Functions

A function, or a map \(f \) from a set \(A \) to a set \(B \), written as

\[
f: a \mapsto b
\]

\[
f(a) = b, \quad \text{where } a \in A, \ b \in B
\]

\[
f: A \to B
\]

(all forms are equivalent)

is a binary relation between elements of \(A \) and \(B \) with the property that for every \(a \in A \) there is exactly one \(b \in B \). i.e.:

\[
f: A \to B \iff \forall a \in A \exists! b \in B \mid f: a \mapsto b
\]

The domain of \(f \) is \(A \)

The target of \(f \) is \(B \)

The range, or the image of \(f \), (sometimes written \(f(A) \)) is

\[
\text{rng } f = \{ b \in B \mid \exists a \in A, b = f(a) \}
\]

\(f \) is onto, or surjective, if its range is its target: \(\text{rng } f = B \)

\(f \) is one-to-one (1-1) or injective iff \(a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2) \)

\(f \) is a bijection (f is a bijective function) iff it is onto and 1-1.
The \textit{identity} function: \(i_A = \{(a, a) \mid a \in A\} \).

The \textit{inverse} of a function \(f \) is the set of reversed ordered pairs of \(f \), iff it is a function:
\[
 f^{-1} = \{(b, a) \mid (a, b) \in f\}.
\]

\textbf{Propositions:}

\(f: A \to B \) has an inverse \(f^{-1}: A \to B \), iff \(f \) is a bijection.

If \(f: A \to B \) is a bijection, then \(f^{-1}: A \to B \), is a bijection.

\textbf{Definitions:}

Sets \(A \) and \(B \) have the same cardinality, \(|A| = |B| \), iff there is a \textit{one-to-one correspondence} (i.e., a bijection) between them.

A set \(A \) is \textit{countably infinite} iff \(|A| = |\mathbb{N}| \), and \textit{countable} iff it is either finite or countably infinite.

For any two sets \(A \) and \(B \), \(|A| \leq |B| \) iff there is a one-to-one function (injection) \(A \to B \), and \(|A| < |B| \) iff \(|A| \leq |B| \) and \(|A| \neq |B| \).

Not all infinities are equal to each other!

\textbf{Cardinal numbers:} \(|\mathbb{N}| = \aleph_0 \), \(|\mathbb{R}| = \aleph_1 \), \(|\mathcal{P}(\mathbb{R})| = \aleph_2 \), …

\textbf{Continuum hypothesis:}

There is no set \(A \) with \(\aleph_0 < |A| < |\mathbb{R}| = \aleph_1 \)

\textbf{Schröder-Bernstein theorem:}

\(|A| \leq |B| \land |B| \leq |A| \to |A| = |B| \). (useful to prove that \(|A| = |B| \))
Integers

For the following 3 sets:
- Set of integer numbers \mathbb{Z}
- Set of natural numbers \mathbb{N}
- Set of real numbers \mathbb{R}

\leq is a partial order, because it is reflexive, antisymmetric, transitive

Two binary operations: multiplication, ab, and addition, $a+b$

For each operation on the above 3 sets we have

<table>
<thead>
<tr>
<th>Operation</th>
<th>Set</th>
<th>+</th>
<th>×</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Z</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Z</td>
<td>R</td>
</tr>
<tr>
<td>Closure</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Associativity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Commutativity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Identity exists</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inverse exists for each element</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Distributivity: $a(b+c) = ab+ac$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Properties:

$a \leq b \Rightarrow a + c \leq b + c$
$a \leq b \land c \geq 0 \Rightarrow ac \leq bc$
$a \leq b \land c \leq 0 \Rightarrow ac \geq bc$

smallest element

Well-ordering principle:

Any nonempty set of natural numbers has a smallest element.
Theorem: (here and below the symbol “∋” means “such that”)

\[\forall a, b \in \mathbb{N} \ \exists! \ q, r \in \mathbb{Z}, \ 0 \leq q, 0 \leq r < b \ \ni \ a = qb + r \]

Theorem (division algorithm):

\[\forall a, b \in \mathbb{Z}, b \neq 0 \ \exists! \ q, r \in \mathbb{Z}, \ 0 \leq r < b \ \ni \ a = qb + r, \]

where \(q \) is called the *quotient* and \(r \) is called the *remainder*:

\[
q = \begin{cases}
\left\lfloor \frac{a}{b} \right\rfloor & \text{if } b > 0, \\
\left\lceil \frac{a}{b} \right\rceil & \text{if } b < 0.
\end{cases}
\]

Recall (page 77) that \(\lfloor x \rfloor \), the *floor* of \(x \), is the greatest integer that is less or equal to \(x \), and \(\lceil x \rceil \), the *ceiling* of \(x \), is the smallest integer that is greater or equal to \(x \).

As a generalization of decimal representations, one can define *base* \(b \) representations \((a_0, a_1, ..., a_n)_b\) : binary, octal, hexadecimal

example: \(6 \times 9 = (42)_{13} \)

Definition:

\(\forall a, b \in \mathbb{Z}, b \neq 0, b \) is a *divisor* or *factor* of \(a \), write \(b \mid a \), iff \[\exists q \in \mathbb{Z} \ \ni \ a = qb \]

Facts:

\[
1 \mid n \ \forall n \in \mathbb{N}, \quad a \mid a \ \forall a \in \mathbb{N}, \\
n \mid 0 \ \forall n \neq 0, n \in \mathbb{N}, \quad b \mid a \text{ is a partial order},
\]

greatest common divisor (gcd), \(a \wedge b \), is the glb,

least common multiple (lcm), \(a \vee b \), is the lub,

the poset \((\mathbb{N}, \mid)\) is a lattice.
Euclidean algorithm (of computing gcd):

∀ a, b ∈ ℤ, b < a, write

\[a = q_1 b + r_1, \]
\[b = q_2 r_1 + r_2, \]
\[r_1 = q_3 r_2 + r_3, \ldots \]

then gcd(a,b) is the last nonzero reminder.

Definition:

a, b are relatively prime ⇔ ∀ a, b ∈ ℤ, a, b ≠ 0, gcd(a, b) = 1.

Theorem:

∀ a, b ∈ ℤ ∃ m, n ∈ ℤ ⊢ gcd(a, b) = ma + nb

Exercise: prove that

gcd (a, b) lcm (a, b) = | ab |