Trees (continued)

Definitions:

A **spanning tree** of a graph G is a tree that is a subgraph of G and includes every vertex of G.

A **minimum spanning tree** of a weighted graph G is a tree that is a spanning tree of least weight.

Spanning trees are **different** if their sets of edges are different.

Matrix-Tree Theorem (Kirchhoff):

For any connected graph $G = (V, E)$ of size n, the number of spanning trees is

$$
\text{Cofactor}_{ij} \left(\text{diag}(\text{degrees}(V)) - \text{Adjacency}(G) \right) \quad \forall i, j \in \{1..n\}.
$$

Theorem: The number M_n of labeled trees with n vertices is n^{n-2}.

Proof for $n \geq 3$: in effect, we can compute M_n as the number of spanning trees of the complete graph K_n using Kirchhoff theorem:

$$
M_n = \text{cofactor}_{11}(nI_n - 1) = \det (nI_{n-1} - 1)
$$

$$
= \det \begin{bmatrix}
 n-1 & -1 & \cdots & -1 \\
 -1 & n-1 & \cdots & -1 \\
 \vdots & \vdots & \ddots & \vdots \\
 -1 & -1 & \cdots & n-1
\end{bmatrix} = n^{n-2}.
$$

In the above $(n-1) \times (n-1)$ matrix, add rows 2 through $n-1$ to the first row, then subtract the first column from each other column. Then the computation of the determinant becomes straightforward.
Greedy minimum spanning tree algorithms

Kruskal:

Given a connected weighted graph \(G = (V, E, W) \), initialize \(E' \) to an empty set. Then

For \(k=1..n-1 \),

Add to \(E' \) an edge \(e \in E\setminus E' \) such that

the resultant \(E' \) has no circuits, and

with this restriction, \(e \) has minimal weight.

The result is the minimum spanning tree \(T = (V, E') \).

Prim:

Given a connected weighted graph \(G = (V, E, W) \),
select any \(v \in V \) and initialize \(T \) to a tree of one vertex:
\(T = (V', E'), V' = \{v\}, E' = \emptyset \). Then

For \(k=1..n-1 \),

Add to \(T \) an edge \(e \in E\setminus E' \) such that

\(e \) is incident with a vertex in \(V' \), and

with this restriction, \(e \) has minimal weight.

This algorithm has an implementation with the complexity \(O(n^2) \).

A lower bound for the weight of a minimum Hamiltonian cycle:

Given a connected weighted graph \(G = (V, E, W) \) with a minimum Hamiltonian cycle \(H \) and a minimum spanning tree \(T \), removal of any edge from \(H \) results in a spanning tree of \(G \), therefore

\[W(H) \geq W(T) + W(e), \]

where \(e \) is the shortest edge in \(G \).

This lower bound can be further improved (G&P, page 389).
Acyclic digraphs

Definition:
A labeling \{v_i, i=1..n\} of an acyclic digraph \(G = (V, E)\) of size \(n\) is called canonical (canonical ordering) iff \(v_iv_j \in E \rightarrow i<j\).

Lemma: any set \(S\) of vertices in an acyclic digraph contains a vertex with zero indegree in \(S\).
Proof by contradiction (cycles).

Theorem: a digraph \(G\) is acyclic iff it has a canonical labeling.
Proof. (←) A canonical labeling excludes the possibility for any walk to come to its origin, since every step increases the label index. Therefore, there are no cycles in \(G\).

(→) Let \(S_0 = G\). Then, by the Lemma, \(S_0\) has a vertex of zero indegree. Call it \(v_0\). The rest of \(G\) (call it \(S_1\)), according to Lemma, has a vertex \(v_1\) of zero degree. The rest of the rest of \(G\) (call it \(S_2\)), according to Lemma, has a vertex \(v_2\) of zero degree, and so on. Thus constructed sequence \({v_0, v_1, v_2, ...}\) is a canonical labeling, because, by construction, there are no arcs that return from \(S_i, \forall i\).

Definition: a digraph is a rooted tree with root \(v\) iff the unoriented graph is a tree, and \(v\) is the only vertex with indegree 0.

Proposition: in a rooted directed tree with root \(v\), there is a unique path from \(v\) to every other vertex.
Proof (existence). To construct the path from a given vertex to the root, follow reversed arcs: by the above definition, they always exist for a non-root node. Running into a previously visited node is impossible: there are no cycles. The process terminates at the root.

Corollary: in a rooted directed tree, every vertex other than root has indegree 1.
Uninformed Search Algorithms

Breadth-First Search of a Tree

In this strategy, levels of the tree are searched sequentially.

\[\text{Queue} := \{ \text{root} \} \]
While (Queue)
 \[\text{node} := \text{Pop} (\text{Queue}) \]
 \[\text{Search} (\text{node}) \]
 \[\text{Queue} := \text{Append} (\text{Queue}, \text{Expand} (\text{node})) \]

Here \(\text{Queue} \) is the list of nodes that need to be processed, the function \(\text{Search} \) performs the search (whatever its goal is) of the given node, the function \(\text{Pop} \) extracts the first node from \(\text{Queue} \) (it returns the first element and shortens \(\text{Queue} \)); the function \(\text{Expand} \) returns the list of children of the node, the function \(\text{Append} (x, y) \) appends elements of \(y \) at the end of the list \(x \). Formally speaking, \(\text{Queue} \) becomes “false” when it’s empty. Complexity is \(O(b^m) \), where \(b \) (the branching factor) is the average number of children, and \(m \) is the height of the tree.

Depth-First Search of a Tree

In this strategy, leaves are searched sequentially, together with nodes encountered first time on the way to a leaf.

\[\text{Stack} := \{ \text{root} \} \]
While (Stack)
 \[\text{node} := \text{Pop} (\text{Stack}) \]
 \[\text{Search} (\text{node}) \]
 \[\text{Stack} := \text{Push} (\text{Expand} (\text{node}), \text{Stack}) \]

Here the function \(\text{Pop} \) extracts the top node from the stack, and the function \(\text{Push} \) adds nodes on top of the stack. Complexity is \(O(b^m) \).
Depth-First Search of a Graph

One possible implementation is given below. A new element with respect to the previous case is that visited nodes need to be labeled in order to avoid processing them twice. This is done with the function \textit{Label}. The function \textit{Unlabeled} selects only unlabeled vertices from a given list. The function \textit{Reduce} removes duplicates from the list, leaving the first instances. The function \textit{Expand} here returns all adjacent vertices of a given vertex.

\begin{verbatim}
Stack := \{any vertex\}
While (Stack)
 vertex := Pop (Stack)
 Search (vertex)
 Label (vertex)
 Stack := Reduce (Push (Unlabeled (Expand (vertex)), Stack))
\end{verbatim}

In addition to searching the graph, this algorithm is also potentially capable of returning a spanning tree and the associated canonical labeling (Figure 1). Because of the necessity to process every edge of the graph of the size n, the complexity of the algorithm is $O(n^2)$.

![Figure 1](image_url)

Figure 1. Example of a graph with a spanning tree (fat lines) and its canonical labeling that result from application of the depth-first search algorithm (from G&P, page 398).
The One-Way Street Problem

Definitions:

To orient a graph is to assign orientation to every edge of the graph.

A graph has a **strongly connected orientation** if it is possible to orient it so that it will be strongly connected (can travel between any two points respecting orientations).

An edge of a connected graph is called a **bridge** (or **cut edge**) if its deletion renders the graph disconnected.

Theorem:

A graph has a strongly connected orientation iff it is connected and has no bridges.

Proof:
(→) If there is a bridge, assigning an orientation to it makes one of the two ends of it unreachable from the other end.
(←) Otherwise, one can use the following algorithm.

Algorithm for assigning a strongly connected orientation:

Let T be a labeled spanning tree produced by a depth-first search in a connected graph G that has no bridges. For each edge ij of G, assign the orientation $i \rightarrow j$, if $ij \in T$. Otherwise, assign $j \rightarrow i$.

Proof: By induction.