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Abstract

We establish limit theorems involving weak convergence of multiple generations of critical

and supercritical branching processes. These results arise naturally when dealing with the joint

asymptotic behavior of functionals defined in terms of several generations of such processes.

Applications of our main result include a functional central limit theorem (CLT), a Darling-Erdös

result, and an extremal process result. The limiting process for our functional CLT is an infinite

dimensional Brownian motion with sample paths in the infinite product space (C0[0, 1])∞, with

the product topology, or in Banach subspaces of (C0[0, 1])∞ determined by norms related to

the distribution of the population size of the branching process. As an application of this CLT

we obtain a central limit theorem for ratios of weighted sums of generations of a branching

processes, and also to various maximums of these generations. The Darling-Erdös result and

the application to extremal distributions also include infinite dimensional limit laws. Some

branching process examples where the CLT fails are also included.
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1 Introduction

Our interest in limit theorems for multiple generations of branching processes is motivated by both
practical and theoretical considerations. The practical side stems from the use of branching processes
to model certain aspects of scientific experiments. One such problem area is Polymerase Chain
Reaction (PCR) experiments. In such an experiment, an initial amount of DNA is amplified for
use in various biological experiments. The PCR experiment evolves in three phases; an exponential
phase, a linear phase, and a pleateau phase, with branching processes and their variants frequently
used to model the exponential phase. One of the goals of such experiments is to “quantitate” the
initial number of DNA molecules in a sample or equivalently, estimate the number of ancestors in a
branching process [5]. The statistical estimate of the initial number of ancestors is a function of the
estimate of the mean of the branching process [5], and in order to make this estimate, data are used
from the last few cycles (generations) at the end of the exponential phase. Since the cycle(generation)
corresponding to the end of exponential phase is somewhat arbitrary, it is natural to consider the
joint distributions of the generations involved to determine whether two different scientists with
different choices for the end of the exponential phase obtain consistent results. Furthermore, these
joint distributions can also be used to estimate the end of the exponential phase.

Theoretical motivation for our results involves the desire to understand analogues of classical
functional limit theorems for i.i.d. sequences that hold for multiple generations of the stochastic
processes arising in the branching setting. What we present here deals with weak convergence results.
Theorem 1 is our main result, and allows a large number of applications, a few of which are presented
explicitly as Applications 1-3, and Theorems 2 and 3 in Section 2. Application 1 is a functional CLT,
yielding a Donsker type result, Application 2 a Darling-Erdös result, and Application 3 an extremal
process result, all obtained under best possible conditions. For example, in the functional CLT we
use only second moments, and in the Darling-Erdös result we use the moment condition shown in
[3] to be necessary for this result for i.i.d. sequences. A similar comment applies to the application
to extremal processes. Here the regularly varying tail condition assumed is precis ely that required
for the limiting maximal distribution at t = 1 to exist for an i.i.d sequence. Other applications
are also possible once one has Theorem 1 available, but in Theorems 2 and 3 we turn to some
applications of our functional CLT. Theorem 2 yields a strengthening of the functional CLT to the
Banach spaces c0,λ(C0[0, 1]). Another consequence of Application 1 is a new proof of the CLT for
the non-parametric maximum likelihood estimate of the mean of a supercritical branching process.
A previous proof of this in [9] involves a martingale CLT, whereas the proof herein is an elegant
application of our functional CLT result with t = 1, and the asymptotic independence obtained in
the coordinates of the limiting process. Moreover, our proof allows us to extend this result to allow
the application of a broad range of weights on the various generations. In [9] all the weights are
equal to one.

In order to describe our results in more detail we begin with a brief description of the branching
process. Let {ξn,j, j ≥ 1, n ≥ 1} denote a double array of integer valued i.i.d. random variables
defined on the probability space (Ω,F , P ), and having probability distribution {pj : j ≥ 0}, i.e.
P (ξ1,1 = k) = pk. Then {Zn : n ≥ 0} denotes the Galton-Watson process initiated by a single
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ancestor Z0 ≡ 1. It is iteratively defined on (Ω,F , P ) for n ≥ 1 by

Zn =
Zn−1∑

j=1

ξn,j.

Let m = E(Z1). It is well known that if m > 1 (i.e. the process is supercritical), then Zn → ∞
with positive probability and that the probability that the process becomes extinct, namely q, is
less than one. The complement of the set ∪∞

n=1{Zn = 0} is the so called survival set, and is denoted
by S. If m > 1, then P (S) = 1 − q and Zn → ∞ a.s. on S. Also, q = 0 if and only if p0 = 0.
If m ≤ 1, then assuming p1 6= 1 when m = 1, the process becomes extinct with probability one,
i.e. P (S) = 0. To avoid degenerate situations we assume throughout the paper, without further
mention, that p0 + p1 < 1.

The paper is organized as follows: Section 2 develops the basic notation and states the main
results of the paper. Section 3 contains the proof of Theorem 1, and Sections 4 and 5 that of the
CLT applications in Theorem’s 2 and 3, respectively. Section 6 contains examples providing some
insight into the CLT for subcritical processes, and also for supercritical processes when one uses
deterministic normalizations. In this latter example one does not get a Gaussian limit law, but a
certain mixture of Gaussian laws. This mixture can be anticipated from the Kesten-Stigum result,
but its precise expression requires some interesting analysis. In particular, these examples show
precisely why the random normalizations used in our theorems are possibly the ”best choice” if one
wants classical results to persist in limit theorems for multiple generations of these processes.

2 Notation and Main Results

In this section we state the main result of the paper. This result allows us to obtain a wide variety
of limit theorems for branching processes based on r(n)-generations, where 1 ≤ r(n) ≤ n. Following
its statement we present some interesting consequences and applications. In particular, in these
applications the integer sequence {r(n)} may approach infinity as n goes to infinity. As will be seen,
they all follow rather immediately from our main result when combined with various classical limit
theorems for i.i.d. sequences.

Throughout (M, d) is a complete separable metric space with distance d, and M∞ denotes the
infinite product of copies of M with the product topology, metrized by

d∞(x,y) =
∑

k≥1

1
2k

d(xk, yk)
1 + d(xk, yk)

. (2.1)

In our applications M is the real line or some function space. If M is the real line, then the distance
is the usual one, and for our functional CLT application M denotes the set of all continuous functions
on [0,1] that vanish at 0, which we denote by C0[0, 1]. Of course, then C0[0, 1] is a Banach space in
the supremum norm

q(f) = sup
0≤t≤1

|f(t)|, (2.2)

and the distance used is d(f, g) = q(f − g), f, g ∈ C0[0, 1]. Application 3 below contains a different
choice of M, and others are certainly possible, but these suffice to provide a sampling of possible
consequences of our main theorem.
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Since we want to study the asymptotic behavior of r(n) generations of the branching process,
and r(n) may well converge to infinity, it is useful for these purposes to define

Xn,r(n) ≡ (Xn,Zn−1 , Xn−1,Zn−2, · · ·Xn−r(n)+1,Zn−r(n)
, z, z, · · ·), (2.3)

where z is a fixed element in M ,

Xn−j+1,Zn−j = HZn−j (ξn−j+1,1, · · · , ξn−j+1,Zn−j), (2.4)

and the mappings Hk(·) take Rk into M are Borel measurable. Hence Xn,r(n) is an element of the
infinite product space M∞. Moreover, in our applications M always contains a zero element which
we denote by 0, and if we take the fixed element z ∈ M in (2.3) to be this 0, then we have

Xn,r(n) ≡ (Xn,Zn−1 , Xn−1,Zn−2 , · · ·Xn−r(n)+1,Zn−r(n)
, 0, 0, · · ·). (2.5)

We will use ⇒ to denote weak convergence of probability measures. Our main theorem for the
random vectors Xn,r(n) is the following.

Theorem 1. Let m ≥ 1, assume 1 ≤ r(n) ≤ n with limn→∞ r(n) = ∞, and that Xn,r(n) is defined
as in (2.3)-(2.4). Also assume that if {ξj : j ≥ 1} are i.i.d. non-negative integer valued random
variable with L(ξ1) = L(Z1), then the M -valued random elements {Hk : k ≥ 1} used to define
Xn,r(n) are such that

Hk(ξ, · · · , ξk) ⇒ H (2.6)

on (M, d). Then the probability measures

µn = L(Xn,r(n)|Zn−1 > 0) (2.7)

converge weakly on (M∞, d∞), i.e. we have

µn ⇒ L(B1, B2, · · · ), (2.8)

where the Bi’s are independent copies of H.

Next we present three immediate applications of Theorem 1. They include a functional CLT,
a Darling-Erdös Theorem, and also an extremal process result. It is interesting to observe that
the limiting distributions of the coordinates of Xn,r(n) are asymptotically independent, whereas the
generations of the branching process itself are correlated.

Application 1: Let m ≥ 1, 0 < σ2 = E(Z2
1 ) < ∞, and assume 1 ≤ r(n) ≤ n with

limn→∞ r(n) = ∞. Take M = C0[0, 1] with the sup-norm q, define Hk(ξ, · · · , ξk)(0) = 0, and
for 0 ≤ t ≤ 1 set

Hk(ξ, · · · , ξk)(t) =
1

σ
√

k

btkc∑

i=1

(ξi − m) + (tk − btkc) 1
σ
√

k
(ξbtkc+1 − m). (2.9)

Then Donsker’s Invariance principle implies (2.6) holds with L(H) the probability measure induced
on C0[0, 1] by a standard Brownian motion starting at zero when t = 0. If Xn,r(n) is defined as in
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(2.3-5) with Hk as in (2.9), and (C0[0, 1])∞ has the product topology induced when using the norm
q on C0[0, 1], then an immediate consequence of Theorem 1 is that the probability measures

µn = L(Xn,r(n)|Zn−1 > 0) (2.10)

converge weakly there, i.e. we have

µn ⇒ L(B1, B2, · · · ), (2.11)

where the Bi’s are independent Brownian motions.

Application 2: Let m ≥ 1, 0 < σ2 = E(Z2
1 ) < ∞, limt→∞ LLtE(Z2

1I(|Z1| ≥ t)) = 0, where
Lt = loge(t ∨ e) and LLt = L(Lt). In addition, assume 1 ≤ r(n) ≤ n with limn→∞ r(n) = ∞, and
take M = R1. Define

Hk(ξ, · · · , ξk) = ak max
1≤j≤k

∑j
i=1(ξi − m)

σ
√

j
− bk, (2.12)

where ak = (2LLk)
1
2 and bk = 2LLk + 1

2LLLk − 1
2L(4π). Then the Darling-Erdös Theorem as

in Theorem 2 of [3] implies (2.6) holds with L(H) the probability measure induced on M by the
cumulative distribution function

G(x) = exp{−e−x}, −∞, x < ∞. (2.13)

If Xn,r(n) is defined as in (2.3-5) with Hk as in (2.12), and M∞ = R∞ has the product topology ,
then an immediate consequence of Theorem 1 is that the probability measures

µn = L(Xn,r(n)|Zn−1 > 0) (2.14)

converge weakly there, and we have

µn ⇒ L(B1, B2, · · · ), (2.15)

where the Bi’s are independent random variables with cumulative distribution function G(x) given
by (2.13).

Application 3: Let m ≥ 1, assume F (x) = P (Z1 ≤ x) < 1 for all x ∈ R1, and that 1 − F (x)
is regularly varying at ∞ with exponent −α where α > 1. In addition, assume 1 ≤ r(n) ≤ n with
limn→∞ r(n) = ∞. Then by Theorem 6.3, p.455 of [4], there exists aj > 0 such that

lim
j→∞

P (
1
aj

max{0, ξ1, · · · , ξj} ≤ x) = exp{−x−α}, x > 0, (2.16)

and zero for x ≤ 0. Now define the extremal process mk(t) which is zero in [0, 1
n ) and

mk(t) =
1
ak

max{0, ξ1, · · · , ξj},
j

n
≤ t <

j + 1
k

, j = 1, · · · , k − 1, (2.17)

and

mk(t) =
1
ak

max{0, ξ1, · · · , ξk}, t ≥ 1. (2.18)
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Let M denote the finite, non-decreasing functions z(t)on [0,∞) such that z(0) = 0 and z(t) = z(1)
for t ≥ 1.Then M is a complete separable metric space in the Levy metric dL on M , and if

Hk(ξ1, · · · , ξk)(t) = mk(t), 0 ≤ t < ∞, (2.19)

then by Theorem 2.1 and 3.1 of [7] we have (2.6) where {H(t) : 0 ≤ t < ∞} is a Markov extremal
process with sample paths in M . Therefore, if Xn,r(n) is defined as in (2.3-5) with Hk as in (2.19), and
M∞ has the product topology, then an immediate consequence of Theorem 1 is that the probability
measures

µn = L(Xn,r(n)|Zn−1 > 0) (2.20)

converge weakly there, and we have

µn ⇒ L(B1, B2, · · · ), (2.21)

where the Bi’s are independent copies of the Markov process {H(t) : 0 ≤ t < ∞}.

As is easily seen, Theorem 1 combined with other classical limit theorems for i.i.d sequences
provides many possible limit theorems for suitable choices of the random elements Xn,r(n). However,
what we turn to next are some applications and extensions of the functional CLT of application one.
The first involves a functional CLT in Banach subspaces of (C0[0, 1])∞ determined by weighted
analogues of the q-norm. That is, let λ = {λj : j ≥ 1} be a sequence of strictly positive numbers,
and for f = (f1, f2, · · ·) ∈ (C0[0, 1])∞ define

qλ(f ) = sup
j≥1

λj ||fj||, (2.22)

where || · || is the supremum norm on C0[0, 1]. Also, let c0,λ(C0[0, 1]) be the subspace of (C0[0, 1])∞

given by

c0,λ(C0[0, 1]) = {f = (f1, f2, · · · ) ∈ (C0[0, 1])∞ : lim
j→∞

λj ||fj|| = 0}. (2.23)

Then qλ(f ) is a norm making the subspace c0,λ(C0[0, 1]) a Banach space.

As before we will use ⇒ to denote weak convergence of probability measures. Our functional
central limit theorem in c0,λ(C0[0, 1]) is the following.

Theorem 2. Let m ≥ 1 and assume 1 ≤ r(n) ≤ n with limn→∞ r(n) = ∞. Also assume that
the offspring distribution L(ξ) = L(Z1) is such that 0 < σ2 = E(ξ2) < ∞ and satisfies one of the
following conditions:

P (|ξ − m| ≥ x) ≤ βe−θx2
, for all x ≥ 0, or (2.24)

E(|ξ − m|ρ) < ∞ for some ρ ≥ 2, (2.25)

and that r(n) = o(n). Let Xn,r(n) be defined as in (2.3-5) with Hk(ξ1, · · · , ξk) as in (2.9). If (2.24)
holds and we take λ = {λj} where λj = (δj log(j + 3))−

1
2 and limj→∞ δj = ∞, then on the Banach

space c0,λ(C0[0, 1]) the probability measures

µn = L(Xn,r(n)|Zn−1 > 0). (2.26)
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are such that

µn ⇒ L(B1, B2, · · · ), (2.27)

where the Bi’s are independent standard Brownian motions. If instead we assume (2.25) and λ =
{λj} where λj = j−

(1+δ)
ρ and δ > 0, then we again have (2.27) on c0,λ(C0[0, 1]).

If G is Gaussian random variable with mean zero and variance one, then for all x ≥ 0

P ( sup
0≤t≤1

B(t) ≤ x) = P (|G| ≤ x).

Hence Theorem 2 and the continuous mapping theorem applied to the processes {Xn,r(n)(·) : n ≥ 1}
with values in c0,λ(C0[0, 1]) immediately imply the following result.

Corollary 1. If (2.24) or (2.25) holds with corresponding {λj : j ≥ 1} as indicated, then the
conditions of Theorem 2 imply that

lim
n→∞

P ( max
1≤j≤r(n)

λj
(Zn−j+1 − mZn−j)

σZ
1
2
n−j

≤ x) = P (sup
j≥1

λjGj ≤ x),

where G1, G2, · · · are i.i.d. N (0, 1) random variables. In addition, we also have

lim
n→∞

P ( max
1≤j≤r(n)

λj(
max1≤k≤Zn−j(0 ∨

∑k
i=1(ξn−j+1,i − m))

σZ
1
2
n−j

) ≤ x) = P (sup
j≥1

λj |Gj| ≤ x).

Remark 1. If one wants results similar to those of the corollary with λj = 1, then Theorem 2, or
application one applies, as long as we restrict the maximum to be over only finitely many j’s, say
j ∈ {1, 2, · · · , d}.

In Theorem 3 below we obtain a CLT for ratios of weighted sums of a supercritical branching
process {Zn : n ≥ 1}. When the weights are all one the result appeared in [9] using a martingale
CLT for the proof. Our proof is completely different. It uses Application 1 in an important way and
allows the ratios to consist of weighted sums. We begin with some notation.

Throughout we assume {bj : j ≥ 1} is a sequence of non-negative numbers with b1 > 0, and
supj≥1 bj < ∞. Now set

Xn = (
Nn

Dn
− m)

√
Dn,

where
Nn = b1Zn + b2Zn−1 + · · ·+ bnZ1,

Dn = b1Zn−1 + b2Zn−2 + · · ·+ bnZ0,

and we understand Xn to be zero if Dn = 0. Then we have the following CLT.

7



Theorem 3. Let m > 1, 0 < σ2 ≡ E((Z1 − m)2) < ∞, and assume {bj : j ≥ 1} is a sequence of
non-negative numbers with b1 > 0 and supj≥1 bj < ∞. For k ≥ 2, let

θk = bk(b1m
k−1 + · · ·+ bk−1m + bk +

∞∑

j=k+1

bj
1

mj−k
)−1, (2.28)

and when k = 1 set

θ1 = b1(b1 +
∞∑

j=2

bj
1

mj−1
)−1. (2.29)

If

Λ2 =
∞∑

j=1

θjbjσ
2,

then Λ2 < ∞, and for all real x we have

lim
n→∞

P (Xn ≤ x|S) = P (G ≤ x), (2.30)

where G is a mean zero Gaussian random variable with E(G2) = Λ2.

We also have the following corollary.

Corollary 2. If b1 = b2 = · · · = bd = 1 and bj = 0 for j ≥ d + 1, or bj = 1 for all j ≥ 1, then in
both situations

lim
n→∞

P (Xn ≤ x|S) = P (G ≤ x), (2.31)

where G is a mean zero Gaussian random variable with E(G2) = σ2.

Remark 2. If we condition on {Zn−1 > 0} instead of S in Theorem 3, or its Corollary, the limit
is the same.

3 Proof of Theorem 1

The proof of Theorem 1 is based on a lemma for weak convergence in infinite product spaces, and
an iterative technique developed in Lemma 2 below.

Let (M, d) be a complete separable metric space, µ a Borel probability measure on (M, d), and
π : M → M Borel measurable. Define,

µπ(A) = µ(π−1(A))

for all Borel sets A of (M, d). Let M∞ denote the infinite product space with the product topology
and typical point s = (s1, s2, · · · ). If z is a fixed point in M , we define the mapping πl : M∞ → M∞,
for l ≥ 1, by

πl(s) = (s1, s2, · · · , sl, z, z, · · · , ).

We now indicate a lemma concerning weak convergence in product spaces. Its proof is easily antic-
ipated.
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Lemma 1. Let M be as above and assume {µn : n ≥ 1} and µ∞ are Borel probability measures
on M∞ with the product topology. Then {µn : n ≥ 1} converges weakly to µ∞ if and only if µπl

n

converges weakly to µπl
∞ for all l ≥ 1.

The results of the next lemma are used several times in the proof of Theorem 1, and hence we
combine them in an easily accessed form, When m = 1 the result follows from Theorem 2, p. 20, of
[1], and when m > 1 a minor modification of Theorem 3 of [1], p. 41, suffices.

Lemma 2. Let {Zn : n ≥ 0} be a Galton-Watson process with Z0 = 1. If m = 1, then for each
J ∈ [1,∞)

lim
n→∞

P (1 ≤ Zn ≤ J)
P (Zn > 0)

= 0. (3.1)

If m > 1, then there exists a constant γ ∈ (0, 1) such that

lim
n→∞

P (Zn = k)/γn = νk, (3.2)

where 0 ≤ νk < ∞ for all k ≥ 1.

Proof of (2.8) Let µ denote the probability measure induced by H on M , and µ∞ be the
infinite product measure formed by µ on M∞. Also let µn denote the law of Xn,r(n) when Zn−1 is
conditioned to be stricty positive,i.e. for A a Borel subset of M∞ we have

µn(A) = P (Xn,r(n) ∈ A|Zn−1 > 0).

By Lemma 1 it is sufficient to establish, for each l ≥ 1, the weak convergence of µπl
n to µπl

∞. If we
identify the range space of πl with M l in the obvious way, then it suffices to show that on M l we
have that

λn = L(Xn,Zn−1 , Xn−1,Zn−2 , · · · , Xn−l+1,Zn−l |Zn−1 > 0)

converges weakly to (µ)l, the l-fold product of µ on that space.
To establish weak convergence of λn to (µ)l, it is sufficient by Theorem 2.2 of [2] to show for

arbitrary continuity sets Ei of the measure µ on M that

lim
n→∞

λn(E1 × E2 × · · · × El) =
l∏

j=1

µ(Ej). (3.3)

We will now verify

Lemma 3. If m ≥ 1 and r(n) → ∞, then (3.3) holds.

Proof Set

θn = λn(
l∏

j=1

Ej).

Then,

θn = E(
l∏

j=1

IAn,j )/(P (Zn−1 > 0)),
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where
An,j = {Xn−j+1,Zn−j ∈ Ej, Zn−j > 0}

for 1 ≤ j ≤ l. Let F0 = {φ, Ω} and Fn = σ({ξk,j : j ≥ 1} : 1 ≤ k ≤ n) for n ≥ 1. Also, to simplify
the notation, write An,j = Aj , for 1 ≤ j ≤ l. Therefore,

θnP (Zn−1 > 0) = E(E(
l∏

j=1

IAj |Fn−1)) = E(E(IA1 |Fn−1)
l∏

j=2

IAj ).

Setting βn ≡ E(IA1 |Fn−1), and writing

βn = ∆n + µ(E1),

where ∆n = E(IA1 |Fn−1) − µ(E1) we have

θnP (Zn−1 > 0) = µ(E1)E(
l∏

j=2

(IAj ) + en, (3.4)

where

en = E(
l∏

j=2

IAj ∆n).

We will now show that limn→∞ en/P (Zn−1 > 0) = 0. To this end, let ε > 0 and note that

lim sup
n→∞

en/P (Zn−1 > 0) ≤ lim sup
n→∞

E(|∆n|IZn−2>0)/P (Zn−1 > 0) ≤ I + II,

where
I = lim sup

n→∞
E(|P (A1|Fn−1) − µ(E1)|I(Zn−1>0, Zn−2>0))/P (Zn−1 > 0),

and
II = lim sup

n→∞
E(|P (A1|Fn−1) − µ(E1)|I(Zn−1=0, Zn−2>0))/P (Zn−1 > 0).

Using the Markov property and branching property of {Zn} we have

P (A1|Zn−1 = j) = P (Xn,Zn−1 ∈ E1|Zn−1 = j) = P (Hj(ξ1, · · · , ξj) ∈ E1).

Hence, given ε > 0, and that E1 is a µ-continuity set, (2.6) implies

|P (Hj(ξ1, · · · , ξj) ∈ E1) − µ(E1)| ≤ ε

for j ≥ j0(ε, E1) independent of n. Therefore,

I = lim sup
n→∞

E(|P (A1|Zn−1) − µ(E1)|I(Zn−1>0 Zn−2>0))/P (Zn−1 > 0) (3.5)

≤ lim sup
n→∞

(Σ1,n + Σ2,n)/P (Zn−1 > 0), (3.6)

where
Σ1,n =

∑

1≤j1≤j0

∑

j2≥1

|P (A1|Zn−1 = j1) − µ(E1)|P (Zn−1 = j1, Zn−2 = j2),

Σ2,n =
∑

j1≥j0+1

∑

j2≥1

|P (A1|Zn−1 = j1) − µ(E1)|P (Zn−1 = j1, Zn−2 = j2).
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Thus,

I ≤ lim sup
n→∞

[2P (1 ≤ Zn−1 ≤ j0)/P (Zn−1 > 0) + ε] = ε, (3.7)

since limn→∞ P (1 ≤ Zn−1 ≤ j0)/P (Zn−1 > 0) = 0 is immediate by Lemma 2 if m ≥ 1, i.e recall
P (Zn > 0) → 1 − q > 0 when m > 1 .

As for II, observe that

II ≤ 2 lim sup
n→∞

∑

j≥1

P (Zn−2 = j, Zn−1 = 0)/P (Zn−1 > 0) (3.8)

= 2 lim sup
n→∞

∑

j≥1

pj
0P (Zn−2 = j)/P (Zn−1 > 0) (3.9)

= 2 lim sup
n→∞

[fn−2(p0) − fn−2(0)]/P (Zn−1 > 0), (3.10)

where fn−2(·) is the generating function of Zn−2. Thus for m > 1 we have II = 0 since fn−2(p0)
and fn−2(0) both converge to q and P (Zn > 0) → 1 − q > 0 when m > 1. If m = 1, then since
0 < σ2 < ∞ by assumption in Theorem 1, we have by [1], p19, for all k ≥ 1 that

lim
n→∞

P (Zn−k > 0)/P (Zn > 0) = 1. (3.11)

In addition, we have

[fn−2(p0) − fn−2(0)] ≤
k0∑

k=1

P (Zn−2 = k) + pk+1
0 P (Zn−2 ≥ k0 + 1).

Thus by Lemma 2 and that k0 can be taken arbitrarily large we see

lim sup
n→∞

[fn−2(p0) − fn−2(0)]/P (Zn−2 > 0) = 0. (3.12)

Therefore, when m = 1, we also see II = 0.

Since en ≥ 0, the conditions of Theorem 1 imply

lim
n→∞

en/P (Zn−1 > 0) = 0

for all m ≥ 1.

Now returning to (3.4) and iterating we get,

θnP (Zn−1 > 0) =
l−1∏

j=1

µ(Ej)E(IAl) +
l−2∑

j=0

µ(Ej)en−j , (3.13)

where E0 = M and en−j = E(
∏l

k=2+j IAk∆n−k). Furthermore, using an argument similar to the
one used to prove en/P (Zn−1 > 0) → 0, one can also show that

lim
n→∞

en−j/P (Zn−1 > 0) = 0.
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Finally, note that

E(IAl ) = P (Xn−l+1,Zn−l ∈ El, Zn−l > 0) (3.14)

=
∑

j≥1

P (Hj(ξ1, · · · , ξj) ∈ El)P (Zn−l = j) (3.15)

= In + IIn + IIIn, (3.16)

where

In =
j0(ε,El)∑

j=1

P (Hj(ξ1, · · · , ξj) ∈ El)P (Zn−l = j). (3.17)

IIn =
∑

j>j0(ε,El)

(P (Hj(ξ1, · · · , ξj) ∈ El) − µ(El))P (Zn−l = j), (3.18)

and

IIIn = µ(El)P (Zn−l > j0(ε, El)); (3.19)

and j0(ε, El) is such that for all j ≥ j0(ε, El)

|P (Hj(ξ1, · · · , ξj) ∈ El) − µ(El)| < ε. (3.20)

The existence of j0(ε, El) follows from (2.6), and that El is a continuity set of µ.
Using (3.11), which holds for m ≥ 1, we have by Lemma 2 that

lim
n→∞

P (1 ≤ Zn−l ≤ j0(ε, El))/P (Zn−1 > 0) = 0,

and hence it follows that In/P (Zn−1 > 0) → 0 as n → ∞. Furthermore, using (3.20) and that here
we also have P (Zn−l > j0(ε, El))/P (Zn−1 > 0) → 1, it follows that

lim sup
n→∞

IIn/P (Zn−1 > 0) ≤ ε.

Finally, similar ideas imply IIIn/P (Zn−1 > 0) → µ(El). Thus, limn→∞ E(IAl )/P (Zn−1 > 0) =
µ(El), and hence (3.13) implies limn→∞ θn =

∏l
j=1 µ(Ej). Thus (3.3) holds and Theorem 1 is

proven.

4 Proof of Theorem 2

Application 1 of Theorem 1 implies (2.27) on (C0[0, 1])∞ with the product topology. Now we turn
to its proof for the spaces c0,λ(C0[0, 1]) and their stated norms qλ. Given that weak convergence
in the product topology implies the finite dimensional distributions of any finite set of coordinates
converges in correct fashion, it suffices to show the probability measures of (2.26) are tight on the
spaces c0,λ(C0[0, 1]). This is the content of our next lemma. Its proof establishes Theorem 2.
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Lemma 4. Let {µn : n ≥ 1} be as in (2.26), assume m ≥ 1, and that r(n) → ∞. If (2.24) holds
and λj = (δj log(j + 3))−

1
2 , where limj→∞ δj = ∞, then the {µn : n ≥ 1} are tight on c0,λ(C0[0, 1]).

Similarly, if (2.25) holds and λj = j−
(1+δ)

ρ for δ > 0, then we also have {µn : n ≥ 1} tight on
c0,λ(C0[0, 1]).

Proof. Since the finite dimensional distributions of any finite set of coordinates of {µn} converge
weakly to the corresponding ones for L(B1, B2, · · · ) , standard arguments allow us to finish the proof
by showing the {µn} are tight on c0,λ(C0[0, 1])).

To establish tightness we apply the remark in [8], p. 49. To show this remark applies we use the
fact that the distributions of any finite set of coordinates are tight (since they are convergent), and
therefore it suffices to show for each ε > 0 that there exists a d(ε) such that d ≥ d(ε) implies

lim sup
n→∞

P (qλ(Qd(Xn,r(n))) ≥ ε|Zn−1 > 0) ≤ ε. (4.1)

Here Qd(f ) = (0, · · · , 0, fd+1, fd+2, · · · ) for f ∈ (C0[0, 1])∞. Since we are assuming r(n) tends to
infinity, for all n sufficiently large we have

P (qλ(Qd(Xn,r(n))) ≥ ε|Zn−1 > 0) ≤
r(n)∑

j=d+1

In,j,

where

In,j ≡ P ( max
1≤l≤Zn−j

|
l∑

k=1

(ξn−j+1,k − m)| ≥ Z
1
2
n−jελ

−1
j |Zn−1 > 0).

Setting Jn,j = In,jP (Zn−1 > 0) we see

Jn,j =
∞∑

r=1

P ( max
1≤l≤r

|
l∑

k=1

(ξn−j+1,k − m)| ≥ r
1
2 ελ−1

j , Zn−j = r, Zn−1 > 0). (4.2)

Thus

Jn,j ≤
∞∑

r=1

P ( max
1≤l≤r

|
l∑

k=1

(ξn−j+1,k − m)| ≥ r
1
2 ελ−1

j |Zn−j = r)P (Zn−j = r), (4.3)

and by the branching property we see

Jn,j ≤
∞∑

r=1

P ( max
1≤l≤r

|
l∑

k=1

(ξk − m)| ≥ r
1
2 ελ−1

j )P (Zn−j = r), (4.4)

where {ξk : k ≥ 1} are i.i.d. with law that of the offspring distribution. Since λj → ∞ there exists
a j0 = j0(ε) such that j ≥ j0 and Ottavianni’s inequality implies

Jn,j ≤ 2
∞∑

r=1

P (|
r∑

k=1

(ξk − m)| ≥
r

1
2 ελ−1

j

2
)P (Zn−j = r). (4.5)

Now under (2.24), Lemma 4.1 of [6] implies for all r ≥ 1, j ≥ 1 that

P (|
r∑

k=1

(ξk − m)| ≥
r

1
2 ελ−1

j

2
) ≤ 2β exp{−θε2λ−2

j /4} = 2β(j + 3)−
θε2δ2

j
4 ,
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and hence for j ≥ j0 we have

In,j ≤ 4β(j + 3)−
θε2δ2

j
4 P (Zn−j > 0)/P (Zn−1 > 0). (4.6)

When m = 1 and 0 < V ar(Z1) = σ2 < ∞, we have by Theorem 1, p.19, of [1] that limn→∞ nP (Zn >

0) = 2/σ2. Hence for n − j ≥ n0 we have

P (Zn−j > 0)
P (Zn−1 > 0)

=
(n − j)P (Zn−j > 0)
(n − 1)P (Zn−1 > 0)

(n − 1)
(n− j)

≤ 2
(1− 1

n)

(1− j
n)

≤ 2
(1 − j

n )
. (4.7)

Thus for j = o(n), j ≥ j0, we have

In,j ≤ 16β(j + 3)−
θε2δ2

j
4 . (4.8)

Now take j1 = j1(ε) such that j ≥ j1 implies θε2δ2
j > 2. Given ε > 0, r(n) = o(n) and d > d0(ε) ≡

max(j0, j1, 16β
ε + 1), we have

lim sup
n→∞

P (qλ(Qd(Xn,r(n))) ≥ ε|Zn−1 > 0) ≤ lim sup
n→∞

r(n)∑

j=d+1

In,j ≤ ε.

Hence the lemma is proven under (2.24) if m = 1. If m > 1, then (4.8) is an even easier consequence
of (4.6) since limn→∞ P (Zn > 0) = 1 − q > 0. Hence if r(n) = o(n) , the lemma also holds in this
case.

If (2.25) holds, then for all r > 0 and ρ ≥ 2 we have a constant Bρ < ∞ such that an application
of Markov’s inequality and Corollary 8.2 in [4], p.151, implies

P (|
r∑

k=1

(ξk − m)| ≥
r

1
2 ελ−1

j

2
) ≤ Bρ

(E(|ξ1 − m|ρ)

(
ελ−1

j

2 )ρ

.

Hence the arguments can be completed as before, since under (2.25) we have λ−1
j = j

(1+δ)
ρ . Thus

the lemma is proven.

5 Proof of Theorem 3

Before we turn to the proof of Theorem 3 we provide a brief lemma, and recall that if m > 1
and 0 < σ2 ≡ E((Z1 − m)2) < ∞, then the Kesten-Stigum theorem, [1], p. 20, implies that with
probability one that

lim
n→∞

Wn = W, (5.1)

where Wn = Zn

mn , and W > 0 almost surely on the survival set S.

Lemma 5. Under the given assumptions, we have almost surely that

lim
n→∞

Dn

mn
=

∑

j≥1

bj

mj
W. (5.2)

Furthermore, for k ≥ 1 almost surely on S we have

lim
n→∞

bkZn−k

Dn
= θk, (5.3)

where θk is given as in (2.28) and (2.29).
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Proof. Observe that

Dn

mn
=

n∑

k=1

bkZn−k

mn
=

n∑

k=1

bk

mk
W +

n∑

k=1

bk

mk
(
Zn−k

mn−k
− W ),

and since limn→∞ Zn/mn = W almost everywhere by (5.1), an elementary argument easily implies
limn→∞

∑n
k=1

bk

mk ( Zn−k

mn−k −W ) = 0 almost everywhere. Thus (5.2) holds. Combining (5.2) and (5.1)
with W > 0 almost surely on S, we thus have (5.3). Hence the lemma is proven.

For the proof of Theorem 3 recall that if Dn = 0, then we understand Xn to be zero. Furthermore,
if Dn > 0, we then have

Xn =
n∑

j=1

√
bjZn−j

Dn

√
bjZn−j(

Zn−j+1

Zn−j
− m),

and for 1 ≤ d ≤ n we define

Xn,d =
d∑

j=1

√
bjZn−j

Dn

√
bjZn−j(

Zn−j+1

Zn−j
− m).

Of course, when Dn = 0, we understand Xn and Xn,d as given in these formulas to be zero. We also
use

X̃n =

√
Dn

mn
Xn and X̃n,d =

√
Dn

mn
Xn,d,

and their formulas analogous to those above for Xn and Xn,d.
Proof of Theorem 3. Take ε > 0, and to simplify the notation set γn = ( Dn

mn )
1
2 . Then

P (Xn ≤ x|S) = P (X̃n ≤ xγn|S), (5.4)

P (X̃n ≤ xγn|S) ≤ P (X̃n,d ≤ (x + ε)γn|S) + P (|X̃n − X̃n,d| ≥ εγn|S), (5.5)

and

P (|X̃n − X̃n,d| ≥ εγn|S) ≤ P (|X̃n − X̃n,d| ≥ εδ|S) + P (0 < γn < δ|S). (5.6)

Since ε > 0 is given, we choose δ > 0 sufficiently small that P (0 < W < 2δ2)/P (S) < ε. Since
limn→∞ γn = W

1
2 > 0 almost surely on S, there exists n0 = n0(δ) such that n ≥ n0 implies

P (0 < γn < δ|S) < ε. (5.7)

Once ε, δ > 0 are fixed, we choose d0 = d0(ε, δ) such that d ≥ d0 implies that uniformly in n

P (|X̃n − X̃n,d| ≥ εδ|S) ≤ ε. (5.8)

To obtain d0 we observe that P (|X̃n − X̃n,d| ≥ εδ|S) ≤ P (|X̃n − X̃n,d| ≥ εδ)/P (S), and since the
branching property easily implies

E((X̃n − X̃n,d)2) =
n∑

j=d+1

m−nbjE(Zn−j−1)σ2 =
n∑

j=d+1

σ2bjm
−(j+1),
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we have

E((X̃n − X̃n,d)2) ≤
σ2Mm−(d+1)

(m − 1)
, (5.9)

where M = supj≥1 bj < ∞. Hence Markov’s inequality, (5.9), and the above reasoning allows us to
choose d0 independent of n, so (5.8) holds.

Since P (Xn,d ≤ x + ε|S) = P (X̃n,d ≤ (x + ε)γn|S), by combining (5.4)-(5.8) we have for d ≥ d0

that

P (Xn ≤ x|S) ≤ P (Xn,d ≤ x + ε|S) + 2ε. (5.10)

Similarly, we also have for d ≥ d0 that

P (Xn ≤ x|S) ≥ P (Xn,d ≤ x − ε|S) − 2ε. (5.11)

Now let

X
′

n,d =
d∑

j=1

√
θj

√
bjZn−j(

Zn−j+1

Zn−j
− m), (5.12)

and observe that by setting t = 1 in the functional CLT of Application 1, the continuous mapping
theorem immediately implies the uniform stochastic boundedness of

{
√

bjZn−j(
Zn−j+1

Zn−j
− m) : 1 ≤ j ≤ d, n ≥ 1}

when these variables are conditioned on the event {Zn−1 > 0}. Therefore, for each fixed d we have
from (5.3) of Lemma 5 and the previously mentioned uniform stochastic boundedness that

lim
n→∞

P (|Xn,d − X
′

n,d| ≥ ε|S) = 0. (5.13)

In addition, by the CLT provided by Application 1 we easily have

lim
n→∞

P (X
′

n,d ≤ x) = P (Gd ≤ x) (5.14)

for all real x, where Gd is a mean zero Gaussian random variable with variance Λ2
d =

∑d
j=1 θjbjσ

2.
Combining (5.10), (5.13), and (5.14) we have for all d ≥ d0 and all real x that

lim sup
n→∞

P (Xn ≤ x|S) ≤ P (Gd ≤ x + 2ε) + 3ε. (5.15)

Using (5.11), a similar argument implies for all d ≥ d0 and all real x that

lim inf
n→∞

P (Xn ≤ x|S) ≥ P (Gd ≤ x − 2ε) − 3ε. (5.16)

Now take d1 = d1(ε) sufficiently large such that d ≥ d1 implies for all real x that

P (Gd ≤ x) − ε ≤ P (G ≤ x) ≤ P (Gd ≤ x) + ε, (5.17)

where G is as in the proposition. This condition follows easily since Λ2
d → Λ2 < ∞.

Letting d tend to infinity in (5.15) and (5.16), (5,17) implies for all x that

lim sup
n→∞

P (Xn ≤ x|S) ≤ P (G ≤ x + 2ε) + 3ε, (5.18)
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and

lim inf
n→∞

P (Xn ≤ x|S) ≥ P (G ≤ x − 2ε) − 3ε (5.19)

Letting ε ↓ 0 in (5.18) and (5.19), the theorem is proven.
Proof of Corollary 2. Given the postulated bj, (2.28), (2.29), and simple calculation implies

θj =
(m − 1)md−j

(md − 1)
, j = 1, · · · , d,

or
θj = (m − 1)m−j , j ≥ 1.

Hence the conclusion of Theorem 3 implies (2.31) with E(G2) =
∑d

j=1 θjσ
2 = σ2.

6 Examples

In this section we provide some examples where the CLT fails. We focus on the CLT as it is perhaps
the result one might expect would be most likely to persist under suitable modifications of our basic
assumptions. In the first example failure results from our branching process {Zn : n ≥ 0} being
subcritical. Hence, even though one has the same conditional independence structure as in the
critical and supercritical cases, its behavior is quite different. In the other example the CLT fails
through the use of deterministic normalizers.

Subcritical Branching Fails the CLT: Our result concerns the limit of

L(Z
1
2
n−1(

Zn

Zn−1
− m)|Zn−1 > 0),

and shows that even for this single distribution the CLT always fails. This is easy to see since the
distribution of all the H̄k

′s of the following lemma are discrete.

Lemma 6. Assume that E(Z2
1 ) < ∞ and set Ln = Z

1
2
n−1(

Zn

Zn−1
− m). Then, for any x ∈ IR,

lim
n→∞

P (Ln ≤ x|Zn−1 > 0) =
∑

k≥1

P (
√

kH̄k ≤ x)θk, (6.1)

where H̄k = 1
k

∑k
i=1(ξi − m), {ξi : i ≥ 1} are i.i.d. with L(ξ1) = L(Z1), and {θk : k ≥ 1} is a

probability distribution.

Proof of Lemma 6. Let x ∈ IR. Then, by the branching property we easily have

P (Ln ≤ x|Zn−1 > 0) =
∑

k≥0

P (Ln ≤ x; Zn−1 = k|Zn−1 > 0) (6.2)

=
∑

k≥1

P (
√

kH̄k ≤ x)P (Zn−1 = k|Zn−1 > 0). (6.3)

Since m < 1, Yaglom’s Theorem on p.18 of [1] implies that limn→∞ P (Zn−1 = k|Zn−1 > 0) = θk,
where {θk : k ≥ 1} is a probability distribution. Thus, by the generalized dominated convergence
theorem, it follows that

lim
n→∞

P (Ln ≤ x|Zn > 0) =
∑

k≥1

P (
√

kH̄k ≤ x)θk. (6.4)
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This completes the proof of the lemma.

Deterministic Normalizers Prevent the CLT: Even when m > 1, the next example shows
the spatial finite dimensional distributions related to Application 1 fail to be Gaussian when we
use canonical deterministic normalizations m

n−1
2 instead of Z

1
2
n−1 in our CLT results. Of course,

the motivation for these normalizations results from the Kesten-Stigum result, see (5.1), and in this
situation the limit laws are a mixture of Gaussian laws and the random variable W that appears in
that result.

Proposition 1. Let m > 1, 0 < σ2 ≡ E((ξ1,1 − m)2) < ∞. For i = 1, · · · , l, set Hn−i+1 =
m

(n−i)
2

σ
(Zn−i+1

Zn−i
− m) when Zn−j > 0, and zero otherwise, and let

Bn,i = {Hn−i+1 ≤ ti}, (6.5)

where t1, · · · , tl ∈ (−∞,∞) . Then

lim
n→∞

P (Bn,1 ∩ · · · ∩ Bn,l ∩ {Zn−1 > 0}) = E(Φ(t1W 1/2) · · ·Φ(tlW 1/2)IS0 ), (6.6)

where S0 ≡ {limn→∞
Zn

Zn−1
= m} and W is as in (5.1).

Proof of Proposition 1. For Zn−1 > 0 set Gn = Z
1
2

n−1
σ

( Zn

Zn−1
− m), and when Zn−1 = 0

define Gn = 0. If Φ(·) is the standard Gaussian cumulative distribution function, then under the
assumptions of the proposition for t ∈ (−∞,∞), we have almost surely that

lim
n→∞

P (Gn ≤ t|Zn−1) = Φ(t)IS0 + I{0≤t}IS′
0
. (6.7)

Furthermore, we have almost surely on S0 that

lim
n→∞

P (Gn ≤ tW
1/2
n−1|Zn−1) = Φ(tW 1/2)IS0 , (6.8)

and on S′ that

lim
n→∞

P (Gn ≤ tW
1/2
n−1|Zn−1) = IS′ . (6.9)

To verify (6.7-9) we observe that by the branching property

P (Gn ≤ t|Zn−1) = h(Zn−1, t),

where h(k, t) = P (
∑k

i=1(ξi − m)/k1/2 ≤ t) and {ξi : i ≥ 1} are i.i.d random variables independent
of the branching process with law that of Z1. Since m > 1, on the set S0 we have Zn−1 → ∞, and
hence by the classical CLT on S0 we have

lim
n→∞

P (Gn ≤ t|Zn−1) = lim
n→∞

h(Zn−1, t) = Φ(t)IS0 . (6.10)
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On the the complement of the survival set, namely S′ = ∪∞
n=1{Zn = 0}, we eventually have for

n sufficiently large that Gn = 0. Thus on S′ eventually in n we have

P (Gn ≤ t|Zn−1) = P (0 ≤ t)IS′ = I{0≤t}IS′ .

Thus (6.7) holds as it is known that P (S∆S0) = 0.

On S0, from (6.10) and that Φ(·) is continuous, we have uniform convergence in t as n → ∞.
Therefore, on S0, as n → ∞ we have

|P (Gn ≤ tW
1/2
n−1|Zn−1) − Φ(tW 1/2

n )| = o(1), (6.11)

where as usual o(1) means the term goes to zero. Since Φ(·) is continuous, as n → ∞, (5.1) implies
with probability one that

|Φ(tW 1/2) − Φ(tW 1/2
n )| = o(1), (6.12)

Hence (6.8) holds.
On S′ we eventually have as n gets large that Zn−1 = 0, and hence Gn = Wn−1 = 0. Therefore,

on S′ eventually in n we have

P (Gn ≤ tW
1/2
n−1|Zn−1) = P (0 ≤ 0)IS′ ,

and (6.9) follows.
For i = 1, · · · , l we set

An,i = {Gn−i+1 ≤ tiW
1/2
n−i}, (6.13)

where t1, · · · , tl ∈ (−∞,∞). Then we will show

lim
n→∞

P (An,1 ∩ · · · ∩ An,l) = E(Φ(t1W 1/2) · · ·Φ(tlW 1/2)IS0 ) + P (S′
0), (6.14)

and that

lim
n→∞

P (An,1 ∩ · · · ∩ An,l ∩ {Zn−1 > 0}) = E(Φ(t1W 1/2) · · ·Φ(tlW 1/2)IS0 ). (6.15)

Since the sets An,i = Bn,i, we thus have (6.6) from (6.15), and the proposition will be proven.
Arguing as above, we see that limn→∞ IAn,i∩S′ = IS′ almost surely. Since P (S′∆S′

0) = 0, the
bounded convergence theorem then implies

lim
n→∞

P (An,1 ∩ · · · ∩ An,l ∩ S′
0) = P (S′

0).

Hence it suffices to show that

lim
n→∞

P (An,1 ∩ · · · ∩ An,l ∩ S0) = E(Φ(t1W 1/2) · · ·Φ(tlW 1/2)IS0 ). (6.16)

Since limn→∞ E(|IS − I{Zn−k>0}|) = 0 for each integer k, the bounded convergence theorem
easily implies (6.16) provided we show

lim
n→∞

P (An,1 ∩ · · · ∩ An,l ∩ {Zn−1 > 0}) = E(Φ(t1W 1/2) · · ·Φ(tlW 1/2)IS0 ). (6.17)
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Now

P (An,1 ∩ · · · ∩ An,l ∩ {Zn−1 > 0}) = E(IAn,2 · · ·IAn,lI{Zn−1>0}E(IAn,1 |Fn−1)) (6.18)

and since limn→∞ E(|IS0 − I{Zn−k}|) = 0 for each integer k, the bounded convergence theorem and
(6.8) together easily imply that as n tends to infinity

P (An,1 ∩ · · · ∩ An,l ∩ {Zn−1 > 0}) = E(IAn,2 · · · IAn,lIS0Φ(t1W 1/2)) + o(1). (6.19)

By the bounded convergence theorem, that limn→∞ E(|IS0 − I{Zn−2>0}|) = 0, and

lim
n→∞

Φ(t1W
1/2
n−2) = Φ(tW 1/2),

we have as n tends to infinity that

E(IAn,2 · · ·IAn,lIS0Φ(t1W 1/2)) = E(IAn,2 · · · IAn,lI{Zn−2>0}Φ(t1W
1/2
n−2)) + o(1). (6.20)

Now
E(IAn,2 · · ·IAn,lI{Zn−2>0}Φ(t1W

1/2
n−2))

= E(IAn,3 · · · IAn,lI{Zn−2>0}Φ(t1W
1/2
n−2)E(IAn,2 |Fn−2)),

and by the Markov property and (6.8) we can iterate the previous steps to show

E(IAn,3 · · ·IAn,lI{Zn−2>0}Φ(t1W
1/2
n−2)E(IAn,2 |Fn−2))

= E(IAn,3 · · ·IAn,lI{Zn−3>0}Φ(t1W
1/2
n−3)Φ(t2W

1/2
n−3)) + o(1)

as n tends to infinity. Continuing in this way, using the bounded convergence theorem to modify
things as we go along, we eventually obtain (6.17) and the proposition is proved.
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