of change in log annual hours: 0.31

overtime accounts for 22%, which is all but about 1% of the remainder. The frequency
of part-time choices declines monotonically to age 25, and then levels oB at around
8%. The frequency of ’Home’ also declines sharply after age 18, and never exceeds
2% from age 20 to 30. Working full-time and overtime become more common with
age. Full-time work is chosen by 22% of young men at age 17, moving to a high of
68% at age 23, and staying above 60% through age 30. Overtime is not an observed
choice at age 17, but overtime choices increase by between two and three percentage
points per year, leveling oB at about 30% at ages 29 and 30.
Previous empirical studies have found evidence of substantial idiosyncratic, year-to-

year hours changes (see, e.g., Card, 1994). The current panel reKects this 0nding:
the standard deviation of the change in log annual hours between consecutive years is
0.31. 16 Such year-to-year changes are described in Table 2, which reports the transition
rates from the row alternative at age t−1 to the column alternative at age t. On average,
full-time and overtime are chosen across consecutive years at rates of 81% and 70%,
respectively. This persistence is not found in part-time or home choices, which are
chosen consecutively with rates 38% and 26%, respectively. Among those who choose
part-time, 53% choose to work full-time the following year. Note that no one transitions
from overtime to home.
Table 3 records mean annual wages in terms of 1987 dollars. Wage data is not

available for the few individuals who are observed to work at age 17, and note this
implies that wage data is available in my panel beginning in 1981. Mean wages rise
monotonically from $9565 at age 18 to $21995 at age 30. Table 4 reports the aggregate
wealth statistics in terms of 1987 dollars. 17 As noted above, asset and debt data has
been collected only since 1985. Hence, the youngest men in the sample (age 14 in
1979) are age 20 when initial wealth information is collected. Mean wealth is smallest
at age 20 and has value $2257. It increases through age 24, where it peaks at $7549.
After age 24 mean wealth varies between $5400 and $7500 without any obvious pattern.

16 The standard deviation of the change in log annual hours was constructed by 0rst omitting all ‘home’
observations, and then forming the pooled series log(hnt =hn; t−1) for all young men n and ages t for which
the term was de0ned.
17 Statistics were calculated after the asset screen, as that is the data that my model attempts to explain.
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Table 3
Mean reala wage of white males ages 18–30

Age Mean wage Standard error Observations

18 9565 1445 25
19 10663 531 95
20 11849 783 158
21 13004 567 178
22 14089 729 203
23 16812 1454 217
24 18016 1174 235
25 18774 628 239
26 19133 597 255
27 19777 586 264
28 20418 606 272
29 21081 680 204
30 21995 1015 100

aBase year = 1987.

Table 4
Mean reala wealth of white males ages 18–30

Age Mean wealth Standard error Observations

18 — — —
19 — — —
20 2257 404 36
21 3772 413 93
22 4259 389 166
23 5386 454 170
24 7549 682 187
25 6631 743 175
26 7421 1022 146
27 5860 1054 124
28 7209 1182 123
29 5450 1268 151
30 7132 1919 77

aBase year = 1987.

4.2. Statistics by educational attainment

It is of interest to compare the choices, wages and wealth of individuals with diBerent
levels of education. I choose to group individuals according to educational attainment
as follows: 8–11 years, 12–15 years or 16 + years. This grouping was chosen with
an eye towards highlighting the college graduation eBect (16 + years of education)
and the high school graduation eBect (12–15 years of education). My panel contains
633 person–period observations at the lowest level, 1649 observations for those who
graduated from high school but not college, and 242 for those who received at least
an undergraduate degree.
Table 5A–C describe the life-cycle choice distributions for each educational group.

Although the sample sizes are quite small, one feature of the data is that over 10%
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Table 5
Hours choice distributions for white males ages 17–30

Choice Part-time Full-time Overtime Home Total

Age
(a) 8–11 years of education
17 6 2 0 1 9

66.67% 22.22% 0.00% 11.11% 100.00%
18 12 12 1 3 28

42.86% 42.86% 3.57% 10.71% 100.00%
19 21 18 1 2 42

50.00% 42.86% 2.38% 4.76% 100.00%
20 21 25 5 1 52

40.38% 48.08% 9.62% 1.92% 100.00%
21 12 36 8 0 56

21.43% 64.29% 14.29% 0.00% 100.00%
22 12 36 8 0 56

21.43% 64.29% 14.29% 0.00% 100.00%
23 11 39 6 0 56

19.64% 69.64% 10.71% 0.00% 100.00%
24 5 38 10 2 55

9.09% 69.09% 18.18% 3.64% 100.00%
25 6 36 11 1 54

11.11% 66.67% 20.37% 1.85% 100.00%
26 9 34 11 1 55

16.36% 61.82% 20.00% 1.82% 100.00%
27 2 39 12 1 54

3.70% 72.22% 22.22% 1.85% 100.00%
28 7 37 10 0 54

12.96% 68.52% 18.52% 0.00% 100.00%
29 5 27 11 0 43

11.63% 62.79% 25.58% 0.00% 100.00%
30 2 13 4 0 19

10.53% 68.42% 21.05% 0.00% 100.00%

Aggregate 131 392 98 12 633
20.69% 61.93% 15.48% 1.90% 100.00%

(b) 12–15 years of education
17 0 0 0 0 0

0.00% 0.00% 0.00% 0.00% 100.00%
18 0 2 0 0 2

0.00% 100.00% 0.00% 0.00% 100.00%
19 18 34 4 2 58

31.03% 58.62% 6.90% 3.45% 100.00%
20 30 69 10 2 111

27.03% 62.16% 9.01% 1.80% 100.00%
21 21 83 21 1 126

16.67% 65.87% 16.67% 0.79% 100.00%
22 19 100 28 0 147

12.93% 68.03% 19.05% 0.00% 100.00%
23 12 103 35 2 152

7.89% 67.76% 23.03% 1.32% 100.00%
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Table 5 (continued)

Choice Part-time Full-time Overtime Home Total

24 15 103 42 0 160
9.38% 64.38% 26.25% 0.00% 100.00%

25 12 109 41 1 163
7.36% 66.87% 25.15% 0.61% 100.00%

26 13 107 47 0 167
7.78% 64.07% 28.14% 0.00% 100.00%

27 10 111 55 1 177
5.65% 62.71% 31.07% 0.56% 100.00%

28 11 111 55 1 178
6.18% 62.36% 30.90% 0.56% 100.00%

29 9 80 44 1 134
6.72% 59.70% 32.84% 0.75% 100.00%

30 6 44 22 2 74
8.11% 59.46% 29.73% 2.70% 100.00%

Aggregate 176 1056 404 13 1649
10.67% 64.04% 24.50% 0.79% 100.00%

(c) 16 or more years of education
17 0 0 0 0 0

0.00% 0.00% 0.00% 0.00% 100.00%
18 0 0 0 0 0

0.00% 100.00% 0.00% 0.00% 100.00%
19 0 0 0 0 0

0.00% 0.00% 0.00% 0.00% 100.00%
20 0 0 0 0 0

0.00% 0.00% 0.00% 0.00% 100.00%
21 0 0 0 0 0

0.00% 0.00% 0.00% 0.00% 100.00%
22 0 2 0 0 2

0.00% 100.00% 0.00% 0.00% 100.00%
23 1 8 3 0 12

8.33% 66.67% 25.00% 0.00% 100.00%
24 2 19 2 0 23

8.70% 82.61% 8.70% 0.00% 100.00%
25 1 24 4 0 29

3.45% 82.76% 13.79% 0.00% 100.00%
26 1 29 8 0 38

2.63% 76.32% 21.05% 0.00% 100.00%
27 1 31 9 0 41

2.44% 75.61% 21.95% 0.00% 100.00%
28 5 31 13 0 49

10.20% 63.27% 26.53% 0.00% 100.00%
29 1 21 12 0 34

2.94% 61.76% 35.29% 0.00% 100.00%
30 1 8 5 0 14

7.14% 57.14% 35.71% 0.00% 100.00%

Aggregate 13 173 56 0 242
5.37% 71.49% 23.14% 0.00% 100.00%
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Fig. 1. Labor supply by age and education.

of men aged 17 and 18 who have neither completed nor are attending high school
choose not to work, and still 5 remain home at age 19. For young men who receive
their high school (but not college) diploma, over 3.5% choose not to work at age 19.
On the other hand, every young man with at least an undergraduate degree chooses to
work after graduation. Table 5A–C suggest that younger and less educated men tend
to provide less labor than older, more educated men. Fig. 1 is a plot of Table 5A–C,
and makes clear that within each educational group aggregate hours increase with age.
Table 6A–C describe the life-cycle wage path within each educational group.

Fig. 2 is a plot of Table 6A–C. After age 22, average wages are greater for those
with a high school education, and greater yet for those holding a college diploma.
Although college graduates may have higher wage growth than others, most of the
wage disparity seems attributable to a level eBect: at both ages 22 and 30, a college
graduate earns about $10000 more than a nongraduate. Interestingly, at age 30, wages
of high school graduates are only $400 greater than nongraduates. This diBerence is
$1000, in favor of the nongraduates, at age 22.
Table 7A–C describe the life-cycle wealth pro0le for young men by educational

group. Fig. 3 is a plot of Table 7A–C. As with wages, wealth is positively related to
education. Average wealth is positive over the sample period for each group. However,
only the high school (no college) group exhibits evidence of wealth growth. Average
wealth for high school—but not college—graduates grows from $2500 at age 18 to
$7500 at age 22, and then remains near that value. The mean wealth of college grad-
uates Kuctuates around $10000, while the mean wealth of the least educated group
evolves about a mean of $2500.

5. Marginal posterior distributions and !t

The model includes 62 parameters: 18 coeJcients for the wage equation, 11 for the
utility function, six for the savings function, nine variance or covariance terms and
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Table 6
Mean reala wages of white males ages 18–30

Age Mean wage Standard error Observations

(a) 8–11 years of education
18 9747 1560 23
19 10254 777 39
20 13154 2174 50
21 13504 1260 55
22 14667 2214 56
23 14612 957 56
24 14339 963 53
25 16037 869 52
26 16481 981 53
27 16343 1123 50
28 17631 1300 53
29 18380 1007 42
30 20246 2488 18

(b) 12–15 years of education
18 7465 2412 2
19 10949 724 56
20 11244 552 108
21 12780 599 123
22 13726 555 145
23 17435 2076 149
24 18625 1667 159
25 18422 762 158
26 18580 674 164
27 19430 676 173
28 19426 681 171
29 20303 865 129
30 20656 1057 69

(c) 16+ years of education
18 — — —
19 — — —
20 — — —
21 — — —
22 24219 781 2
23 19335 2478 12
24 22274 2114 23
25 25600 2288 29
26 25221 2138 38
27 25426 1787 41
28 27029 1669 48
29 27561 1766 33
30 31521 3303 13

aBase year = 1987.
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Fig. 2. Wage by age and education.

18 coeJcients for the future component. Only 61 coeJcients were free to vary, since
+.(1; 1) was 0xed at one.
The marginal posterior distributions described below are based on the last 8000

cycles of a 14,000 cycle Gibbs sampling run. I assessed convergence by looking at
plots of the draw sequences, and by using a split-sequence convergence diagnostic
suggested by Gelman (1996). Both the visual and more formal statistical evidence
suggest that convergence had occurred by cycle 6000.

5.1. Marginal posterior distributions

The full set of Gibbs draws for selected wage equation coeJcients, the productivity
shock variance and the wage equation’s correlation coeJcient are reported in Fig. 4.
The marginal posterior densities derived from the 0nal 8000 draws are provided in
Fig. 5. The mean of each posterior has the expected sign. In particular, education,
experience, lagged hours, and age each have positive mean, while age squared has a
negative posterior mean. The age coeJcient’s distribution lies entirely to the right of
zero and has a plausible mean of 0.12. The density of age squared has substantial mass
approaching zero from the left, and none to the right due to the prior.
The marginal posterior distribution of the coeJcient on total previous work experi-

ence lies strictly to the right of zero with mean 0.034. About 76% of the distribution
of once-lagged hours lies to the right of zero, and has mean 0.015. Hence, evaluated
at posterior means, the wage elasticity of recent work experience is about 50% greater
than that of other work experience. This 0nding is qualitatively consistent with the
results from studies of female labor supply reported by Altug and Miller (1998) and
Miller and Sanders (1997). Quantitatively, Altug and Miller (1998), for example, found
a wage elasticity of about 0.2 for once-lagged hours, and 0.05 for hours twice lagged.
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Table 7
Mean reala wealth of white males ages 18–30

Age Mean wealth Standard error Observations

(a) 8–11 years of education
18 — — —
19 — — —
20 1508 581 9
21 4561 806 30
22 3596 744 47
23 2783 467 41
24 5873 1169 42
25 3584 829 41
26 1829 1270 35
27 2638 1935 26
28 6052 2119 26
29 1309 1614 35
30 448 1816 15

(b) 12–15 years of education
18 — — —
19 — — —
20 2506 493 27
21 3396 466 63
22 4485 461 117
23 6194 589 120
24 7484 871 126
25 7392 1021 118
26 7639 1264 93
27 6374 1307 90
28 6292 1431 78
29 6483 1714 99
30 8513 2437 57

(c) 16+ years of education
18 — — —
19 — — —
20 — — —
21 — — —
22 6600 1344 2
23 6477 1727 9
24 11689 1971 19
25 8823 1682 16
26 17172 3349 18
27 10557 1979 8
28 12559 3723 19
29 7962 3644 17
30 11451 6080 5

aBase year = 1987.



318 D. Houser / Journal of Econometrics 113 (2003) 289–335

Fig. 3. Wealth by age and education.

This suggests that recent work experience might have a relatively greater impact on
female’s wage oBers.
The means and standard deviations of each wage equation parameter’s marginal

posterior distribution are reported in Table 8. Note that the wage equation includes an
intercept and 12 year dummies, corresponding to the 13 years for which wage observa-
tions exist (see Section 4.1). These year dummies are estimated very imprecisely. This
table also reports the results of an OLS regression on observed log-wages. The OLS
regression uses the speci0cation as described in Section 2.1, except that the residual
is assumed to be independently and identically distributed across time and individuals.
Also, there are no restrictions placed on the equation’s coeJcients. It is well known
that such OLS estimates can be biased and inconsistent. There are two primary sources
of this bias. The 0rst is selection due to incidentally truncated wages. The second can
arise if the residual is serially correlated. To see this, note that market experience at t is
a function of the decision at t−1, and because the decision at t−1 depends on the value
of the residual, serial correlation in the error process could lead to endogeneity. For
example, if individuals with higher wages tend to work more, then the partial correla-
tion between a secularly-persistent skill shock and market experience might be positive.
Consequently, the coeJcient of experience �1 might be estimated with upward bias. It
turns out, as Table 8 shows, that the estimates from the diBerent procedures are close,
in the sense that each posterior mean is within two standard errors of the OLS point
estimates.
The empirical posterior densities of selected utility function parameters are described

in Fig. 6. CoeJcients of terms involving the product of age and leisure have distri-
butions that lie largely on one side of zero. Moreover, the posterior means of these
distributions are plausible economically, as they jointly imply that, at every age, the
nonstochastic part of utility is strictly increasing in leisure. The distributions of log
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Fig. 4. Draw sequences for selected parameters.

consumption and log consumption squared have means near zero and posterior stan-
dard deviations that are large relative to these means. In fact, these parameters are
jointly insigni0cant in the sense that simulations of the model from posterior means,
but excluding these two consumption terms, have essentially no eBect on simulated
life-cycle outcomes (e.g., at each age, average hours change only beyond the third or
fourth decimal point). Omitting terms in age and leisure, on the other hand, aBects
outcomes dramatically. It is worthwhile to note that the coeJcient of the product of
log consumption and log leisure has a positive mean, 0.026, which suggests that con-
sumption and leisure are complements. However, its posterior standard deviation is
relatively large at 0.073.
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Fig. 5. Marginal posterior distributions for selected log-wage equation parameters. The triangles mark pos-
terior means.

The posterior means for all of the utility function parameters are reported in
Table 9. It is interesting to note that the mean of C1, the transition cost aBecting
decisions after age 17, is greater than two posterior standard deviations from zero.
In addition, its mean, −0:79, is large in magnitude relative to the posterior means
of the standard deviations of the second and third alternatives’ preference shocks,
which are 0.55 and 0.62, respectively. This suggests that transition costs may mit-
igate hours variation across adjacent years. The correlations between the 0rst and
second, and second and third, preference shocks are −0:25 and 0.65, with relatively
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Table 8
Posterior means and standard deviations and OLS estimates for log wage equation parameters

Parametera Dynamic model OLS

Mean SD Estimate SE

�1: Intercept 8.662 0.168 8.991 0.199
�2: Experience 0.034 0.009 0.029 0.007
�3: Lagged hours 0.015 0.021 −0.005 0.017
�4: Age 0.121 0.043 0.057 0.051
�5: Age2 −0.003 0.002 0.002 0.003
�6: Education 0.085 0.012 0.087 0.008
�7: 1982 0.078 0.151 −0.095 0.196
�8: 1983 −0.058 0.163 −0.197 0.193
�9: 1984 −0.089 0.175 −0.201 0.200
�10: 1985 −0.128 0.189 −0.223 0.210
�11: 1986 −0.134 0.205 −0.222 0.221
�12: 1987 −0.101 0.221 −0.182 0.232
�13: 1988 −0.106 0.237 −0.212 0.240
�14: 1989 −0.191 0.252 −0.294 0.247
�15: 1990 −0.231 0.268 −0.373 0.252
�16: 1991 −0.311 0.283 −0.473 0.256
�17: 1992 −0.397 0.299 −0.605 0.260
�18: 1993 −0.472 0.315 −0.738 0.263

�: Log wage error correlation 0.584 0.016
)2(u): Error process variance 0.189 0.016

a‘Age’ is the age of the respondent minus 16. ‘Education’ is years of education minus 10.

small empirical standard deviations. The posterior mean correlation between the 0rst
and third shocks is largest at −0:89, which is large relative to its posterior stan-
dard deviation of 0.02. These precise posterior distributions, based on vague
priors and a fairly small sample, suggest that preference shocks are important de-
terminants of labor supply decisions. This lends support to speci0cations used by Keane
and Wolpin (1997), among others, in the structural empirical labor supply
literature.
Table 10 gives the posterior means and standard deviations for the parameters as-

sociated with the savings function and future component. The partial correlation of
income with savings decisions seems reasonable. Evaluated at its posterior mean, an
additional $1000 in income leads to $105 in additional savings. I 0nd that an additional
year of education is associated with $310 in additional savings. Also, individuals with
higher wealth seem to save more. All else equal, when evaluated at posterior means
the savings rule requires increasing savings by 31 cents for every additional dollar of
wealth carried into the period.
Table 10 also reports the posterior means and standard deviations of the future

component parameters. The future component includes 18 terms in the agent’s state
variables. Seven of the 18 coeJcients have posterior distributions that lie largely to
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Fig. 6. Marginal posterior distributions for selected utility function parameters. The triangles mark posterior
means.

one side of zero. Three of these are the alternative speci0c constants, and each of
the others involves combinations of experience, education, age and the current hours
decision. The coeJcients on terms involving wages and savings are jointly signi0cant,
however, in the sense that setting them to zero substantially worsens the 0t of the
model, as described next.

5.2. Fit

To assess goodness of 0t I simulated the model from the means of its parame-
ters’ marginal posterior distributions, and compared the resulting choice, wage, wealth
and transition pro0les to those derived from my panel. I valued age 17 wealth at
$2941=(1:02)3 in each simulation. The reason is that wealth data is 0rst available
at age 20, and then has aggregate mean of $2941. Since the average real interest
rate over the sample period was about 2%, and since my simulated life-cycles be-
gin at age 17, my choice of endowment followed. The years of schooling of the
agents in my panel ranges from eight to 20. Hence, I simulated 14-year histories for
500 agents of each educational type from eight to 20. This results in 6500 simulated



D. Houser / Journal of Econometrics 113 (2003) 289–335 323

Table 9
Posterior means and standard deviations of utility function parameters

Parametera Mean SD

#1: Log consumption −0.0162 0.1216
#2: (Log consumption)2 0.0008 0.0104
#3: Age× log leisure −13.8591 4.3428
#4: Log consumption × log leisure 0.0258 0.0732
#5: Age× (log leisure)2 −4.3863 1.5071
#6: Age2 × log leisure 0.0630 0.0417
C1: Transition cost (age¿ 17) −0.7929 0.0837
C2: Transition cost (age = 17) −0.7773 0.1511
&1: Age× hours −5.4364 1.3515
&2: Part-time and 17 0.4879 0.4341
&3: Full-time and 17 0.4475 0.3323

+.(1; 1) SD of alternative one’s preference shock 1.00 PEGGED
+.(2; 2) SD of alternative two’s preference shock 0.63 0.10
+.(3; 3) SD of alternative three’s preference shock 0.59 0.07
+.(1; 2) Correlation of preference shocks one and two −0.43 0.17
+.(1; 3) Correlation of preference shocks one and three 0.61 0.10
+.(2; 3) Correlation of preference shocks two and three −0.60 0.18

a‘Age’ is the age of the respondent minus 16.

14-year histories. I ran 6500 simulations for each of the three age cohorts in my panel,
resulting in a total of 19,500 simulated 14-year histories. Then, choice frequencies,
wage pro0les, wealth paths and transition frequencies were generated as weighted av-
erages of the simulations. The weights were set according to the proportions in my
panel. For example, the simulated choices of college graduates aged 17 to 19 have
no weight in the age 17–19 aggregate statistics, because I do not observe any such
person.
The age-hours pro0le is derived from:

Hourst ≡ 0:5Nt;part-time + Nt; full-time + 1:5Nt;overtime (56)

where Nt;x is the observed fraction of age t agents that provide x hours of market labor.
Fig. 7 plots the simulated and NLSY hours pro0le. The simulated pro0le tracks the
actual pro0le quite closely. There is an apparent diBerence at age 19, where the actual
pro0le rises slightly less quickly than predicted from the simulations. Shedding light
on the source of this diBerence, and performing a more stringent comparison to the
data, requires disaggregating choices. Fig. 8A–D plot choice frequencies by alternative.
Again, the simulated pro0les provide a close visual match. The overpredicted aggregate
hours are revealed to stem primarily from too few predicted part-time, and too many
full-time, choices at age 19. Both home and overtime choices seem to be well matched
over the entire life-cycle.
The model’s 0t can also be gauged by examining predicted transition frequencies.

Fig. 9 suggests the model captures the main features of the data along this dimension
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Table 10
Posterior means and standard deviations of savings function and future component parameters

Parametera Mean SD

Savings function
(1: Intercept 1838.84 777.84
(2: Income 0.105 0.028
(3: Education 310.71 137.41
(4: Experience −16:74 81.06
(5: Age 69.91 91.74
(6: Wealth 0.31 0.04
)�: SD of wealth shock 11832 852

Future componentab

'1: Savings 1:6399E− 05 2:0936E− 05
'2: Savings2 1:4020E− 10 1:3884E− 10
'3: Experience2 6:8069E− 02 3:7356E− 02
'4: Age× savings 1:1690E− 06 2:0700E− 06
'5: Experience× savings −8:0700E− 07 1:4630E− 06
'6: Wage× savings 1:7370E− 07 5:8110E− 06
'7: Education × savings −1:0610E− 06 2:1110E− 06
'8: Wage× experience 0.0165 0.0564
'9: Education × experience 0.1225 0.0569
'10: Experience3 0.0043 0.0013
'11: Age2 × experience 0.0340 0.0228
'12: Age× experience2 −0:0110 0.0042
'13: Education × experience2 0.0022 0.0040
'14: Education2 × experience 0.0009 0.0064
'15: Age× education × experience −0:0067 0.0089
'16: Part-time 3.66 0.99
'17: Full-time 6.75 1.79
'18: Overtime 8.43 2.66

a‘Age’ is the age of the respondent minus 16, and ‘Education’ is years of education minus 10.
bThe parameter labels correspond to the discussion in Appendix A.

as well. The model generates substantial choice persistence in full-time and overtime
work. The own transition to full-time and overtime hours is 0.81 and 0.70 in the
NLSY, respectively, compared to 0.78 and 0.63 in the simulations. The transition rate
from part-time to part-time hours is 0.38 in both the NLSY and the simulations. The
transitions from home to part-time work are not matched well, but there are very few
such transitions in either the NLSY or simulated data. Finally, the volatility of hours
between consecutive years is 0.34 in the simulated data, as compared to the NLSY
value of 0.31.
Fig. 10 describes the in sample predictions for the aggregate wage and wealth pro-

0les. The main features of the wage pro0le are reKected in the simulations. The ag-
gregate wage path is somewhat lower than the actual path in the teens and early 20’s,
and a bit higher between the ages of 26 and 30. The model predicts that mean wealth
will increase over the life-cycle from about $2000 in the late teens and early 20’s, to
about $9000 by age 30. This is broadly consistent with what occurs in the NLSY data.
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Fig. 7. Simulated and NLSY labor supply by age.

6. Wage, wealth and human capital simulations

6.1. Wages and wealth

Consider 0rst the eBect of an uncompensated single-period change in the wage on
labor supply. 18 My procedure is to compare all simulations to the baseline simulation
reported in Figs. 7 and 8A–D. The new simulations are identical to the baseline,
except that at a single age the wage for each individual is increased by 10%. Since
the realizations of the stochastic variables for all other ages are held 0xed across
simulations, any change in labor supply is attributable to the eBect of the single-period
wage change. I measure the elasticity of the labor supply response by dividing the
percentage change in hours (as de0ned by (56)) by the percentage change in the
wage, in this case ten percent. 19

Fig. 11 describes the results of the wage elasticity simulations. The 0gure plots
the simulated uncompensated wage elasticity for all ages between 17 and 30, and
note that each age corresponds to a unique simulation. Consistent with many others’
0ndings, the simulated elasticities are small in magnitude, with the greatest deviation
from zero being −0:036 at age 30. Theory, of course, does not predict a sign for the
uncompensated elasticity’s value. I do not 0nd much evidence of an age eBect, which
some have argued might exist (see, e.g., Shaw, 1989).

The analogous wealth elasticities for each age are reported in Fig. 12. In these
simulations, wealth was incremented at a single age by 10% of its absolute value and
elasticities calculated accordingly. The magnitudes are about the same as the wage

18 The simulated elasticity I report is not wealth- or utility-constant.
19 Changes in a single-period wage lead to changes in labor supply which lead to changes in subsequent

wages through experience eBects. In principle, this could have important consequences for subsequent hours
decisions. In fact, it turns out that such eBects are negligible, so I do not report them here.
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Fig. 9. Aggregate transition frequencies for simulated and NLSY agents. The two columns above ‘P–P’
indicate the frequency of transitions from part-time to part-time hours between consecutive years. ‘P–F’
indicates transitions from part-time to full-time between consecutive years, ‘P–O’ indicates part-time to
overtime and ‘P–H’ indicates part-time to no market work. The remaining labels are de0ned analogously.

Fig. 10. Simulated and NLSY wage and wealth pro0les by age.
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Fig. 11. Estimated uncompensated wage elasticity of labor supply by age.

Fig. 12. Estimated uncompensated wealth elasticity of labor supply by age.

elasticities, and again there is no obvious age eBect. Overall, Figs. 11 and 12 provide
evidence that, for the young men in my panel, changes in wages and wealth are not
able to account for observed labor supply variation.

6.2. Human capital

At least since the work of Mincer (1958), theoretical models of human capital
and labor supply have described implications of the fact that labor supply’s value
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involves both a contemporaneous payoB and a human capital eBect that stems from the
investment value of work. There remains, however, much to be learned about the eBect
that the investment value of work has on actual (or observed) hours outcomes. Shaw
(1989) and Altug and Miller (1998) each 0nd indirect evidence for an investment eBect
on hours. Eckstein and Wolpin (1989) argue that human capital investment is a very
important factor in female labor market participation, while Keane and Wolpin (1997)
examine the eBect it can have on occupational choices.
In the current model, the future component accounts for the expected value of human

capital investments. It also accounts for the expected bene0t of investment in physical
capital. In the model, human capital investments are reKected by total accumulated
work experience. Because the law of motion for market experience is xt+1 = xt + hj∗t ,
I assume that terms in the future component (18) that involve this law of motion
account for part of labor supply’s investment value. The other part of labor supply’s
value stems from the fact that previous work experience aBects wages diBerently than
other work experience. To account for this, I also include the future component’s
alternative speci0c intercepts as determinants of the investment value of current hours.
Let H (s; j) denote the part of the relative future component that captures the value of

investment in human capital, where s is the state-vector and j is the hours alternative.
Then from the above assumption and Appendix A it is seen that H (s; j) is the relative
future component F(·) under the restriction that coeJcients '1, '2, '4, '6 and '7 are
zero. When evaluated at posterior means this has economically reasonable implications.
For one, it turns out that

H ( Xst ; overtime)¿H ( Xst ; full-time)¿H ( Xst ; part–time)¿ 0 (57)

for all t = 17; : : : ; 30, where Xst is the mean observed value of the state vector. The
qualitative implication is that part-time work has greater human capital investment
value than remaining home (because H is net of the investment return to ‘home’),
full-time has more than part-time, and overtime more than full-time. Moreover, again
evaluated at each age’s mean state vector, the “marginal” return to human capital
investment is diminishing, in the sense that

H (part-time)¿H (full-time)− H (part-time)¿H (overtime)− H (full-time)¿ 0:

To assess the human capital accumulation incentive eBect on labor supply I conduct a
simulation that investigates the impact of changing the law of motion from xt+1=xt+hj

to xt+1 = xt +0:99hj: Under the modi0ed law of motion the expected bene0t of human
capital accumulation is slightly reduced for every positive hours alternative. Since the
contemporaneous costs to labor supply remain unchanged, one might expect this to
reduce hours at all ages.
Fig. 13 describes the results of this simulation exercise. Each agent’s state-variables

were, at each age, set to their value in the baseline simulation. This reveals the eBect
of the modi0ed law of motion on labor supply while holding everything else 0xed.
Labor supply falls at all ages, but the eBect is largest from age 28 to 30. The eBect
at age 30 is to reduce labor supply about 3.5%, while before age 28 labor supply is
reduced by between 0.5 and 1.0%. Loosely speaking, since the rate of human capital
accumulation has been decreased by 1% in the simulations, one might say that this
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Fig. 13. EBect of a reduction in the human capital investment value of market participation on labor supply
by age.

“human capital investment” elasticity of labor supply is between one-half and one until
the late 20’s, at which point it increases. Because the eBect on relatively older men is
greater than that on men in their late teens and early 20’s, my results suggest that a
reduction the expected investment bene0t of contemporaneous labor supply might shift
down and tend to Katten the age pro0le of hours.
The age pattern associated with the eBect of human capital on labor supply could

stem from several sources. One is that young men come to understand slowly over time
that contemporaneous work experience has a future bene0ts. Alternatively, my 0nding
could be driven by age-dependent variation in my panel’s characteristics. For example,
there are no college graduates at age 17. It is possible that occupations diBer in the
extent to which they reward accumulated work experience, and that occupations that
provide relatively high returns to human capital investment tend to be open primarily to
those with higher levels of education. The results of Keane and Wolpin (1997), which
suggest blue and white collar occupations reward previous work experience diBerently,
provide some evidence that this might be the case.

7. Conclusion

This paper analyzed a dynamic, stochastic model of life-cycle labor supply that
incorporates both savings and human capital investment. I used a Bayesian approach,
based on Geweke and Keane (1999), to draw inferences about the model’s parameters.
A feature of this procedure is that it does not require one to make strong assumptions
about the way individuals form expectations. I drew inferences with respect to wage
and wealth elasticities and human capital investment eBects on labor supply.
The results of my analysis are consistent with past research in life cycle labor supply

that assumes rational expectations. Bayesian point estimates of the log-wage equation
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parameters suggest that education, age and previous market experience each aBect
wages positively and with reasonable magnitude. Moreover, consistent with results
found in studies of female labor supply (see, e.g., Altug and Miller, 1998), Bayesian
point estimates indicated recent work experience has a greater eBect on wages than
other work experience. Estimates of preference parameters implied that utility is increas-
ing in leisure. Although consumption eBects were not well pinned down, the estimated
eBect of the interaction of consumption and leisure implies they are complements.
Simulations of the model from posterior means revealed that it provides a reason-

able 0t to the data. An additional set of simulations shed light on the eBects of wages,
wealth and the incentive to accumulate human capital on life-cycle labor supply. I found
that wages and wealth seem to have little eBect on labor supply decisions, while the
incentive to accumulate human capital was found to be relatively more important, par-
ticularly for men in their late 20’s. My results suggest that reducing the expected bene0t
of human capital accumulation might shift down and Katten the age-hours pro0le.
One strong assumption I maintained throughout this research is that all individu-

als use the same decision rule. Accumulating evidence from laboratory experiments
suggests that, in fact, behavior in dynamic decision problems is not well explained
by models that allow for only a single decision rule (see, e.g., Houser and Winter,
2001). Houser et al. (2001) extend the approach to inference described in this paper
to accommodate multiple decision rules.
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Appendix A. The relative future component

The coeJcients ' that appear in the relative future component are determined by
diBerencing the level future component F(·) with respect to “home”, which is the
fourth alternative. In the notation of equation (18), it is easy to show that the following
parameters drop out due to diBerencing:

'∗
3 ; '

∗
4 ; '

∗
7 ; '

∗
8 ; '

∗
9 ; '

∗
12; '

∗
13; '

∗
16; '

∗
17; '

∗
23; '

∗
24; '

∗
26; '

∗
28; '

∗
30:

In addition, it is straightforward to verify that the diBerenced terms corresponding to
'∗
6 and '∗

15 are perfectly collinear with hours terms that appear in the utility function.
Thus, letting ak and hk denote the savings and hours decision associated with alternative
k (note the n and t subscripts have been suppressed for clarity), the following terms
make up the relative future component estimated in this paper. Note that the coeJcient
labels correspond to the order in which they are reported in Table 10, and that the
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labels diBer from (18).

F∗(j)− F∗(4) = '1R(aj − a4) + '2R2(a2j − a24) + '3((x + hj)2 − x2)

+ '4(t + 1)R(aj − a4) + '5R(aj(x + hj)− a4x)

+ '6�R(aj − a4) + '7RE(aj − a4) + '8�hj

+ '9Ehj + '10[(x + hj)3 − x3] + '11(t + 1)2hj

+ '12(t + 1)[(x + hj)2 − x2] + '13E[(x + hj)2 − x2]

+ '14E2hj + '15(t + 1)Ehj

+ '16%(part-time) + '17%(full-time) + '18%(overtime):

Appendix B. Existence of joint posterior distribution

In the following I use notation as it was developed in the body of the text. In addi-
tion, let Nw, Ny and Nz denote the cardinal number of unobserved wages, unobserved
wealth and latent relative alternative values, respectively. Then let = ≡ [A=; B=]Nw , ; ≡
[A;; B;]Ny and > ≡ [A>; B>]Nz denote the domain of unobserved wages, unobserved
wealth and latent relative alternative values, respectively. The bounds on the domains
are such that 0¡A= ¡B= ¡∞, −∞¡A; ¡B; ¡∞ and −∞¡A> ¡B> ¡∞:
Next, let B denote the domain of �× hu, so that B=R6 ×R++, and set V ≡ [− 1; 1]
as the domain of �, which reKects the prior speci0ed in Section 3.5. Recall the utility
function and future component coeJcients are denoted jointly by 5, and denote the
domain of 5 × H. by T , where T is chosen so that each element of 5 lies along
the real line, and H. ∈T ⇒ H. is positive de0nite. Let G = G1 × R++ represent the
domain of (×h�, and recall that G1 is the compact subset of R6 implied by the priors
imposed in Section 3.4. Let W be the vector of observed and unobserved wages, @ the
vector of observed and unobserved wealth, Z the vector of all latent relative utilities
and D the vector of all choice indicators. With this notation it is convenient to de0ne
the following three functions.

f(5;H.; (;W;@; Z; D)

=|H.|NT−4=2 exp


−1

2

∑
n; t




{zn1t−Q′
n1t5}n; t

{zn2t−Q′
n2t5}n; t

{zn3t−Q′
n3t5}n; t




′

×H.




{zn1t − Q′
n1t5}n; t

{zn2t − Q′
n2t5}n; t

{zn3t − Q′
n3t5}n; t




 I(Z; D);
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g((; h�;W;@;D) = h(N (T−1)−2)=2
� exp

{
−h�

2

∑
n; t¿1

(Ant − Ra(n; j∗t−1; t − 1|())2
}

;

h(�; hu; �;W ) = (1− �2)N=2h(NT−2)=2
u

×exp


−hu(1− �2)

2



∑
n

{(logwn1 − X ′
n1�)

2 +
∑
t¿1

(logwnt

−� logwnt−1 − X ′
nt� + �X ′

nt−1�)
2}




∏

n; t

1
wnt

:

The goal is to show∫
=

{∫
;;G

[
g((; h�;W;@;D)

∫
T;>

f(5;H.; (;W;@; Z; D)
] ∫

B;V
h(�; hu; �;W )

}
¡∞:

Begin with the inner integral∫
B;V

h(�; hu; �;W ):

Note that h(·) can be expressed

(1− �2)N=2h(NT−k−2)=2
u exp

[
−hu

2
S�̂

]
hk=2
u exp

[
−hu

2
(� − �̂)′X ∗′

X ∗(� − �̂)
]
;

where k is the dimension of �, �̂ = (X ∗′
X ∗)−1X ∗′

Y ∗, S�̂ = (Y ∗ − X ∗′
�̂)′(Y ∗ − X ∗′

�̂)
(using notation from (44)–(47)). It follows that, for any value of �∈V , and for any
unobserved wage values in =, the joint distribution of hu and � is proportional to
the normal-Gamma distribution (Bernardo and Smith, 1995, p. 136), hence 0nitely
integrable over B. Let h∗(�;W ) =

∫
B h(�; hu; �;W ).

Turn next to
∫
T;> f(5;H.; (;W;@; Z; D). We can express

f(5;H.; (;W;@; Z; D)

=|H.|(NT−4)=2 exp
{
−1
2
tr(S(5̂)H.)−1

2
(5−5̂)′(Q′(H.⊗INT )Q)(5−5̂)

}
I(Z; D);

where

5̂= (Q′(H. ⊗ INT )Q)−1Q′Z

and

Z=




{zn1t}nt
{zn2t}nt
{zn3t}nt


 ; Q=




{Qn1t}nt
{Qn2t}nt
{Qn3t}nt


 :

Hence, given any constellation of ((;W;@; Z) such that (∈G1, Z ∈>, unobserved
wages lie in =, unobserved wealth values lie in ; and I(Z; D)¿ 0, we have that
the joint density of H. and 5 is normal-Wishart, hence 0nitely integrable over T . Let
f∗((;W;@; Z; D) =

∫
T f(5;H.; (;W;@; Z; D).
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Turning to g((; h�;W;@;D), it is clear that for any constellation of wages in =, wealth
in ; and parameters (∈G1, the precision h� has a gamma distribution. It follows that
for any (∈G1, g∗((;W;@;D) ≡ ∫

h�¿0 g((; h�;W;@;D)¡∞.
Therefore, we need only show that∫

=;;;G1 ;>;V
g∗((;W;@;D)f∗((;W;@; Z; D)h∗(�;W )¡∞:

Since =;;; >; G1, and V are each compact, and since g∗, f∗ and h∗ are each bounded
everywhere within these sets, it follows that the integral is exists and is 0nite.
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